시장보고서
상품코드
1923472

나선형 용접 강관 시장 : 유형별, 재질별, 용량별, 용도별, 최종 사용자별 예측(2026-2032년)

Spiral Welded Pipe Making Machine Market by Type, Material, Capacity, Application, End User - Global Forecast 2026-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 196 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

나선형 용접 강관 시장은 2025년에 7억 5,427만 달러로 평가되었고, 2026년에는 8억 250만 달러로 성장하고 CAGR 6.86%로 성장을 지속하여 2032년까지 12억 27만 달러에 이를 것으로 예측되고 있습니다.

주요 시장 통계
기준연도(2025년) 7억 5,427만 달러
추정연도(2026년) 8억 250만 달러
예측연도(2032년) 12억 27만 달러
CAGR(%) 6.86%

투자 판단의 지침이 되는 산업, 인프라 및 에너지 분야의 우선 과제의 변천을 근거로 한 나선형 용접 강관에 대한 종합적인 소개

나선형 용접 강관은 중공업의 정밀 가공과 대구경 파이프라인 공급의 교차로에 위치하고 있으며 세계 인프라, 유틸리티, 에너지 프로젝트에 필수적인 능력을 제공합니다. 재료과학, 자동화, 환경규제의 일치가 진행되고 있는 가운데, 제조업체와 프로젝트 소유주 모두 파이프라인 자산의 신뢰성, 효율성, 수명주기 성능을 확보하기 위해 설비 선정, 생산 워크플로, 공급자와의 관계를 재검토하고 있습니다.

자동화, 디지털 통합, 재료 다양화, 수명주기 지속가능성이 나선형 용접 강관 분야에서 설비 선정 및 전략적 조달을 어떻게 재구성하는가

자동화, 디지털 통합, 재료 추적성 및 환경 성능에 대한 규제 강화의 기대가 높아짐에 따라 나선형 용접 강관의 업계 상황이 변화하고 있습니다. 제어 시스템과 로봇 공학의 진보에 의해 코일 핸들링, 용접 캘리브레이션, 치수 검사에서의 수작업의 접점이 감소하고 있습니다. 이에 따라 생산량의 일관성이 향상되고, 기존에는 다운스트림 공정의 현장 설치를 복잡하게 했던 변동성이 줄어들고 있습니다.

2025년 미국 관세조치의 누적 영향으로 조달체제의 재편, 니어쇼어링에 대한 관심 증가, 현지 서비스와 공급망의 탄력성에 대한 새로운 주목이 발생했습니다.

2025년 미국 관세 조치는 나선형 용접 강관 및 관련 소모품에 대한 공급망 및 조달 전략에 다층적인 조정을 가져왔습니다. 관세는 공급자 간의 경제 비교를 변화시켜 구매자 측에 총 양륙비용의 재평가, 니어쇼어링, 관세 조치 대상 외 지역으로의 공급자 확대를 포함한 대체 조달 형태의 모색을 촉구하고 있습니다.

최종 사용자의 용도 특화형 용접 및 검사 요구와 제품 아키텍처, 재료 요건, 서비스 모델을 일치시키는 부문 수준의 인사이트

전략적 계획 수립자와 설비 벤더에게 가장 중요한 제품과 용도의 조합을 명확히 하는 인사이트가 풍부한 세분화를 실시하였습니다. 유형별로는 중심형과 편심형의 구별에 따라 서로 다른 파이프라인 지름이나 설치 방법에서의 라인 속도, 성형 형상, 가동시 응력 프로파일을 분석합니다. 용도별로는 건설, 석유 및 가스, 수송의 각 분야에서 시장을 분석합니다. 건설 분야는 더욱 상업용과 주택용으로 나뉘며, 석유 및 가스 분야는 다운스트림, 미드스트림, 업스트림으로, 수송 분야는 식수와 폐수로 세분화되어 코팅, 용접, 검사 체제에 대한 차별화된 검증 및 인증 요건을 확립하였습니다.

아메리카, 유럽, 중동, 아프리카, 아시아태평양의 지역별 조달 요인과 규제 환경이 설비 도입과 지원 모델을 어떻게 견인하고 있는가

지역별 동향은 설비 도입 패턴, 공급망 구조, 파트너 선정에 결정적인 역할을 합니다. 미국 대륙에서는 에너지 및 도시 인프라 계획에 의한 조달이 이루어지고 있으며, 장거리 파이프라인 건설과 식수 프로젝트를 지원할 수 있는 대형 및 고용량 기계가 중시되고 있습니다. 지역 인센티브와 지역 밀착형 공급망은 국내 서비스 생태계를 선호하는 의사결정에 영향을 미칩니다.

주요 공급업체의 차별화 요인은 모듈식 설계, 디지털 용접 모니터링, 애프터마켓 지원, 턴키 생산 신뢰성을 제공하는 전략적 파트너십에 있습니다.

경쟁 환경에서는 가격 경쟁력뿐만 아니라 기술력의 수준, 서비스 네트워크, 사후 관리 네트워크에 의한 차별화가 중시됩니다. 모듈형 구조, 디지털 용접 모니터링 및 개방형 제어 프로토콜에 투자하는 주요 기업은 신속한 인증 획득 및 플랜트 자동화 시스템에 통합이 필요한 프로젝트를 획득할 수 있는 위치에 있습니다. 마찬가지로 중요한 것은 교육 프로그램, 공인 예비 부품 유통, 원격 진단 등 강력한 애프터마켓 능력을 입증하는 기업입니다. 이들은 원격지 및 제한된 환경에서 운영자의 예기치 않은 다운타임 단축에 기여합니다.

제조업체와 운영자를 위한 구체적인 제안 : 모듈 업그레이드, 지역 서비스 확대, 공급망 다양화, 지속가능성에 맞는 조달 우선순위

업계 리더는 설비 능력, 서비스 대응력, 공급망의 회복력을 동시에 강화하는 협조적 접근을 추구해야 합니다. 첫째, 기존 플랜트가 자본적 교체 없이 고급 제어 시스템과 용접 모니터링을 도입할 수 있는 모듈형 설계 및 리노베이션 경로에 대한 투자를 가속화합니다. 점진적인 업그레이드를 가능하게 함으로써 운영자는 현금 흐름을 유지하고 장기 운영 중단을 피하면서 역량을 향상시킬 수 있습니다.

전문가 인터뷰, 기술적 검증, 문서화된 설비 증거를 조합한 투명한 혼합 조사 접근법으로 실천 가능하고 검증 가능한 인사이트를 확보

본 조사에서는 설비 엔지니어, 조달 책임자, 최종 사용자 운용 관리자에 대한 1차 인터뷰를 바탕으로 기술 문서, 제품 사양서, 공개된 규제 지침을 보충 자료로 통합했습니다. 조사방법은 전문가의 정성적 인사이트와 설비의 설계도면 및 최근 도입 사례에 근거한 기술적 검증의 삼각측량을 추진하여 결론이 실태와 기술적 현실에 기초하도록 보장했습니다.

전략적 설비 선정 및 장기 운영 탄력성의 기반으로 적응성, 서비스 이니셔티브 및 상호운용성을 강조한 결정적 통합 분석

결론적으로, 나선형 용접 강관은 견고한 파이프라인 및 수도 인프라의 실현에 필수적이며, 기계적 성능과 디지털 대응성, 수명주기 지속가능성의 균형을 겸비한 설비를 요구하는 구매자가 늘어남에 따라, 그 전략적 가치는 높아지고 있습니다. 자동화의 진전, 재료의 다양화, 정책 주도의 공급망 조정이 결합되어, 공급자와 운영자 모두가 운용 리스크를 저감하면서 처리량 신뢰성을 향상시키는 조정형 아키텍쳐와 서비스 모델을 채용하도록 요구하고 있습니다.

자주 묻는 질문

  • 나선형 용접 강관 시장 규모는 어떻게 예측되나요?
  • 나선형 용접 강관 시장에서 자동화와 디지털 통합의 영향은 무엇인가요?
  • 2025년 미국 관세 조치의 영향은 무엇인가요?
  • 나선형 용접 강관의 주요 용도는 무엇인가요?
  • 나선형 용접 강관 시장의 지역별 조달 요인은 어떻게 다른가요?
  • 나선형 용접 강관 시장의 주요 공급업체는 누구인가요?

목차

제1장 서문

제2장 조사 방법

  • 조사 디자인
  • 조사 프레임워크
  • 시장 규모 예측
  • 데이터 삼각측량
  • 조사 결과
  • 조사의 전제
  • 조사의 제약

제3장 주요 요약

  • 최고경영진의 관점
  • 시장 규모 및 성장 동향
  • 시장 점유율 분석(2025년)
  • FPNV 포지셔닝 매트릭스(2025년)
  • 새로운 수익 기회
  • 차세대 비즈니스 모델
  • 업계 로드맵

제4장 시장 개요

  • 업계 생태계 및 가치사슬 분석
  • Porter's Five Forces 분석
  • PESTEL 분석
  • 시장 전망
  • GTM 전략

제5장 시장 인사이트

  • 소비자 인사이트 및 최종 사용자 관점
  • 소비자 경험 벤치마킹
  • 기회 매핑
  • 유통채널 분석
  • 가격 동향 분석
  • 규제 준수 및 표준 프레임워크
  • ESG 및 지속가능성 분석
  • 혁신 및 리스크 시나리오
  • ROI 및 CBA

제6장 미국 관세의 누적 영향(2025년)

제7장 AI의 누적 영향(2025년)

제8장 나선형 용접 강관 시장 : 유형별

  • 동심식
  • 편심식

제9장 나선형 용접 강관 시장 : 재질별

  • 합금강
  • 탄소강
  • 스테인레스 스틸

제10장 나선형 용접 강관 시장 : 용량별

  • 대용량
  • 중용량
  • 소용량

제11장 나선형 용접 강관 시장 : 용도별

  • 건설
    • 상업용
    • 주택용
  • 석유 및 가스
    • 다운스트림
    • 미드스트림
    • 업스트림
  • 물 수송
    • 식수
    • 폐수

제12장 나선형 용접 강관 시장 : 최종 사용자별

  • 에너지
  • 산업
  • 광업
  • 수도 유틸리티

제13장 나선형 용접 강관 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제14장 나선형 용접 강관 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제15장 나선형 용접 강관 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제16장 미국의 나선형 용접 강관 시장

제17장 중국의 나선형 용접 강관 시장

제18장 경쟁 구도

  • 시장 집중도 분석(2025년)
    • 기업 집중도(CR)
    • 허핀달-허쉬만 지수(HHI)
  • 최근 동향 및 영향 분석(2025년)
  • 제품 포트폴리오 분석(2025년)
  • 벤치마킹 분석(2025년)
  • Chengdu Jincheng Hydraulic Machinery Co., Ltd.
  • ESAB Corporation
  • Fronius International GmbH
  • Hangzhou Roll Forming Machinery Co., Ltd.
  • Harbin Welding Institute
  • Hornell Speedglas AB
  • Jiangsu Yawei Machine Tool Co., Ltd.
  • Kemppi Oy
  • Miller Electric Mfg. LLC
  • Nanjing Duolun Machinery Co., Ltd.
  • NIMAK GmbH
  • Qingdao OBT Co., Ltd.
  • SAF SA
  • Sany Heavy Industry Co., Ltd.
  • Shanghai Electric Group Co., Ltd.
  • Shijiazhuang Shiyi Heavy Industry Co., Ltd.
  • The Lincoln Electric Company
  • Zhengzhou Yutong Heavy Industry Co., Ltd.
CSM 26.02.19

The Spiral Welded Pipe Making Machine Market was valued at USD 754.27 million in 2025 and is projected to grow to USD 802.50 million in 2026, with a CAGR of 6.86%, reaching USD 1,200.27 million by 2032.

KEY MARKET STATISTICS
Base Year [2025] USD 754.27 million
Estimated Year [2026] USD 802.50 million
Forecast Year [2032] USD 1,200.27 million
CAGR (%) 6.86%

A comprehensive introduction that frames spiral welded pipe making machines within evolving industrial, infrastructure, and energy sector priorities to guide investment decisions

The spiral welded pipe making machine sits at the intersection of heavy fabrication precision and large-diameter pipeline delivery, supplying essential capability for infrastructure, utilities, and energy projects worldwide. As material science, automation, and environmental compliance converge, manufacturers and project owners alike are re-evaluating equipment selection, production workflows, and supplier relationships to ensure reliability, efficiency, and lifecycle performance of pipeline assets.

This introduction outlines the technical and commercial context for stakeholders assessing procurement or investment decisions related to spiral welded pipe making equipment. It locates the technology within prevailing industry drivers such as pipeline integrity, construction speed, and material adaptability, and it establishes the remainder of the executive summary as a structured exploration of market dynamics, regulatory influences, segmentation-driven opportunities, and pragmatic guidance for organizations seeking to leverage the latest advances in spiral welding technology.

How automation, digital integration, material diversification, and lifecycle sustainability are reshaping equipment selection and strategic procurement in the spiral welded pipe sector

The industrial landscape for spiral welded pipe making equipment is undergoing transformative shifts driven by automation, digital integration, and heightened regulatory expectations for material traceability and environmental performance. Advances in control systems and robotics are reducing manual touchpoints in coil handling, welding calibration, and dimensional inspection, thereby improving throughput consistency and diminishing variability that historically complicated downstream field installation.

Simultaneously, the emphasis on lifecycle optimization is altering procurement criteria; buyers increasingly weigh energy consumption, emissions across production, and maintainability alongside capital cost. This transition is accompanied by material diversification where higher-performance alloy steels and corrosion-resistant stainless grades necessitate adaptive welding parameters and preheating strategies. As a result, machine builders are integrating modular subsystems and upgrade paths to accommodate evolving material and process requirements, and suppliers that demonstrate interoperability with plant-level digital twins and predictive maintenance platforms are gaining strategic consideration from large infrastructure and energy end users.

The cumulative effects of 2025 U.S. tariff measures triggered procurement reshuffles, nearshoring interest, and renewed emphasis on localized service and supply chain resilience

United States tariff actions in 2025 have created layered adjustments across supply chains and procurement strategies for spiral welded pipe making equipment and associated consumables. Tariffs altered comparative supplier economics, encouraging buyers to re-evaluate total landed cost and to explore alternative sourcing arrangements, including nearshoring and broadened supplier panels from regions not subject to the same measures.

These policy-driven changes also accelerated conversations about domestic capacity expansion, incentivizing some purchasers to seek equipment that can be localized or supported through licensed manufacturing partnerships. In parallel, tariffs amplified the importance of supply chain visibility; procurement organizations implemented stricter vendor qualification processes and enhanced contractual clauses addressing duties and classification risks. The net effect has been a diversification of sourcing strategies and a renewed focus on lifecycle service agreements that insulate operators from tariff volatility by emphasizing spare parts availability, remote diagnostics, and in-country support capabilities.

Segment-driven insights that align product architecture, material requirements, and service models with application-specific welding and inspection demands across end users

Insightful segmentation clarifies which product and application combinations will matter most to strategic planners and equipment vendors. Based on Type, market is studied across Centric and Eccentric, a distinction that informs line speed, forming geometry, and in-service stress profiles for different pipeline diameters and installation methods. Based on Application, market is studied across Construction, Oil And Gas, and Water Transportation; the Construction segment is further studied across Commercial and Residential, the Oil And Gas segment is further studied across Downstream, Midstream, and Upstream, and the Water Transportation segment is further studied across Potable Water and Wastewater, establishing differentiated validation and certification demands for coating, welding, and inspection regimes.

Based on Material, market is studied across Alloy Steel, Carbon Steel, and Stainless Steel, a classification that drives power requirements, welding consumable selection, and heat-treatment considerations. Based on End User, market is studied across Energy, Industrial, Mining, and Municipal Water, which reflects procurement cycles, capital intensity, and typical operating environments that influence service offerings and warranty structures. Based on Capacity, market is studied across Large, Medium, and Small, guiding vendors on modularity, scalability, and aftermarket parts inventory strategies to match production footprint and plant utilization patterns. Collectively, these segmentation lenses enable suppliers and buyers to align technical specifications, compliance pathways, and commercial terms to the unique demands of each application and end-user profile.

How regional procurement drivers and regulatory ecosystems across the Americas, Europe Middle East & Africa, and Asia-Pacific are guiding equipment adoption and support models

Regional dynamics play a determinative role in equipment adoption patterns, supply chain architecture, and partner selection. The Americas exhibit procurement driven by energy and municipal infrastructure programs, with an emphasis on heavy-duty, high-capacity machines that can support long-distance pipeline construction and potable water projects; regional incentives and localized supply chains influence decisions to prioritize in-country service ecosystems.

Europe, Middle East & Africa reflects a heterogenous landscape where regulatory rigor, environmental standards, and energy transition initiatives shape demand; equipment that offers emissions-efficient operation and compatibility with diverse steel alloys finds traction across industrial refurbishment and new-build energy infrastructure. In Asia-Pacific, expansive industrialization and urbanization trends underpin substantial demand for mid- to high-capacity solutions, while the prevalence of large-scale municipal and industrial water projects drives adoption of machines optimized for both high throughput and material versatility. Across all regions, partner ecosystems that provide installation, training, and lifecycle support secure competitive advantage as buyers increasingly evaluate long-term operational continuity alongside initial performance metrics.

Key supplier differentiation driven by modular engineering, digital weld monitoring, aftermarket support, and strategic partnerships to deliver turnkey production confidence

Competitive dynamics emphasize differentiation through engineering depth, service networks, and aftersales intelligence rather than price alone. Leading machine manufacturers that invest in modular architectures, digital weld monitoring, and open control protocols are positioned to capture projects requiring rapid qualification and integration into plant automation stacks. Equally important are companies that demonstrate robust aftermarket capabilities, including training programs, certified spares distribution, and remote diagnostics that reduce unplanned downtime for operators in remote or constrained environments.

Partnerships between equipment vendors and consumable suppliers, as well as collaborations with integrators who specialize in nondestructive testing and pipe coating systems, are emerging as a common route to provide turnkey value propositions. Firms that couple proprietary welding head designs with standardized interfaces for plant-level data capture gain preferential consideration from industrial buyers seeking to centralize asset health management and to reduce complexity in multi-vendor environments. The winners in this competitive set will be those that combine proven mechanical performance with demonstrable lifecycle cost containment and scalable support footprints.

Actionable recommendations for manufacturers and operators to prioritize modular upgrades, regional service expansion, supply chain diversification, and sustainability-aligned procurement

Industry leaders should prioritize a coordinated approach that simultaneously addresses equipment capability, service readiness, and supply chain resilience. First, accelerate investments in modular designs and retrofit pathways that allow existing plants to adopt advanced control systems and weld monitoring without disruptive capital replacement. By enabling staged upgrades, operators can achieve performance improvements while preserving cash flow and avoiding prolonged shutdowns.

Second, expand regional service footprints through certified partner networks and invest in remote diagnostic platforms to reduce mean time to repair. Establishing local spare parts caches and training programs for in-country technicians will materially reduce operational risk. Third, de-risk procurement where tariffs or trade uncertainty exists by diversifying vendor panels and negotiating robust contractual protections for duties and classification changes. Finally, integrate sustainability criteria into procurement and lifecycle planning, targeting energy-efficient drive systems and consumable strategies that minimize waste, thereby aligning equipment choices with corporate ESG commitments and long-term operating cost reduction goals.

A transparent mixed-methods research approach combining expert interviews, technical validation, and documented equipment evidence to ensure actionable and verifiable insights

This research synthesized primary interviews with equipment engineers, procurement leads, and end-user operations managers, complemented by technical documentation, product specifications, and publicly available regulatory guidance. The methodology prioritized triangulation of qualitative insights from subject matter experts with technical validation from equipment schematics and case studies of recent installations to ensure conclusions are grounded in observed practice and engineering realities.

Data collection included structured discussions on operating environments, welding strategy preferences, and service model expectations, while analysis focused on identifying recurring pain points that influence procurement cycles and lifecycle costs. Wherever possible, technical assertions were corroborated through supplier documentation and equipment manuals to validate claims regarding control system capabilities, welding head designs, and modular retrofitting options. The resulting approach balances practitioner perspectives with technical verification to produce actionable insights for decision-makers evaluating spiral welded pipe making solutions.

A conclusive synthesis emphasizing adaptability, service commitment, and interoperability as the pillars of strategic equipment selection and long-term operational resilience

In conclusion, spiral welded pipe making machines are central to delivering resilient pipeline and water infrastructure, and their strategic value is increasing as buyers demand equipment that balances mechanical performance with digital readiness and lifecycle sustainability. The confluence of automation advances, material diversification, and policy-driven supply chain adjustments requires both suppliers and operators to adopt adaptable architectures and service models that reduce operational risk while improving throughput reliability.

Moving forward, organizations that align procurement decisions with long-term support commitments, incorporate modular upgrade pathways, and emphasize vendor interoperability with plant automation will be better positioned to meet evolving application requirements across energy, industrial, municipal, and mining end users. The insights contained here are intended to guide technical evaluation, supplier selection, and strategic planning without prescribing specific financial estimates, instead offering a practicable framework for decision-makers to translate technology trends into deployment-ready actions.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Definition
  • 1.3. Market Segmentation & Coverage
  • 1.4. Years Considered for the Study
  • 1.5. Currency Considered for the Study
  • 1.6. Language Considered for the Study
  • 1.7. Key Stakeholders

2. Research Methodology

  • 2.1. Introduction
  • 2.2. Research Design
    • 2.2.1. Primary Research
    • 2.2.2. Secondary Research
  • 2.3. Research Framework
    • 2.3.1. Qualitative Analysis
    • 2.3.2. Quantitative Analysis
  • 2.4. Market Size Estimation
    • 2.4.1. Top-Down Approach
    • 2.4.2. Bottom-Up Approach
  • 2.5. Data Triangulation
  • 2.6. Research Outcomes
  • 2.7. Research Assumptions
  • 2.8. Research Limitations

3. Executive Summary

  • 3.1. Introduction
  • 3.2. CXO Perspective
  • 3.3. Market Size & Growth Trends
  • 3.4. Market Share Analysis, 2025
  • 3.5. FPNV Positioning Matrix, 2025
  • 3.6. New Revenue Opportunities
  • 3.7. Next-Generation Business Models
  • 3.8. Industry Roadmap

4. Market Overview

  • 4.1. Introduction
  • 4.2. Industry Ecosystem & Value Chain Analysis
    • 4.2.1. Supply-Side Analysis
    • 4.2.2. Demand-Side Analysis
    • 4.2.3. Stakeholder Analysis
  • 4.3. Porter's Five Forces Analysis
  • 4.4. PESTLE Analysis
  • 4.5. Market Outlook
    • 4.5.1. Near-Term Market Outlook (0-2 Years)
    • 4.5.2. Medium-Term Market Outlook (3-5 Years)
    • 4.5.3. Long-Term Market Outlook (5-10 Years)
  • 4.6. Go-to-Market Strategy

5. Market Insights

  • 5.1. Consumer Insights & End-User Perspective
  • 5.2. Consumer Experience Benchmarking
  • 5.3. Opportunity Mapping
  • 5.4. Distribution Channel Analysis
  • 5.5. Pricing Trend Analysis
  • 5.6. Regulatory Compliance & Standards Framework
  • 5.7. ESG & Sustainability Analysis
  • 5.8. Disruption & Risk Scenarios
  • 5.9. Return on Investment & Cost-Benefit Analysis

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Spiral Welded Pipe Making Machine Market, by Type

  • 8.1. Centric
  • 8.2. Eccentric

9. Spiral Welded Pipe Making Machine Market, by Material

  • 9.1. Alloy Steel
  • 9.2. Carbon Steel
  • 9.3. Stainless Steel

10. Spiral Welded Pipe Making Machine Market, by Capacity

  • 10.1. Large
  • 10.2. Medium
  • 10.3. Small

11. Spiral Welded Pipe Making Machine Market, by Application

  • 11.1. Construction
    • 11.1.1. Commercial
    • 11.1.2. Residential
  • 11.2. Oil And Gas
    • 11.2.1. Downstream
    • 11.2.2. Midstream
    • 11.2.3. Upstream
  • 11.3. Water Transportation
    • 11.3.1. Potable Water
    • 11.3.2. Wastewater

12. Spiral Welded Pipe Making Machine Market, by End User

  • 12.1. Energy
  • 12.2. Industrial
  • 12.3. Mining
  • 12.4. Municipal Water

13. Spiral Welded Pipe Making Machine Market, by Region

  • 13.1. Americas
    • 13.1.1. North America
    • 13.1.2. Latin America
  • 13.2. Europe, Middle East & Africa
    • 13.2.1. Europe
    • 13.2.2. Middle East
    • 13.2.3. Africa
  • 13.3. Asia-Pacific

14. Spiral Welded Pipe Making Machine Market, by Group

  • 14.1. ASEAN
  • 14.2. GCC
  • 14.3. European Union
  • 14.4. BRICS
  • 14.5. G7
  • 14.6. NATO

15. Spiral Welded Pipe Making Machine Market, by Country

  • 15.1. United States
  • 15.2. Canada
  • 15.3. Mexico
  • 15.4. Brazil
  • 15.5. United Kingdom
  • 15.6. Germany
  • 15.7. France
  • 15.8. Russia
  • 15.9. Italy
  • 15.10. Spain
  • 15.11. China
  • 15.12. India
  • 15.13. Japan
  • 15.14. Australia
  • 15.15. South Korea

16. United States Spiral Welded Pipe Making Machine Market

17. China Spiral Welded Pipe Making Machine Market

18. Competitive Landscape

  • 18.1. Market Concentration Analysis, 2025
    • 18.1.1. Concentration Ratio (CR)
    • 18.1.2. Herfindahl Hirschman Index (HHI)
  • 18.2. Recent Developments & Impact Analysis, 2025
  • 18.3. Product Portfolio Analysis, 2025
  • 18.4. Benchmarking Analysis, 2025
  • 18.5. Chengdu Jincheng Hydraulic Machinery Co., Ltd.
  • 18.6. ESAB Corporation
  • 18.7. Fronius International GmbH
  • 18.8. Hangzhou Roll Forming Machinery Co., Ltd.
  • 18.9. Harbin Welding Institute
  • 18.10. Hornell Speedglas AB
  • 18.11. Jiangsu Yawei Machine Tool Co., Ltd.
  • 18.12. Kemppi Oy
  • 18.13. Miller Electric Mfg. LLC
  • 18.14. Nanjing Duolun Machinery Co., Ltd.
  • 18.15. NIMAK GmbH
  • 18.16. Qingdao O.B.T Co., Ltd.
  • 18.17. SAF S.A.
  • 18.18. Sany Heavy Industry Co., Ltd.
  • 18.19. Shanghai Electric Group Co., Ltd.
  • 18.20. Shijiazhuang Shiyi Heavy Industry Co., Ltd.
  • 18.21. The Lincoln Electric Company
  • 18.22. Zhengzhou Yutong Heavy Industry Co., Ltd.
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제