시장보고서
상품코드
1921728

건축 코팅용 안료 시장 : 제품 유형별, 기술별, 수지별, 색별, 용도별, 최종 용도별 - 세계 예측(2026-2032년)

Pigments for Architectural Coatings Market by Product Type, Technology, Resin, Color, Application, End Use - Global Forecast 2026-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 181 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

건축 코팅용 안료 시장은 2025년에 43억 8,000만 달러로 평가되었으며, 2026년에는 45억 7,000만 달러로 성장하여 CAGR 6.51%를 기록하며 2032년까지 68억 2,000만 달러에 달할 것으로 예측됩니다.

주요 시장 통계
기준 연도 2025년 43억 8,000만 달러
추정 연도 2026년 45억 7,000만 달러
예측 연도 2032년 68억 2,000만 달러
CAGR(%) 6.51%

건축용 코팅의 안료 선택, 성능 트레이드오프, 배합 선택에 영향을 미치는 지속가능성 촉진요인을 체계화한 전략적 안내서

건축용 코팅에 사용되는 안료는 미적 요구, 성능 디자인, 지속가능성 우선 순위가 교차하는 영역에 위치하며 복잡하고 빠르게 변화하는 생태계를 주도하고 있습니다. 본 도입부에서는 주거, 상업, 산업 부문에서의 제품 선택, 배합 선택, 최종사용자의 기대치를 형성하는 기본 요인을 개괄적으로 설명합니다. 안료의 선택이 단순한 색조를 넘어 불투명도, 내후성, 자외선 차단, 다양한 수지 시스템과의 호환성 등의 특성에 영향을 미치는 이유에 대해 그 배경을 밝힙니다.

지속가능성에 대한 요구, 공급망 탄력성, 다기능성 배합이 페인트 분야에서 안료 선택과 경쟁 우위를 재정의하는 방식

건축용 코팅의 안료 전망은 지속가능성 요구, 공급망 탄력성 강화 방안, 그리고 진화하는 응용 분야 요구사항으로 인해 혁신적인 변화를 겪고 있습니다. 배합사들은 저 VOC 또는 수성 시스템을 가능하게 하는 안료를 점점 더 선호하고 있으며, 동시에 전체 수지 클래스에서 보다 광범위한 배합 호환성을 제공하는 착색제를 찾고 있습니다. 이러한 추세는 조달 전략과 R&D 로드맵을 재구성하고, 성능과 규제 준수를 모두 달성할 수 있는 분산 기술 및 대체 안료 화학에 대한 투자를 촉진하고 있습니다.

2025년 관세 조정이 건축용 안료 가치사슬 전반에 걸쳐 조달 전략, 구매 행동 및 배합 우선순위를 재구성하는 방법을 분석합니다.

2025년 미국에서 시행된 관세 정책 변경의 누적된 영향은 안료 공급업체, 수지 제조업체, 페인트 배합 제조업체에 새로운 복잡성을 야기했습니다. 관세 조정으로 인해 수입 원자재 가격 변동성이 증가함에 따라 조달 부서는 조달 전략과 재고 정책을 재평가해야 했습니다. 이에 따라 많은 기업들이 수입 관세 변동 및 관련 물류 제약에 대한 노출을 줄이기 위해 공급업체 인증 프로그램을 가속화하고 현지 조달을 확대했습니다.

제품 유형, 수지 시스템, 적용 환경, 색상 선택이 어떻게 상호 작용하여 R & D 및 상업 전략을 형성하는지를 보여주는 상세한 세분화 분석

세분화에 대한 인사이트는 서로 다른 제품군, 적용 방법, 최종 사용 맥락이 어떻게 상호 작용하여 개발 우선순위와 상업적 전략을 정의하는 메커니즘을 밝혀냅니다. 카본블랙, 산화철, 이산화티타늄의 제품 유형 간의 차이는 은폐력, 착색 강도, 내후성에 대한 의사결정을 유도하고, 다양한 배합 방법과의 적합성을 결정합니다. 기술 선택(분말, 용제, 수성)은 규정 준수 및 도포 성능에 영향을 미칩니다. 솔벤트 기반 옵션에서는 알키드, 에폭시, 폴리에스테르 계통이 각각 다른 접착력, 유연성, 내화학성의 균형을 제공합니다. 반면, 아크릴 에멀전, 에폭시 에멀전, 비닐 아크릴 에멀전과 같은 수성 대체품은 대규모 적용을 위해 낮은 배출 경로와 향상된 안전 프로필을 제공합니다.

세계 주요 지역의 안료 선택, 배합 우선순위, 시장 출시 접근 방식을 형성하는 지역적 요구와 공급망 현실

지역별 동향은 광범위한 지리적 영역의 규제 체계, 건설 주기, 공급망 구조를 반영하여 안료 선택, 제조 기지 배치, 유통 전략에 큰 영향을 미칩니다. 아메리카에서는 공급망 탄력성과 시장 근접형 재고 모델이 조달 전략에서 중요시되는 경향이 있으며, 배합 제조업체들은 엄격한 환경 기준에 대응하기 위해 다양한 용도의 저배출 안료 기술과 수성 시스템을 채택하고 있습니다. 또한, 이 지역은 기후의 다양성과 악취 억제 및 빠른 사용 재개 특성을 중시하는 견고한 개보수 시장으로 인해 수요의 다양성이 두드러지게 나타납니다.

안료 공급업체 간 기업 전략과 경쟁적 포지셔닝을 주도하고, 전략적 제휴, 기술 차별화, 지속가능성에 대한 노력을 주도합니다.

안료 분야의 기업 차원의 트렌드는 기술적 차별화, 전략적 제휴 및 타겟팅된 생산능력 투자에 의해 형성되고 있습니다. 주요 기업들은 분산 과학, 독자적인 표면처리 기술, 내광성 및 내구성을 향상시키면서 저배출 수지 시스템과의 호환성을 촉진하는 안료 등급에 대한 투자를 진행하고 있습니다. 한편, 안료 제조업체와 수지 배합 제조업체 간의 협업은 통합 위험을 줄이고 사양 달성 시간을 단축하는 공동 개발 솔루션을 가속화하기 위해 점점 더 보편화되고 있습니다.

고성능 저배출 안료 솔루션의 채택을 가속화하기 위한 R&D, 조달 탄력성, 고객 참여의 연계에 대한 실천 전략

업계 리더들은 배합 혁신과 강력한 조달, 고객 중심 서비스 모델을 연계하는 전략을 채택하여 단기적인 기회를 포착하고 공급 충격에 대한 노출을 줄여야 합니다. 분산 기술과 안료 표면처리에 대한 투자를 우선시하여 수성 수지와의 폭넓은 호환성을 실현하고, 고배출 용매 시스템으로부터의 전환을 지원합니다. 동시에 관세의 영향을 받기 쉬운 원자재에 대해서는 우선 공급업체 계약과 이중 조달 계획을 수립하여 조달 변동을 억제하고 생산의 연속성을 유지합니다.

전문가 인터뷰, 기술 문헌 검토, 시나리오 분석을 결합한 엄격한 혼합 연구 접근법을 통해 트렌드와 전략적 시사점을 검증합니다.

이번 조사는 기술 전문가와 조달 책임자를 대상으로 한 1차 정성조사와 공개된 기술 문헌, 규제 지침, 업계 전문지 등을 대상으로 한 2차 분석을 결합한 혼합 방식을 채택했습니다. 1차 인터뷰를 통해 배합 우선순위, 공급업체 관계, 정책 변화에 대한 대응 방안에 대한 지식을 얻었으며, 표준 및 기술 정보지 검토를 통해 안료와 수지의 적합성 및 환경 규제 준수에 대한 성능 기준을 파악할 수 있었습니다.

성능, 지속가능성, 공급 탄력성이 건축용 코팅에서 안료의 전략적 차별화 요소로 자리매김하는 메커니즘에 대한 개요

결론적으로, 건축 코팅용 안료는 상품화된 투입재에서 성능, 지속가능성, 차별화를 실현하는 전략적 요소로 전환되고 있습니다. 규제 강화, 고객 선호도 변화, 공급망 변동성의 복합적인 압력으로 인해 저배출 수지와 호환되고 다기능 성능 특성을 제공하는 안료의 채택이 가속화되고 있습니다. R&D 투자를 조달 탄력성 및 고객 대응 지원과 적극적으로 연계하는 이해관계자는 사양 주도형 수요를 포착하고 원자재 가격 변동에 따른 영향을 완화하는 데 유리한 위치에 서게 될 것입니다.

자주 묻는 질문

  • 건축 코팅용 안료 시장 규모는 어떻게 예측되나요?
  • 2025년 미국의 관세 조정이 건축용 안료 시장에 미치는 영향은 무엇인가요?
  • 건축용 코팅의 안료 선택에 영향을 미치는 주요 요인은 무엇인가요?
  • 건축용 코팅의 안료 시장에서 지속가능성 요구가 어떻게 작용하나요?
  • 안료 공급업체 간의 경쟁적 포지셔닝은 어떻게 이루어지나요?

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향, 2025

제7장 AI의 누적 영향, 2025

제8장 건축 코팅용 안료 시장 : 제품 유형별

제9장 건축 코팅용 안료 시장 : 기술별

제10장 건축 코팅용 안료 시장 : 수지별

제11장 건축 코팅용 안료 시장 : 색별

제12장 건축 코팅용 안료 시장 : 용도별

제13장 건축 코팅용 안료 시장 : 최종 용도별

제14장 건축 코팅용 안료 시장 : 지역별

제15장 건축 코팅용 안료 시장 : 그룹별

제16장 건축 코팅용 안료 시장 : 국가별

제17장 미국 건축 코팅용 안료 시장

제18장 중국 건축 코팅용 안료 시장

제19장 경쟁 구도

KSM

The Pigments for Architectural Coatings Market was valued at USD 4.38 billion in 2025 and is projected to grow to USD 4.57 billion in 2026, with a CAGR of 6.51%, reaching USD 6.82 billion by 2032.

KEY MARKET STATISTICS
Base Year [2025] USD 4.38 billion
Estimated Year [2026] USD 4.57 billion
Forecast Year [2032] USD 6.82 billion
CAGR (%) 6.51%

A strategic primer that frames pigment selection, performance trade-offs, and sustainability drivers shaping formulation choices across architectural coatings

The pigments used in architectural coatings are at the intersection of aesthetic demand, performance engineering, and sustainability priorities, driving a complex and fast-moving ecosystem. This introduction outlines the fundamental drivers that shape product selection, formulation choices, and end-user expectations across residential, commercial, and industrial segments. It establishes context for why pigment selection matters beyond color alone-affecting properties such as opacity, weather resistance, UV protection, and compatibility with diverse resin systems.

As regulatory regimes tighten and green building standards proliferate, formulators face competing priorities: reducing environmental impact while preserving durability and visual performance. At the same time, advances in dispersion technology and resin chemistry have broadened the palette of functional pigments, allowing coatings to meet new durability and environmental criteria. This section frames those pressures and opportunities, preparing readers to interpret subsequent analysis on technology shifts, policy impacts, segmentation dynamics, and regional contrasts. By clarifying the scope and intent of the study, the introduction anchors the reader in the strategic questions manufacturers, specifiers, and suppliers must answer to remain competitive.

How sustainability demands, supply-chain resilience, and multifunctional formulations are redefining pigment selection and competitive differentiation in coatings

The landscape for pigments in architectural coatings is experiencing transformative shifts driven by sustainability mandates, supply-chain resilience initiatives, and evolving application demands. Formulators are increasingly prioritizing pigments that enable low-VOC or waterborne systems, and at the same time are seeking colorants that offer broader formulation compatibility across resin classes. These dynamics are reshaping procurement strategies and R&D roadmaps, prompting investments in dispersion technologies and alternative pigment chemistries that can deliver both performance and regulatory compliance.

Concurrently, the industry is seeing a push toward multifunctional pigments that contribute to thermal management, UV stability, and even antimicrobial properties for high-traffic interiors. Advances in powder and emulsion technologies are unlocking performance previously achievable only with solventborne chemistries, thereby accelerating adoption of lower-emission systems. Supply-chain diversification and nearshoring efforts are reducing single-source dependencies and shortening lead times, while digital color tools and specification platforms are changing how architects and owners select finishes. Together, these shifts are elevating pigments from a largely commodity component to a strategic lever for performance differentiation and sustainability signaling.

Analyzing how 2025 tariff adjustments reshaped sourcing strategies, procurement behaviors, and formulation priorities across the architectural pigments value chain

The cumulative impact of tariff policy changes in the United States during 2025 has introduced new layers of complexity for pigment suppliers, resin producers, and coating formulators. Tariff adjustments have increased the cost volatility associated with imported raw materials, prompting procurement teams to reassess sourcing strategies and inventory policies. In response, many firms accelerated supplier qualification programs and expanded local sourcing to mitigate exposure to import duty fluctuations and related logistical constraints.

These policy shifts also influenced the flow of specialty pigments and intermediate chemicals, encouraging consolidation of orders and longer-term contracting to stabilize landed costs. As a result, downstream formulators reprioritized product pipelines to favor chemistries and resin systems that rely less on tariff-sensitive inputs, which in turn shaped R&D allocations and formulation roadmaps. For stakeholders engaged in global supply chains, the tariff environment underscored the importance of flexible procurement practices, scenario planning, and closer collaboration with chemical producers to ensure continuity of supply and maintain product performance standards.

Deep segmentation intelligence illustrating how product types, resin systems, application environments, and color choices converge to shape R&D and commercial strategies

Segmentation insights reveal how distinct product families, application modes, and end-use contexts interact to define development priorities and commercial strategies. Product type distinctions among carbon black, iron oxides, and titanium dioxide guide decisions on hiding power, tinting strength, and weathering resilience, and they determine compatibility with a wide suite of formulation approaches. Technology choices-whether powder, solventborne, or waterborne-carry implications for regulatory compliance and application performance. Within solventborne options, alkyd, epoxy, and polyester branches each offer a different balance of adhesion, flexibility, and chemical resistance, while waterborne alternatives like acrylic emulsion, epoxy emulsion, and vinyl acrylic emulsion provide low-emission pathways and enhanced safety profiles for large-scale applications.

Application-driven segmentation further informs R&D and marketing focus: exterior coatings for roofs and walls demand pigments with strong UV and colorfastness properties, whereas interior coatings such as ceilings, walls, and wood require pigments that balance aesthetics with scrub resistance and stain performance. End-use differentiation across commercial, industrial, and residential segments influences product lifecycle expectations and procurement patterns; within residential, the split between new construction and renovation alters formulation emphasis on ease of application and odor control. Resin selection across acrylic, alkyd, epoxy, and polyurethane systems determines film properties and pigment compatibility, affecting both performance and processing. Finally, color considerations spanning black, blue, brown, green, red, white, and yellow are not merely aesthetic choices but technical variables that affect pigment loading, opacity, and lightfastness. Collectively, these segmentation layers form a matrix that manufacturers and technical teams must navigate to align product innovation with customer requirements and regulatory landscapes.

Regional imperatives and supply-chain realities shaping pigment selection, formulation priorities, and go-to-market approaches across major global geographies

Regional dynamics exert a strong influence on pigment selection, manufacturing footprints, and distribution strategies, reflecting regulatory regimes, construction cycles, and supply-chain topology across broad geographies. In the Americas, procurement strategies tend to favor supply-chain resilience and near-market stocking models, with formulators responding to stringent environmental standards by adopting low-emission pigment technologies and waterborne systems for a range of applications. This region also exhibits strong demand heterogeneity driven by climatic diversity and a robust renovation market that prioritizes odor control and rapid return-to-service characteristics.

Europe, Middle East & Africa present a complex regulatory mosaic where durability and sustainability credentials are often weighed heavily during specification, encouraging adoption of pigments compatible with advanced resin chemistries and lifecycle assessment frameworks. In some markets, government-led energy efficiency initiatives and building codes influence pigment choices for exterior surfaces. Asia-Pacific remains a dynamic region characterized by rapid urbanization, varied regulatory maturity, and an expanding production base for both pigments and resin systems. Manufacturers in this region often balance cost-efficiency with increasing demand for higher-performance pigments and low-VOC solutions as urban construction standards evolve. Across regions, supply-chain decisions reflect local raw material availability, logistics infrastructure, and regulatory pressures, requiring tailored commercial strategies to meet distinct customer needs and compliance obligations.

How strategic partnerships, technological differentiation, and sustainability credentials are driving company strategies and competitive positioning among pigment suppliers

Company-level dynamics in the pigments space are being shaped by technological differentiation, strategic partnerships, and targeted capacity investments. Leading players are investing in dispersion science, proprietary surface treatments, and pigment grades that offer enhanced lightfastness and durability while facilitating compatibility with low-emission resin systems. Meanwhile, collaborations between pigment producers and resin formulators are becoming more common to accelerate co-developed solutions that reduce integration risk and shorten time-to-specification.

Smaller, specialized firms are carving niches by focusing on high-performance or specialty colorants that address unique application needs, such as high-temperature resistance or enhanced exterior durability. Strategic M&A activity and selective capacity expansion are being used to fill capability gaps, secure feedstock reliability, and gain access to regional distribution networks. At the same time, sustainability credentials-ranging from lower embodied carbon in production to compliance with increasingly stringent chemical regulations-are emerging as a critical differentiator in supplier selection. Buyers and specifiers are prioritizing suppliers who can demonstrate traceability, consistent quality, and proactive regulatory governance across the supply chain.

Practical strategies for leaders to align R&D, procurement resilience, and customer engagement to accelerate adoption of high-performance and low-emission pigment solutions

Industry leaders should adopt a strategy that aligns formulation innovation with resilient sourcing and customer-centric service models to capture near-term opportunities and reduce exposure to supply shocks. Prioritizing investment in dispersion technologies and pigment surface treatments will enable broader compatibility with waterborne resins and support transitions away from higher-emission solventborne systems. At the same time, establishing preferred-supplier arrangements and dual-sourcing plans for tariff-sensitive inputs will reduce procurement volatility and preserve production continuity.

Commercial teams should deepen engagement with architects, coatings formulators, and specification bodies to translate pigment performance benefits into verifiable project outcomes. This involves offering technical training, application support, and transparent product documentation that addresses lifecycle and sustainability questions. Firms should also evaluate modular manufacturing footprints and regional stocking hubs to reduce lead times and align inventory with demand centers. Lastly, embedding sustainability reporting and raw-material traceability into product value propositions will strengthen relationships with customers who increasingly require environmental credentials as part of procurement decisions.

A rigorous mixed-methods research approach combining expert interviews, technical literature review, and scenario analysis to validate trends and strategic implications

This research employed a mixed-methods approach that combined primary qualitative engagements with technical experts and procurement leaders alongside secondary analysis of publicly available technical literature, regulatory guidance, and industry trade publications. Primary interviews provided insights into formulation priorities, supplier relationships, and operational responses to policy shifts, while the review of standards and technical bulletins illuminated performance benchmarks for pigment-resin compatibility and environmental compliance.

The methodology emphasized triangulation to validate findings across sources: interview-derived themes were cross-checked against technical white papers, patent filings, and product datasheets to ensure consistency in reported trends. Scenario analysis was used to assess strategic responses to tariff fluctuations and supply-chain disruptions, informing actionable recommendations. Care was taken to ensure that the research stock of technical descriptors and trend inferences reflects established industry practice and prevailing regulatory directions, while avoiding speculative projections beyond the observable behavioral shifts reported by stakeholders and documented in technical literature.

Concluding synthesis of how performance, sustainability, and supply resilience elevate pigments as strategic differentiators in architectural coatings

In conclusion, pigments for architectural coatings are transitioning from commoditized inputs to strategic enablers of performance, sustainability, and differentiation. The combined pressures of regulation, customer preference, and supply-chain volatility are accelerating the adoption of pigments that are compatible with low-emission resins and that deliver multifunctional performance characteristics. Stakeholders who proactively align R&D investments with procurement resilience and customer-facing support will be better positioned to capture specification-led demand and mitigate input-cost volatility.

Looking ahead, the ability to demonstrate consistent product quality, traceability, and environmental credentials will be as important as traditional technical attributes such as opacity and colorfastness. By focusing on integrated solutions-spanning pigment innovation, resin compatibility, and application support-manufacturers and suppliers can convert regulatory and market pressures into competitive advantage, fostering long-term partnerships with formulators, applicators, and specification communities.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Definition
  • 1.3. Market Segmentation & Coverage
  • 1.4. Years Considered for the Study
  • 1.5. Currency Considered for the Study
  • 1.6. Language Considered for the Study
  • 1.7. Key Stakeholders

2. Research Methodology

  • 2.1. Introduction
  • 2.2. Research Design
    • 2.2.1. Primary Research
    • 2.2.2. Secondary Research
  • 2.3. Research Framework
    • 2.3.1. Qualitative Analysis
    • 2.3.2. Quantitative Analysis
  • 2.4. Market Size Estimation
    • 2.4.1. Top-Down Approach
    • 2.4.2. Bottom-Up Approach
  • 2.5. Data Triangulation
  • 2.6. Research Outcomes
  • 2.7. Research Assumptions
  • 2.8. Research Limitations

3. Executive Summary

  • 3.1. Introduction
  • 3.2. CXO Perspective
  • 3.3. Market Size & Growth Trends
  • 3.4. Market Share Analysis, 2025
  • 3.5. FPNV Positioning Matrix, 2025
  • 3.6. New Revenue Opportunities
  • 3.7. Next-Generation Business Models
  • 3.8. Industry Roadmap

4. Market Overview

  • 4.1. Introduction
  • 4.2. Industry Ecosystem & Value Chain Analysis
    • 4.2.1. Supply-Side Analysis
    • 4.2.2. Demand-Side Analysis
    • 4.2.3. Stakeholder Analysis
  • 4.3. Porter's Five Forces Analysis
  • 4.4. PESTLE Analysis
  • 4.5. Market Outlook
    • 4.5.1. Near-Term Market Outlook (0-2 Years)
    • 4.5.2. Medium-Term Market Outlook (3-5 Years)
    • 4.5.3. Long-Term Market Outlook (5-10 Years)
  • 4.6. Go-to-Market Strategy

5. Market Insights

  • 5.1. Consumer Insights & End-User Perspective
  • 5.2. Consumer Experience Benchmarking
  • 5.3. Opportunity Mapping
  • 5.4. Distribution Channel Analysis
  • 5.5. Pricing Trend Analysis
  • 5.6. Regulatory Compliance & Standards Framework
  • 5.7. ESG & Sustainability Analysis
  • 5.8. Disruption & Risk Scenarios
  • 5.9. Return on Investment & Cost-Benefit Analysis

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Pigments for Architectural Coatings Market, by Product Type

  • 8.1. Carbon Black
  • 8.2. Iron Oxides
  • 8.3. Titanium Dioxide

9. Pigments for Architectural Coatings Market, by Technology

  • 9.1. Powder
  • 9.2. Solventborne
    • 9.2.1. Alkyd
    • 9.2.2. Epoxy
    • 9.2.3. Polyester
  • 9.3. Waterborne
    • 9.3.1. Acrylic Emulsion
    • 9.3.2. Epoxy Emulsion
    • 9.3.3. Vinyl Acrylic Emulsion

10. Pigments for Architectural Coatings Market, by Resin

  • 10.1. Acrylic
  • 10.2. Alkyd
  • 10.3. Epoxy
  • 10.4. Polyurethane

11. Pigments for Architectural Coatings Market, by Color

  • 11.1. Black
  • 11.2. Blue
  • 11.3. Brown
  • 11.4. Green
  • 11.5. Red
  • 11.6. White
  • 11.7. Yellow

12. Pigments for Architectural Coatings Market, by Application

  • 12.1. Exterior Coatings
    • 12.1.1. Roof Coatings
    • 12.1.2. Wall Coatings
  • 12.2. Interior Coatings
    • 12.2.1. Ceiling Coatings
    • 12.2.2. Wall Coatings
    • 12.2.3. Wood Coatings

13. Pigments for Architectural Coatings Market, by End Use

  • 13.1. Commercial
  • 13.2. Industrial
  • 13.3. Residential
    • 13.3.1. New Construction
    • 13.3.2. Renovation

14. Pigments for Architectural Coatings Market, by Region

  • 14.1. Americas
    • 14.1.1. North America
    • 14.1.2. Latin America
  • 14.2. Europe, Middle East & Africa
    • 14.2.1. Europe
    • 14.2.2. Middle East
    • 14.2.3. Africa
  • 14.3. Asia-Pacific

15. Pigments for Architectural Coatings Market, by Group

  • 15.1. ASEAN
  • 15.2. GCC
  • 15.3. European Union
  • 15.4. BRICS
  • 15.5. G7
  • 15.6. NATO

16. Pigments for Architectural Coatings Market, by Country

  • 16.1. United States
  • 16.2. Canada
  • 16.3. Mexico
  • 16.4. Brazil
  • 16.5. United Kingdom
  • 16.6. Germany
  • 16.7. France
  • 16.8. Russia
  • 16.9. Italy
  • 16.10. Spain
  • 16.11. China
  • 16.12. India
  • 16.13. Japan
  • 16.14. Australia
  • 16.15. South Korea

17. United States Pigments for Architectural Coatings Market

18. China Pigments for Architectural Coatings Market

19. Competitive Landscape

  • 19.1. Market Concentration Analysis, 2025
    • 19.1.1. Concentration Ratio (CR)
    • 19.1.2. Herfindahl Hirschman Index (HHI)
  • 19.2. Recent Developments & Impact Analysis, 2025
  • 19.3. Product Portfolio Analysis, 2025
  • 19.4. Benchmarking Analysis, 2025
  • 19.5. Alabama Pigments Company
  • 19.6. ALTANA AG
  • 19.7. Asahi Kasei Kogyo Co., Ltd.
  • 19.8. BASF SE
  • 19.9. Cabot Corporation
  • 19.10. Clariant AG
  • 19.11. DCL Corporation
  • 19.12. DIC Corporation
  • 19.13. Ferro Corporation
  • 19.14. GPRO Titanium Industry Co., Ltd.
  • 19.15. Heubach Group
  • 19.16. Kronos Worldwide, Inc.
  • 19.17. LANXESS AG
  • 19.18. Meghmani Organics Limited
  • 19.19. Noelson Chemicals
  • 19.20. Pidilite Industries Limited
  • 19.21. PPG Industries, Inc.
  • 19.22. R.S. Pigments
  • 19.23. Sudarshan Chemical Industries Limited
  • 19.24. Sun Chemical Corporation
  • 19.25. Sunlour Pigment Co., Ltd.
  • 19.26. The Chemours Company
  • 19.27. Toyo Ink SC Holdings Co., Ltd.
  • 19.28. Tronox Holdings plc
  • 19.29. Ultramarine & Pigments Limited
  • 19.30. Venator Materials plc
  • 19.31. Vibrantz Technologies, Inc.
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제