시장보고서
상품코드
1918548

산업용 로봇 시장 : 로봇 유형별, 적재량별, 축별, 제어 방식별, 용도별, 최종 이용 산업별(2026-2032년) 예측

Industrial Robot Market by Robot Type, Payload Capacity, Axis, Control, Application, End-Use Industry - Global Forecast 2026-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 198 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

산업용 로봇 시장은 2025년에 141억 5,000만 달러로 평가되었고, 2026년에는 148억 2,000만 달러로 CAGR은 6.46%를 나타낼 것으로 보이며, 2032년까지 219억 4,000만 달러에 달할 것으로 예측되고 있습니다.

주요 시장 통계
기준 연도(2025년) 141억 5,000만 달러
추정 연도(2026년) 148억 2,000만 달러
예측 연도(2032년) 219억 4,000만 달러
CAGR(%) 6.46%

복잡한 생산 환경 전반에서 산업용 로봇 도입을 가속화하는 융합 기술 및 운영 촉진요인에 대한 포괄적 개요

산업용 로봇은 현대 제조업 변혁의 핵심 역할을 수행하며, 하드웨어 발전, 소프트웨어 지능, 시스템 통합이 융합되어 생산 환경 전반의 생산성과 안전성을 재정의하고 있습니다. 본 개요는 노동 동향, 품질 요구사항, 복잡한 다품종 생산 환경에서의 일관된 처리량 추구 등 도입 결정을 재편하는 핵심 촉진요인들을 제시합니다. 경영진은 구동, 감지, 제어 아키텍처의 점진적 혁신이 어떻게 측정 가능한 운영 개선과 위험 완화로 이어지는지에 대한 간결한 이해가 필요합니다.

협력 플랫폼, 모바일 솔루션, 데이터 중심 오케스트레이션이 자동화 전략 및 공급업체 관계를 어떻게 재구성하는지에 대한 자세한 고려사항

최근 몇 년간 산업용 로봇의 환경은 대규모 균질 배치에 대한 좁은 초점에서 유연성, 협업, 디지털 통합을 중시하는 생태계로 전환되었습니다. 본 섹션에서는 인간과 안전하게 협업하는 협동 로봇의 주류화, 고정 셀을 넘어 자동화를 확장하는 모바일 로봇 플랫폼의 부상, 가변적 환경에서 동적 작업 수행을 가능케 하는 AI 기반 비전 및 제어 시스템의 내장화 등 변혁적 변화를 탐구합니다. 이러한 추세는 중견 제조업체와 비전통 산업의 자동화 진입 장벽을 낮춥니다.

관세 정책 조정이 조달 다각화, 현지화 전략, 공급 연속성 보호를 위한 계약 메커니즘을 어떻게 주도했는지에 대한 분석적 검토

관세 관련 정책 변화는 조달 역학을 변화시키고, 원천 장비 제조사(OEM) 및 통합업체가 부품과 완제품 로봇 시스템을 조달하는 방식을 재편했습니다. 2025년까지 누적된 영향은 공급망 다각화에 대한 관심 증대로 관찰되었으며, 구매자들은 대체 공급업체를 모색하고 핵심 하위 부품에 대한 2차 공급원을 확보하고 있습니다. 이는 조달 전략의 실질적 전환으로 이어져, 기업들은 관세로 인한 비용 변동성 노출을 줄이기 위해 모터, 감속기, 컨트롤러, 반도체 부품에 대한 공급업체 중복성과 이중 조달을 우선시하고 있습니다.

세분화된 세분화 기반 인사이트는 최종 용도 요구사항, 용도 미묘한 차이, 로봇 아키텍처, 페이로드 클래스, 축 복잡성, 제어 유형, 가격대를 구매 결정과 결합합니다.

세분화 프레임워크는 대상 제품 설계, 영업 전략, 서비스 모델 수립에 활용되는 뚜렷한 수요 벡터와 도입 패턴을 드러냅니다. 자동차, 화학 및 제약, 소비재, 전자제품, 식품 및 음료, 물류 및 창고, 금속 기계 등 최종 사용 산업의 관점에서 살펴보면 각 분야가 정밀도, 위생 설계, 처리량, 추적성 간의 고유한 균형을 우선시한다는 점이 명확해집니다. 자동차 생태계는 높은 페이로드, 반복성 및 엄격한 사이클 타임 성능을 강조하는 반면, 제약 및 식품 관련 환경은 위생적인 인클로저, 세척성 및 규제 추적성을 중시합니다.

근거리 아웃소싱 동향, 규제 체제, 산업 집중도를 글로벌 시장의 차별화된 배치 모델 및 서비스 네트워크와 연계하는 전략적 지역 분석

지역별 동향은 세계의 산업용 로봇 환경 전반에 걸쳐 배치 전략, 공급망, 규제 준수에 상당한 영향을 미칩니다. 아메리카 지역에서는 근거리 아웃소싱과 유연한 자동화에 대한 관심이 높아지면서 노동력 가용성과 재고 회복력 우선순위에 대응하고 있으며, 이는 턴키 방식 구현과 신속한 시운전을 제공할 수 있는 통합업체에 대한 수요를 촉진합니다. 이러한 지역적 초점은 기존 설비의 수명을 연장하는 로봇 공학이 적용되는 레거시 플랜트의 개조 및 현대화 프로젝트에도 중점을 둡니다.

플랫폼 강점, 부품 전문화, 통합업체 전문성, 소프트웨어 오케스트레이션이 고객 가치를 어떻게 정의하는지 보여주는 다층적 경쟁 생태계의 통합적 관점

산업용 로봇 생태계 내 선도 기업들의 경쟁적 관점은 플랫폼 공급업체, 부품 전문업체, 시스템 통합업체, 소프트웨어 혁신업체로 구성된 다층적 구조를 부각시킵니다. 견고한 하드웨어 포트폴리오와 개방형 소프트웨어 생태계를 결합한 플랫폼 공급업체는 통합을 간소화하고 풍부한 분석 기능을 제공함으로써 기업 고객을 유지하는 경향이 있습니다. 고급 액추에이터, 감속기, 비전 서브시스템을 제공하는 부품 전문업체는 성능, 서비스 가능성, 검증된 통합 키트 가용성으로 차별화됩니다.

상호 운용성, 인력 역량 강화, 탄력적인 조달, 파트너십 기반 제공을 통해 자동화 가치를 가속화하기 위한 경영진을 위한 실용적이고 실행 가능한 권고 사항

업계 리더들은 기술적 엄밀성과 유연한 상업 모델을 결합한 균형 잡힌 전략을 추구하여 더 빠르고 지속 가능한 자동화 성과를 가능하게 해야 합니다. 개방형 API와 모듈형 하드웨어 인터페이스를 우선시하는 플랫폼에 투자하여 상호운용성을 확보함으로써 통합 시간을 단축하고 제3자 혁신을 촉진하십시오. 제품 투자와 병행하여 유지보수 및 운영 인력의 역량을 강화하는 교육 프로그램을 운영함으로써 도입 속도를 높이고 운영 성숙도 달성까지의 총 소요 시간을 단축하십시오.

구조화된 인터뷰, 전문가 검증, 체계적인 2차 문헌 검토를 결합한 투명한 다중 방법 연구 접근법으로 신뢰성 있고 실행 가능한 결과를 보장

본 분석의 기반이 된 연구는 균형 잡히고 검증 가능한 결과를 보장하기 위해 1차 인터뷰, 전문가 검증, 삼각검증된 2차 자료 검토를 결합한 다중 방법론 접근법을 채택했습니다. 1차 참여에는 도입 촉진요인, 전개 과제, 서비스 기대치에 대한 맥락적 인사이트를 제공한 조달 책임자, 통합 전문가, 제품 관리자, 공장 운영 임원과의 구조화된 인터뷰가 포함되었습니다. 이러한 질적 입력은 반복되는 주제를 식별하고 산업 및 지역 전반에 걸친 기술적 및 상업적 트렌드의 관련성을 검증하기 위해 종합되었습니다.

로봇 투자에서 일관된 생산 가치 창출로 이어지는 역량 구축, 기능 간 연계, 운영 시스템을 강조한 통합 결론

결론적으로, 산업용 로봇은 이제 기계적 혁신, 소프트웨어 지능, 전략적 조달 선택의 교차점에서 작동하며, 운영 위험을 관리하면서 생산성을 높일 기회를 창출합니다. 가장 성공적인 도입 기업들은 응용 분야별 요구사항에 대한 명확한 이해와 체계적인 통합 계획, 견고한 공급업체 관계, 인력 개발을 결합합니다. 로봇 솔루션이 더욱 모듈화되고 소프트웨어 중심이 됨에 따라 혼합 플릿을 조정하고 수명 주기 성능을 관리하는 능력이 시장 선도 기업과 추종 기업을 점점 더 구분 짓고 있습니다.

자주 묻는 질문

  • 산업용 로봇 시장 규모는 어떻게 변할 것으로 예상되나요?
  • 산업용 로봇 도입을 촉진하는 주요 요인은 무엇인가요?
  • 최근 산업용 로봇 환경의 변화는 어떤 방향으로 진행되고 있나요?
  • 관세 정책 변화가 조달 전략에 미치는 영향은 무엇인가요?
  • 산업용 로봇 시장의 최종 이용 산업은 어떤 것들이 있나요?

목차

제1장 서문

제2장 조사 방법

  • 조사 디자인
  • 조사 프레임워크
  • 시장 규모 예측
  • 데이터 트라이앵귤레이션
  • 조사 결과
  • 조사의 전제
  • 조사의 제약

제3장 주요 요약

  • 최고경영진의 관점
  • 시장 규모와 성장 동향
  • 시장 점유율 분석(2025년)
  • FPNV 포지셔닝 매트릭스(2025년)
  • 새로운 수익 기회
  • 차세대 비즈니스 모델
  • 업계 로드맵

제4장 시장 개요

  • 업계 생태계와 밸류체인 분석
  • Porter's Five Forces 분석
  • PESTEL 분석
  • 시장 전망
  • GTM 전략

제5장 시장 인사이트

  • 소비자 인사이트와 최종 사용자 관점
  • 소비자 경험 벤치마킹
  • 기회 매핑
  • 유통 채널 분석
  • 가격 동향 분석
  • 규제 규정 준수 및 표준 프레임워크
  • ESG와 지속가능성 분석
  • 혁신과 리스크 시나리오
  • ROI와 CBA

제6장 미국 관세의 누적 영향(2025년)

제7장 AI의 누적 영향(2025년)

제8장 산업용 로봇 시장 : 로봇 유형별

  • 관절식
  • 직교식
  • 협동 로봇
  • 델타형
  • 스칼라형

제9장 산업용 로봇 시장 : 적재량별

  • 20-50kg
  • 50-100kg
  • 5-20kg
  • 100kg 초과
  • 5kg 이하

제10장 산업용 로봇 시장 : 축별

  • 4축
  • 7축
  • 6축
  • 3축

제11장 산업용 로봇 시장 : 제어 방식별

  • 협동 로봇
  • 고정형 로봇
  • 이동형 로봇

제12장 산업용 로봇 시장 : 용도별

  • 조립
    • 부품 삽입
    • 나사 조임
  • 디스펜서
  • 검사
  • 자재 관리
    • 포장 작업
    • 팔레타이징
    • 픽앤플레이스
  • 포장
  • 도장 및 코팅
  • 용접
    • 아크 용접
    • 스폿 용접

제13장 산업용 로봇 시장 : 최종 이용 산업별

  • 자동차
  • 화학 및 의약품
  • 소비재
  • 전자기기
  • 식품 및 음료
  • 물류 및 창고업
  • 금속 기계

제14장 산업용 로봇 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제15장 산업용 로봇 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제16장 산업용 로봇 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제17장 미국의 산업용 로봇 시장

제18장 중국의 산업용 로봇 시장

제19장 경쟁 구도

  • 시장 집중도 분석(2025년)
    • 집중 비율(CR)
    • 하핀달 하쉬만 지수(HHI)
  • 최근 동향과 영향 분석(2025년)
  • 제품 포트폴리오 분석(2025년)
  • 벤치마킹 분석(2025년)
  • ABB Limited
  • Comau SpA
  • Denso Corporation
  • Dobot by Shenzhen Yuejiang Technology Co., Ltd.
  • Ellison Technologies Inc.
  • FANUC Corporation
  • Gridbots Technologies Private Limited
  • Kawasaki Heavy Industries, Ltd.
  • Kuka AG
  • Lakewood Automation
  • MCI Robotics Pvt. Ltd.
  • Mecademic Robotics
  • Mecalux, SA
  • Mitsubishi Electric Corporation
  • Nachi-Fujikoshi Corp.
  • Omron Corporation
  • OnRobot A/S
  • Saab AB
  • Seiko Epson Corporation
  • Servosila FZCO
  • Staubli Group
  • Teradyne Inc.
  • Trossen Robotics
  • Universal Robots A/S
  • Yaskawa Electric Corporation
HBR 26.02.10

The Industrial Robot Market was valued at USD 14.15 billion in 2025 and is projected to grow to USD 14.82 billion in 2026, with a CAGR of 6.46%, reaching USD 21.94 billion by 2032.

KEY MARKET STATISTICS
Base Year [2025] USD 14.15 billion
Estimated Year [2026] USD 14.82 billion
Forecast Year [2032] USD 21.94 billion
CAGR (%) 6.46%

Comprehensive orientation to the converging technological and operational drivers that are accelerating industrial robot adoption across complex production environments

Industrial robotics now occupies a central role in modern manufacturing transformation, where hardware advances, software intelligence, and system integration converge to redefine productivity and safety across production environments. This introduction frames the core drivers reshaping adoption decisions, including labor dynamics, quality requirements, and the drive for consistent throughput in complex, high-mix production settings. Executives need a concise orientation to how incremental innovations in actuation, sensing, and control architectures translate into measurable operational improvements and risk mitigation.

Moving beyond conventional automation lines, companies are integrating robots into hybrid processes that blur the boundary between human labor and automated systems. As a result, procurement and engineering teams must evaluate not only unit capabilities but also interoperability, lifecycle service models, and total cost of ownership considerations. The emphasis on modularity and software-configurable behavior has increased the pace at which new applications can be piloted and scaled, making strategic planning a continuous cycle rather than a one-time investment decision.

In-depth exploration of how collaborative platforms, mobile solutions, and data-driven orchestration are reshaping automation strategies and supplier relationships

Over recent years the landscape for industrial robots has shifted from a narrow focus on large-scale, homogeneous deployments to an ecosystem that values flexibility, collaboration, and digital integration. This section explores transformative shifts such as the mainstreaming of collaborative robots that operate safely alongside humans, the rise of mobile robotic platforms that extend automation beyond fixed cells, and the embedding of AI-driven vision and control systems that enable dynamic tasking in variable conditions. These trends reduce the barriers to automation for mid-sized manufacturers and for nontraditional industries.

In tandem, supply chain resilience has emerged as a strategic priority, compelling firms to reassess sourcing strategies and favor architectures that support local customization and rapid retooling. Software ecosystems around robot platforms have matured, with more robust APIs and cloud-native orchestration tools enabling fleet-level management and predictive maintenance. Together, these shifts create a new strategic calculus for investment, where agility, interoperability, and data-driven performance management eclipse simple metrics of throughput.

Analytical review of how tariff policy adjustments have driven sourcing diversification, localization strategies, and contractual mechanisms to protect supply continuity

Policy changes related to tariffs have altered procurement dynamics and reshaped how original equipment manufacturers and integrators source components and finished robotic systems. The cumulative impact through 2025 has been observed in increased attention to supply chain diversification, with buyers seeking alternative suppliers and qualifying secondary sources for critical subcomponents. This has led to a practical shift in sourcing playbooks, where companies prioritize supplier redundancy and dual-sourcing for motors, reducers, controllers, and semiconductor components to reduce exposure to tariff-induced cost variability.

As a result of tariff adjustments, firms have re-evaluated assembly location strategies and logistics planning, driving some component manufacturing to nearer-shore providers or prompting investment in vertical integration for key subsystems. Contract negotiations now more commonly include clauses that address tariff pass-through, reallocation of duties, and responsibility for compliance documentation. Additionally, manufacturers have increased their use of tariff classification analysis and engaged customs and trade specialists to maximize available duty relief mechanisms. These pragmatic responses emphasize operational continuity and regulatory compliance while preserving the ability to deploy robotic solutions across diverse industrial settings.

Granular segmentation-driven insights connecting end-use requirements, application nuances, robot architectures, payload classes, axis complexity, control types, and pricing bands to buyer decisions

The segmentation framework reveals distinct demand vectors and adoption patterns that inform targeted product design, sales motion, and service models. When viewed through the lens of end-use industries such as Automotive, Chemical & Pharmaceuticals, Consumer Goods, Electronics, Food & Beverage, Logistics & Warehousing, and Metal Machinery, it becomes clear that each sector prioritizes a unique balance of precision, sanitary design, throughput, and traceability. Automotive ecosystems emphasize high payload, repeatability, and tight cycle-time performance, whereas pharmaceutical and food-related environments put a premium on hygienic enclosures, cleanability, and regulatory traceability.

Application-based segmentation highlights divergent technology requirements across Assembly, Dispensing, Inspection, Material Handling, Packaging, Painting & Coating, and Welding; where Assembly further refines into parts insertion and screw driving, Material Handling splits into packaging operation, palletizing, and pick and place, and Welding distinguishes arc welding from spot welding. These granular application distinctions drive choices around end-effectors, vision systems, force control, and cell design. Robot type segmentation across Articulated, Cartesian, Collaborative, Delta, and Scara platforms aligns with those application needs, with articulated robots offering reach and flexibility while delta and SCARA excel at high-speed, low-payload tasks.

Payload capacity categories-ranging from up to 5 kg through 20-50 kg, 50-100 kg, and above 100 kg-along with axis configurations of three, four, six, and seven axis inform structural design and motion planning. Control typologies that separate collaborative robots from fixed and mobile robots define integration patterns, safety strategies, and operator interaction models. Price range considerations from below 25K through 25K-50K, 50K-100K, and above 100K influence procurement cycles, financing options, and the expected depth of supplier support. Together these segmentation dimensions create a matrix that suppliers and buyers can use to align product roadmaps, sales territories, and after-sales service propositions with the specific technical and commercial needs of target applications.

Strategic regional analysis tying near-shoring trends, regulatory regimes, and industry concentration to differentiated deployment models and service networks across global markets

Regional dynamics substantially influence deployment strategies, supply chains, and regulatory compliance across the global industrial robotics landscape. In the Americas, rising interest in near-shoring and flexible automation responds to labor availability and inventory resilience priorities, which drives demand for integrators that can deliver turnkey implementation and rapid commissioning. This regional focus also emphasizes retrofit and modernization projects in legacy plants, where robotics serve to extend the useful life of existing capital equipment.

Across Europe, Middle East & Africa, regulatory constraints, safety standards, and institutional incentives influence adoption patterns. Manufacturers in this region balance strict safety and data privacy regimes with robust industrial engineering practices, encouraging suppliers to provide certified solutions and advanced lifecycle service packages. In the Asia-Pacific region, high-volume electronics and consumer goods manufacturing has historically driven demand for high-speed, precision automation, while emerging hubs are rapidly adopting robotics to offset labor constraints and improve quality control. These regional characteristics affect supplier footprints, the structure of distribution channels, and the prioritization of local versus global service networks. Collectively, regional insights inform where to allocate engineering resources, how to price bundled services, and which partners to engage for cross-border deployments.

Integrated view of the multi-tiered competitive ecosystem showing how platform strengths, component specialization, integrator expertise, and software orchestration define customer value

A competitive view of leading organizations in the industrial robotics ecosystem underscores a multi-tiered landscape of platform providers, component specialists, system integrators, and software innovators. Platform providers that combine robust hardware portfolios with open software ecosystems tend to retain enterprise customers by simplifying integration and enabling richer analytics. Component specialists that deliver advanced actuators, reducers, and vision subsystems differentiate on performance, serviceability, and the availability of validated integration kits.

System integrators occupy a pivotal role by translating component capabilities into operational outcomes, offering domain-specific process know-how across industries such as automotive and logistics. Meanwhile, software vendors and controls suppliers that offer intuitive programming environments, digital twin capabilities, and fleet orchestration platforms increase the speed with which deployments achieve productive uptime. The interplay among these company types shapes go-to-market strategies, partnership models, and the evolution of managed service offerings, where recurring revenue streams from maintenance, software updates, and training become as important as initial product sales.

Practical and actionable recommendations for executives to accelerate automation value through interoperability, workforce enablement, resilient sourcing, and partnership-based delivery

Industry leaders should pursue a balanced strategy that couples technical rigor with flexible commercial models, enabling faster and more sustainable automation outcomes. Invest in interoperability by prioritizing platforms with open APIs and modular hardware interfaces to reduce integration time and foster third-party innovation. Complement product investments with training programs that upskill maintenance and operations staff, thereby accelerating acceptance and reducing the total time to operational maturity.

At the procurement level, adopt contractual mechanisms that address supply chain volatility, including vendor-managed inventories, multi-sourcing strategies for critical components, and service-level agreements that align incentives around uptime. From a product perspective, design for servicability and modular replacement to reduce mean time to repair and to support staged upgrades. Finally, cultivate partnerships with system integrators and software providers to create bundled solutions that reduce buyer friction and provide predictable performance outcomes. Taken together, these actions help organizations convert technology potential into repeatable operational value.

Transparent multi-method research approach combining structured interviews, expert validation, and systematic secondary review to ensure reliable and actionable findings

The research underpinning this analysis employed a multi-method approach that combined primary interviews, expert validation, and triangulated secondary-source review to ensure balanced and verifiable findings. Primary engagement included structured interviews with procurement leads, integration specialists, product managers, and plant operations executives who provided contextualized insights on adoption drivers, deployment challenges, and service expectations. These qualitative inputs were synthesized to identify recurring themes and to validate the relevance of technical and commercial trends across industries and regions.

Secondary research consisted of a systematic review of technical white papers, regulatory guidance, standards documentation, and vendor product literature to corroborate capability claims and to map technological trajectories. Wherever appropriate, subject-matter experts from engineering and logistics domains reviewed draft findings to ensure accuracy and to identify practical implications. The methodology emphasized cross-validation across data sources and transparency around assumptions, with clear documentation of interview scopes, inclusion criteria for literature, and the processes used to reconcile conflicting inputs.

Integrated conclusion emphasizing capability-building, cross-functional alignment, and the operational systems that convert robotics investments into consistent production value

In conclusion, industrial robotics now operates at the intersection of mechanical innovation, software intelligence, and strategic sourcing choices, creating opportunities to lift productivity while managing operational risk. The most successful adopters combine a clear understanding of application-specific requirements with disciplined integration planning, robust supplier relationships, and workforce development. As robotics solutions become more modular and software-driven, the ability to orchestrate mixed fleets and to manage lifecycle performance increasingly separates market leaders from followers.

Executives should approach automation as an iterative capability-building exercise rather than a one-time capital deployment. By aligning procurement, engineering, and operations around shared performance objectives and by leveraging validated segmentation and regional insights, organizations can reduce implementation friction and accelerate benefit realization. Ultimately, the value of industrial robotics derives not only from automation itself but from the organizational systems that enable consistent, scalable, and safe deployment across diverse production contexts.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Definition
  • 1.3. Market Segmentation & Coverage
  • 1.4. Years Considered for the Study
  • 1.5. Currency Considered for the Study
  • 1.6. Language Considered for the Study
  • 1.7. Key Stakeholders

2. Research Methodology

  • 2.1. Introduction
  • 2.2. Research Design
    • 2.2.1. Primary Research
    • 2.2.2. Secondary Research
  • 2.3. Research Framework
    • 2.3.1. Qualitative Analysis
    • 2.3.2. Quantitative Analysis
  • 2.4. Market Size Estimation
    • 2.4.1. Top-Down Approach
    • 2.4.2. Bottom-Up Approach
  • 2.5. Data Triangulation
  • 2.6. Research Outcomes
  • 2.7. Research Assumptions
  • 2.8. Research Limitations

3. Executive Summary

  • 3.1. Introduction
  • 3.2. CXO Perspective
  • 3.3. Market Size & Growth Trends
  • 3.4. Market Share Analysis, 2025
  • 3.5. FPNV Positioning Matrix, 2025
  • 3.6. New Revenue Opportunities
  • 3.7. Next-Generation Business Models
  • 3.8. Industry Roadmap

4. Market Overview

  • 4.1. Introduction
  • 4.2. Industry Ecosystem & Value Chain Analysis
    • 4.2.1. Supply-Side Analysis
    • 4.2.2. Demand-Side Analysis
    • 4.2.3. Stakeholder Analysis
  • 4.3. Porter's Five Forces Analysis
  • 4.4. PESTLE Analysis
  • 4.5. Market Outlook
    • 4.5.1. Near-Term Market Outlook (0-2 Years)
    • 4.5.2. Medium-Term Market Outlook (3-5 Years)
    • 4.5.3. Long-Term Market Outlook (5-10 Years)
  • 4.6. Go-to-Market Strategy

5. Market Insights

  • 5.1. Consumer Insights & End-User Perspective
  • 5.2. Consumer Experience Benchmarking
  • 5.3. Opportunity Mapping
  • 5.4. Distribution Channel Analysis
  • 5.5. Pricing Trend Analysis
  • 5.6. Regulatory Compliance & Standards Framework
  • 5.7. ESG & Sustainability Analysis
  • 5.8. Disruption & Risk Scenarios
  • 5.9. Return on Investment & Cost-Benefit Analysis

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Industrial Robot Market, by Robot Type

  • 8.1. Articulated
  • 8.2. Cartesian
  • 8.3. Collaborative
  • 8.4. Delta
  • 8.5. Scara

9. Industrial Robot Market, by Payload Capacity

  • 9.1. 20-50 Kg
  • 9.2. 50-100 Kg
  • 9.3. 5-20 Kg
  • 9.4. Above 100 Kg
  • 9.5. Up To 5 Kg

10. Industrial Robot Market, by Axis

  • 10.1. Four Axis
  • 10.2. Seven Axis
  • 10.3. Six Axis
  • 10.4. Three Axis

11. Industrial Robot Market, by Control

  • 11.1. Collaborative Robots
  • 11.2. Fixed Robots
  • 11.3. Mobile Robots

12. Industrial Robot Market, by Application

  • 12.1. Assembly
    • 12.1.1. Parts Insertion
    • 12.1.2. Screw Driving
  • 12.2. Dispensing
  • 12.3. Inspection
  • 12.4. Material Handling
    • 12.4.1. Packaging Operation
    • 12.4.2. Palletizing
    • 12.4.3. Pick And Place
  • 12.5. Packaging
  • 12.6. Painting & Coating
  • 12.7. Welding
    • 12.7.1. Arc Welding
    • 12.7.2. Spot Welding

13. Industrial Robot Market, by End-Use Industry

  • 13.1. Automotive
  • 13.2. Chemical & Pharmaceuticals
  • 13.3. Consumer Goods
  • 13.4. Electronics
  • 13.5. Food & Beverage
  • 13.6. Logistics & Warehousing
  • 13.7. Metal Machinery

14. Industrial Robot Market, by Region

  • 14.1. Americas
    • 14.1.1. North America
    • 14.1.2. Latin America
  • 14.2. Europe, Middle East & Africa
    • 14.2.1. Europe
    • 14.2.2. Middle East
    • 14.2.3. Africa
  • 14.3. Asia-Pacific

15. Industrial Robot Market, by Group

  • 15.1. ASEAN
  • 15.2. GCC
  • 15.3. European Union
  • 15.4. BRICS
  • 15.5. G7
  • 15.6. NATO

16. Industrial Robot Market, by Country

  • 16.1. United States
  • 16.2. Canada
  • 16.3. Mexico
  • 16.4. Brazil
  • 16.5. United Kingdom
  • 16.6. Germany
  • 16.7. France
  • 16.8. Russia
  • 16.9. Italy
  • 16.10. Spain
  • 16.11. China
  • 16.12. India
  • 16.13. Japan
  • 16.14. Australia
  • 16.15. South Korea

17. United States Industrial Robot Market

18. China Industrial Robot Market

19. Competitive Landscape

  • 19.1. Market Concentration Analysis, 2025
    • 19.1.1. Concentration Ratio (CR)
    • 19.1.2. Herfindahl Hirschman Index (HHI)
  • 19.2. Recent Developments & Impact Analysis, 2025
  • 19.3. Product Portfolio Analysis, 2025
  • 19.4. Benchmarking Analysis, 2025
  • 19.5. ABB Limited
  • 19.6. Comau S.p.A.
  • 19.7. Denso Corporation
  • 19.8. Dobot by Shenzhen Yuejiang Technology Co., Ltd.
  • 19.9. Ellison Technologies Inc.
  • 19.10. FANUC Corporation
  • 19.11. Gridbots Technologies Private Limited
  • 19.12. Kawasaki Heavy Industries, Ltd.
  • 19.13. Kuka AG
  • 19.14. Lakewood Automation
  • 19.15. MCI Robotics Pvt. Ltd.
  • 19.16. Mecademic Robotics
  • 19.17. Mecalux, S.A.
  • 19.18. Mitsubishi Electric Corporation
  • 19.19. Nachi-Fujikoshi Corp.
  • 19.20. Omron Corporation
  • 19.21. OnRobot A/S
  • 19.22. Saab AB
  • 19.23. Seiko Epson Corporation
  • 19.24. Servosila FZCO
  • 19.25. Staubli Group
  • 19.26. Teradyne Inc.
  • 19.27. Trossen Robotics
  • 19.28. Universal Robots A/S
  • 19.29. Yaskawa Electric Corporation
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제