시장보고서
상품코드
1924717

핵의학 방사성 의약품 시장 : 유형별, 기술별, 방사성 트레이서별, 최종사용자별, 용도별 - 세계 예측(2026-2032년)

Nuclear Radiopharmaceutical Market by Type, Technology, Radiotracer, End User, Application - Global Forecast 2026-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 185 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

핵의학 방사성 의약품 시장은 2025년에 64억 4,000만 달러로 평가되었습니다. 2026년에는 69억 달러로 성장하고, CAGR 8.37%로 성장을 지속하여 2032년까지 113억 달러에 이를 것으로 예측됩니다.

주요 시장 통계
기준 연도 : 2025년 64억 4,000만 달러
추정 연도 : 2026년 69억 달러
예측 연도 : 2032년 113억 달러
CAGR(%) 8.37%

의료 시스템 전반에서 핵 방사성의약품의 채택을 형성하는 임상적 역할, 생산 기반, 규제 동향을 개괄하는 전략적 안내서

핵 방사성의약품은 첨단 화학, 정밀의료, 진단영상 기술의 교차점에 위치하며, 임상의가 생리적 과정을 시각화하고 분자 수준의 특이성을 가지고 질병을 치료할 수 있게 해줍니다. 본 도입부에서는 방사성 추적자, 방사성 핵종 치료 및 보조 전달 시스템이 현대의 치료 경로에 어떻게 통합되는지 명확히 하고, 본 자료의 임상적, 기술적 배경을 확립합니다. 또한, 진화하는 생산 방식과 규제 프레임워크가 병원, 영상진단센터, 연구기관에서의 도입에 어떤 영향을 미치는지 개괄적으로 설명합니다.

세라믹, 분산형 동위원소 생산, 자동화, 규제 현대화라는 수렴하는 트렌드가 가치사슬과 임상 도입을 재정의하는 메커니즘

핵의학 분야는 임상진료, 공급망, 비즈니스 모델을 재구성하는 변화의 물결에 직면해 있습니다. 진단과 표적 방사성 핵종 치료를 통합한 접근법인 테라노스틱스가 핵의학 전문의, 종양 전문의, 방사성의약품 전문약사 간의 다학제적 협업을 촉진하는 중심적인 역할을 하기 시작했습니다. 이러한 변화는 환자와 치료법을 매칭하는 동반진단을 중시하며, 정밀의료의 길을 가속화하고 방사성의약품 개발의 임상적 가치 제안을 높이고 있습니다.

관세 정책의 변화가 핵의학 방사성의약품 생태계공급망, 생산 결정, 조달 행동에 미치는 파급효과를 평가합니다.

관세 제도를 조정하는 정책 전환은 투입 비용 증가, 경쟁의 변동, 전략적 현지화 촉진을 통해 방사성의약품 생태계 전체에 파급될 수 있습니다. 장비, 원자재, 전구체 동위원소에 대한 수입 관세가 인상될 경우, 제조업체는 비용을 흡수할 것인지, 의료 서비스 제공업체에게 전가할 것인지, 아니면 공급망을 재구성할 것인지를 평가해야 합니다. 안정적인 가격과 안정적인 공급은 일상적인 진단 일정과 시간적 제약이 있는 치료 용량을 투여받는 환자에게 필수적이기 때문에 어느 쪽을 선택하든 임상적, 상업적 영향을 미칠 수 있습니다.

양식, 방사성 추적자의 특성, 최종 사용자 요구사항, 임상 적용의 우선순위를 연결하는 통합적인 세분화 지식은 전략적 선택을 위한 지침이 될 수 있습니다.

부문 수준의 트렌드 분석을 통해 제품 개발 및 시장 출시 전략의 지침이 되는 차별화된 수요 요인, 임상 경로, 운영 요건을 파악할 수 있습니다. 용도별(진단용/치료용) 방사성 물질 사용량 분석은 명확한 공급망과 규제 요건의 차이를 보여준다: 진단 워크플로우에는 PET 및 SPECT 양식이 포함되며, PET 생산은 주로 F-18 추적자를 사용하고, SPECT는 일반적으로 테크네튬-99m을 활용합니다. 치료용으로는 갑상선 질환을 위한 요오드131과 펩타이드 수용체 방사성 핵종 치료용 루테튬177이 선두를 달리고 있으며, 각각 용량, 안전성, 유통에 대한 고유한 고려사항이 존재합니다.

지역별 인프라, 규제 다양성, 그리고 미주, 유럽, 중동/아프리카, 아시아태평양의 임상 도입 패턴이 전략적 진입 및 확장 옵션을 결정하는 방법

지역별 동향은 생산 능력, 규제 접근 방식, 임상 도입 패턴, 파트너십 기회를 형성하고, 지리적 지식에 기반한 전략을 필요로 합니다. 미국 대륙에서는 잘 구축된 임상 인프라와 전문 시설의 탄탄한 네트워크가 첨단 PET 트레이서 및 방사성 핵종 치료의 빠른 보급을 뒷받침하고 있습니다. 상환 제도와 집중적인 임상시험 네트워크는 새로운 세라노스틱의 도입을 촉진하는 한편, 임상적 유용성과 비용효과성 입증에 대한 높은 기대감을 불러일으키기도 합니다.

주요 기업의 포지셔닝과 제휴 동향은 제조 규모, 규제 대응의 고도화, 통합 서비스 모델이 경쟁 우위를 어떻게 촉진하는지 보여줍니다.

기업 차원의 동향은 전문화, 수직적 통합, 협업 모델의 조합을 반영하고 있으며, 이러한 것들이 종합적으로 경쟁 환경을 정의하고 있습니다. 주요 의료기기 제조업체와 방사성의약품 개발 기업들은 동위원소 생산, 자동합성 모듈, 동반진단을 통합한 솔루션에 투자하여 임상 도입 기간을 단축하고 시설 간 일관성을 향상시키고 있습니다. 동시에 전문 위탁개발제조기관(CDMO)과 발전장치 제조업체는 소규모 혁신기업이 대규모 선행투자 없이도 규모를 확장할 수 있도록 하는 데 매우 중요한 역할을 하고 있습니다.

업계 리더이 방사성의약품 분야에서 회복탄력성 구축, 도입 가속화, 임상적 가치 획득을 즉각적으로 실현할 수 있는 구체적인 전략적, 운영적 조치들

진화하는 방사성의약품 환경을 최대한 활용하고자 하는 리더는 단기적인 회복탄력성과 장기적인 성장의 균형을 맞추는 일련의 실천적 행동을 추구해야 합니다. 공급원 다변화를 우선시하고, 경제적으로 정당화될 경우 지역 생산 능력에 투자함으로써 무역 혼란과 관세에 대한 노출을 줄일 수 있습니다. 또한 CDMO 및 지역 제조업체와의 전략적 제휴를 통해 자본집약도를 낮추면서 시장 진입을 가속화할 수 있습니다. 모듈화된 자동 합성 및 포장 플랫폼의 도입으로 여러 사이트에서의 처리량 일관성을 향상시키고 운영 리스크를 줄일 수 있습니다.

이 보고서는 전문가 인터뷰, 기술 문헌의 통합, 여러 출처의 삼각 검증을 결합한 투명성이 높은 혼합 방식을 통해 실행 가능하고 검증이 완료된 결과를 보장합니다.

본 보고서의 조사는 질적 전문가와의 대화, 체계적인 문헌 검토, 삼각 검증을 결합하여 균형 잡힌 견고한 증거 기반을 확보했습니다. 주요 입력 정보로 임상의, 제조 전문가, 공급망 관리자를 대상으로 구조화된 인터뷰를 실시하여 실제 운영상의 제약, 임상 도입 촉진요인, 조달 고려사항 등을 파악했습니다. 이러한 대화는 방사성 화학 전문가 및 규제 업무 전문가와의 기술적 협의를 통해 제조 방법, 안정성 문제 및 규정 준수 요건에 대한 가정을 검증하는 것으로 보완됩니다.

핵 방사성의약품 의료의 발전에서 어떤 조직이 성공할 것인가를 결정짓는 과학, 운영, 정책의 수렴력에 대한 간결한 통합 분석

핵의학 방사성의약품은 과학적 혁신, 생산의 현대화, 그리고 진화하는 정책이 교차하는 중요한 분기점에 서 있으며, 이는 임상적, 상업적으로 큰 기회를 창출하고 있습니다. 테라노스틱스의 부상, 생산 기술의 다양화, 자동화 및 규제 명확화에 대한 관심이 높아지면서 진단용 추적자와 표적 치료제의 적용 범위가 확대되고 있습니다. 제조, 임상적 증거 창출, 전략적 파트너십을 통합하는 이해관계자만이 기술적 가능성을 환자에게 미치는 영향력으로 전환할 수 있는 가장 좋은 위치에 있을 것입니다.

자주 묻는 질문

  • 핵의학 방사성 의약품 시장 규모는 어떻게 예측되나요?
  • 핵 방사성의약품의 임상적 역할은 무엇인가요?
  • 관세 정책의 변화가 방사성의약품 생태계에 미치는 영향은 무엇인가요?
  • 테라노스틱스의 역할은 무엇인가요?
  • 핵의학 방사성의약품 시장의 지역별 임상 도입 패턴은 어떻게 되나요?
  • 주요 기업의 포지셔닝은 어떻게 이루어지고 있나요?

목차

제1장 서문

제2장 조사 방법

  • 조사 디자인
  • 조사 프레임워크
  • 시장 규모 예측
  • 데이터 트라이앵글레이션
  • 조사 결과
  • 조사 전제
  • 조사 제약

제3장 주요 요약

  • 최고경영진의 관점
  • 시장 규모와 성장 동향
  • 시장 점유율 분석, 2025
  • FPNV 포지셔닝 매트릭스, 2025
  • 새로운 매출 기회
  • 차세대 비즈니스 모델
  • 업계 로드맵

제4장 시장 개요

  • 업계 에코시스템과 밸류체인 분석
  • Porter의 Five Forces 분석
  • PESTEL 분석
  • 시장 전망
  • GTM 전략

제5장 시장 인사이트

  • 소비자 인사이트와 최종사용자 관점
  • 소비자 경험 벤치마킹
  • 기회 매핑
  • 유통 채널 분석
  • 가격 동향 분석
  • 규제 준수와 표준 프레임워크
  • ESG와 지속가능성 분석
  • 파괴적 변화와 리스크 시나리오
  • ROI와 CBA

제6장 미국의 관세의 누적 영향, 2025

제7장 AI의 누적 영향, 2025

제8장 핵의학 방사성 의약품 시장 : 유형별

  • 진단용
  • 치료용

제9장 핵의학 방사성 의약품 시장 : 기술별

  • PET
  • SPECT

제10장 핵의학 방사성 의약품 시장 방사성 트레이서별

  • F-18
  • 요오드 131
  • 르테치움 177
  • Tc-99M

제11장 핵의학 방사성 의약품 시장 : 최종사용자별

  • 병원
  • 영상 진단센터
  • 연구기관

제12장 핵의학 방사성 의약품 시장 : 용도별

  • 순환기계
  • 신경학
  • 종양학

제13장 핵의학 방사성 의약품 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제14장 핵의학 방사성 의약품 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제15장 핵의학 방사성 의약품 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제16장 미국의 핵의학 방사성 의약품 시장

제17장 중국핵의학 방사성 의약품 시장

제18장 경쟁 구도

  • 시장 집중도 분석, 2025
    • 집중 비율(CR)
    • 허쉬만 허핀달 지수(HHI)
  • 최근 동향과 영향 분석, 2025
  • 제품 포트폴리오 분석, 2025
  • 벤치마킹 분석, 2025
  • Advanced Accelerator Applications S.A.
  • Bayer AG
  • Bracco Imaging S.p.A.
  • BWXT Medical Ltd.
  • Cardinal Health, Inc.
  • Clarity Pharmaceuticals Ltd.
  • Curium Pharma SAS
  • Eckert & Ziegler SE
  • Eli Lilly and Company
  • GE HealthCare Technologies Inc.
  • ITM Isotope Technologies Munich SE
  • Jubilant Pharmova Limited
  • Lantheus Holdings, Inc.
  • NorthStar Medical Radioisotopes, LLC
  • Novartis AG
  • RayzeBio, Inc.
  • Shanghai United Imaging Healthcare Co., Ltd.
  • Siemens Healthineers AG
  • SOFIE Biosciences, Inc.
  • Telix Pharmaceuticals Limited
LSH

The Nuclear Radiopharmaceutical Market was valued at USD 6.44 billion in 2025 and is projected to grow to USD 6.90 billion in 2026, with a CAGR of 8.37%, reaching USD 11.30 billion by 2032.

KEY MARKET STATISTICS
Base Year [2025] USD 6.44 billion
Estimated Year [2026] USD 6.90 billion
Forecast Year [2032] USD 11.30 billion
CAGR (%) 8.37%

A strategic primer that frames the clinical roles, production enablers, and regulatory vectors shaping nuclear radiopharmaceutical adoption across healthcare systems

Nuclear radiopharmaceuticals occupy a distinct intersection of advanced chemistry, precision medicine, and diagnostic imaging, enabling clinicians to visualize physiological processes and treat disease with molecular specificity. This introduction establishes the clinical and technological context for the dossier, clarifying how radiotracers, radionuclide therapies, and supporting delivery systems integrate into contemporary care pathways. It also outlines how evolving production modalities and regulatory frameworks influence adoption across hospitals, imaging centers, and research institutes.

Radiopharmaceuticals serve two primary clinical roles: diagnostic imaging, which includes positron emission tomography and single-photon emission computed tomography applications, and therapeutic interventions that deliver targeted radioisotopes to diseased tissues. Diagnostic radiotracers such as F-18 derivatives provide high-resolution metabolic and molecular information, while technetium-99m-based agents remain essential for a broad range of routine imaging. On the therapeutic side, iodine-131 continues to underpin thyroid treatments, and lutetium-177-labeled agents are establishing new paradigms in peptide receptor radionuclide therapy.

Advances in production-spanning cyclotron-based synthesis of short-lived PET isotopes, generator systems for rapid technetium-99m access, and improved radiolabeling automation-are key enablers of broader clinical deployment. Meanwhile, regulatory emphasis on GMP-compliant manufacturing, dose standardization, and patient safety drives capital investments and process innovation. Together, these technical and regulatory vectors set the stage for strategic decisions by manufacturers, clinical operators, and investors seeking to participate in a field that is rapidly moving from niche specialty use toward more integrated roles in oncology, cardiology, and neurology.

How converging trends in theranostics, decentralized isotope production, automation, and regulatory modernization are redefining value chains and clinical adoption

The nuclear radiopharmaceutical arena is undergoing transformative shifts that are remaking clinical practice, supply chains, and commercial models. Theranostics-an integrated approach combining diagnostics and targeted radionuclide therapy-has emerged as a rallying point, fostering cross-disciplinary collaboration between nuclear medicine physicians, oncologists, and radiopharmacists. This shift emphasizes companion diagnostics that match patients to therapies, accelerating precision medicine pathways and elevating the clinical value proposition of radiopharmaceutical development.

Concurrently, decentralization of isotope production is gaining momentum. Investments in regional cyclotron installations and compact accelerator platforms are reducing reliance on distant centralized suppliers and high-risk distribution routes. This trend enhances local resilience and shortens time-to-patient for short-lived PET isotopes, while generator-based solutions continue to offer reliable access to technetium-99m in settings without advanced infrastructure. Such production plurality drives competitiveness and encourages novel business models that pair manufacturing services with clinical support.

On the technology front, automation of radiochemistry workflows and the standardization of kits and cassettes reduce variability and lower barriers to clinical adoption. Image quantification improvements, coupled with artificial intelligence-enabled interpretation, are improving diagnostic precision and enabling more objective endpoints in clinical trials. Regulatory pathways are also evolving to accommodate the unique characteristics of radiopharmaceuticals, with authorities increasingly recognizing the need for tailored guidance on manufacturing controls, stability testing, and clinical endpoints. These combined dynamics are reshaping value chains, creating new entrants, and prompting legacy players to rethink partnerships, distribution strategies, and investment priorities.

Assessing how changes in tariff policy can ripple across supply chains, production decisions, and procurement behavior in the nuclear radiopharmaceutical ecosystem

Policy shifts that adjust tariff regimes can cascade through the radiopharmaceutical ecosystem by increasing input costs, altering competitive dynamics, and incentivizing strategic localization. When import duties rise on equipment, raw materials, or precursor isotopes, manufacturers must evaluate whether to absorb costs, pass them to healthcare providers, or reconfigure supply chains. Each choice carries clinical and commercial implications, because stable pricing and reliable supply are essential for routine diagnostic schedules and for patients receiving time-sensitive therapeutic doses.

Higher tariffs can catalyze nearshoring decisions, prompting investments in domestic cyclotron capacity, generator assembly facilities, and local radiopharmacy services. Such investments mitigate exposure to cross-border trade friction but require significant capital, skilled personnel, and regulatory approvals. In the interim, increased tariffs can compress margins for external suppliers and distributors, incentivizing consolidation or vertical integration among manufacturers and healthcare systems seeking to secure availability and control costs.

Tariff-driven cost pressures also affect instrument manufacturers and suppliers of consumables, potentially slowing procurement of imaging devices or automated synthesis modules in cost-sensitive settings. As a result, imaging centers and hospitals may prioritize technologies with the most favorable total cost of ownership or favor suppliers with local support networks. Over time, differential tariff impacts can shift competitive advantages between domestic and foreign producers, influencing partner selection, contract negotiations, and long-term procurement strategies.

Importantly, the interaction between tariffs and regulatory policies magnifies the effect of trade measures. Regulatory incentives for domestic production, such as streamlined facility approvals or procurement preferences, can reinforce the localization trend. Conversely, exemptions for critical medical supplies or diplomatic arrangements may alleviate immediate pressures. Stakeholders should therefore monitor both trade policy developments and corresponding regulatory responses, assess supply chain vulnerabilities, and model scenarios that prioritize treatment continuity and patient safety while preserving commercial viability.

Integrated segmentation insights that connect modality, radiotracer specifics, end-user requirements, and clinical application priorities to inform strategic choices

Segment-level dynamics reveal differentiated demand drivers, clinical pathways, and operational requirements that should inform product development and go-to-market strategies. Based on type, activity splits between diagnostic and therapeutic uses show distinct supply chain and regulatory needs: diagnostic workflows encompass PET and SPECT modalities where PET production frequently revolves around F-18 tracers and SPECT commonly leverages technetium-99m; therapeutic applications are led by iodine-131 for thyroid conditions and lutetium-177 for peptide receptor radionuclide therapy, each with unique dosing, safety, and distribution considerations.

Viewed through the lens of technology, PET and SPECT platforms remain foundational, with PET centering on F-18 production pathways that demand cyclotron access and rapid distribution, while SPECT utilizes Tc-99m that benefits from generator availability and kit-based radiochemistry. End users span hospitals, imaging centers, and research institutes, and each setting imposes different procurement cycles, staffing expertise, and regulatory compliance burdens that affect the selection of tracers, automation levels, and service agreements.

Radiotracer segmentation highlights the centrality of F-18, I-131, Lu-177, and Tc-99m. F-18 applications are often exemplified by FDG kits and protocols optimized for metabolic imaging; I-131 remains indispensable for thyroid therapeutics with well-established dosing regimens; Lu-177 is increasingly associated with peptide receptor radionuclide therapy programs that require coordinated patient selection pathways and specialized handling; and Tc-99m maintains broad utility where generators and kits enable flexible, on-site radiopharmacy operations.

Application-based segmentation across cardiovascular, neurology, and oncology underscores clinical prioritization. Oncology leads adoption of theranostic pairings and targeted therapies, neurology benefits from tracers that characterize neurodegenerative disease biology, and cardiovascular imaging relies on robust protocols for perfusion and viability assessment. Integrating these segmentation perspectives helps stakeholders align manufacturing scale, distribution models, and clinical support services with distinct operational realities across diagnostic and therapeutic domains.

How regional infrastructure, regulatory diversity, and clinical adoption patterns across the Americas, Europe Middle East & Africa, and Asia-Pacific determine strategic entry and scaling choices

Regional dynamics shape production capacity, regulatory approaches, clinical adoption patterns, and partnership opportunities in ways that demand geographically informed strategies. In the Americas, established clinical infrastructures and a strong network of specialized centers support rapid uptake of advanced PET tracers and radionuclide therapies; reimbursement mechanisms and centralized trial networks often facilitate the introduction of new theranostics but can also create high expectations for demonstration of clinical utility and cost-effectiveness.

In Europe, the Middle East & Africa, regulatory heterogeneity, disparate infrastructure maturity, and diverse healthcare financing models produce a patchwork of demand signals. Western European centers with robust nuclear medicine programs drive early adoption of complex radiotherapeutics, while segments within the broader region face constraints that favor generator-based solutions and kits. Strategic partnerships, regional manufacturing hubs, and technology transfer programs can accelerate access where infrastructure gaps exist, but stakeholders must navigate varied approval pathways and procurement norms.

Asia-Pacific presents a rapidly evolving landscape where investments in cyclotron facilities, growing clinical trial activity, and expanding healthcare coverage underpin rising interest in both diagnostics and therapeutics. National priorities to build domestic capacity and secure supply chains are fostering localized production initiatives, while the scale and diversity of healthcare systems across the region create opportunities for tiered product offerings and flexible business models. Across all regions, aligning commercialization plans with local regulatory expectations, clinician training priorities, and logistical realities remains essential for successful market entry and sustained adoption.

Key corporate positioning and partnership trends revealing how manufacturing scale, regulatory sophistication, and integrated service models drive competitive advantage

Company-level dynamics reflect a mix of specialization, vertical integration, and collaborative models that collectively define the competitive terrain. Leading device manufacturers and radiopharmaceutical developers are investing in integrated solutions that combine isotope production, automated synthesis modules, and companion diagnostics to shorten clinical implementation timelines and improve consistency across sites. At the same time, specialized contract development and manufacturing organizations (CDMOs) and generator producers play a pivotal role in enabling smaller innovators to scale without large upfront capital investments.

Partnerships between clinical research organizations, academic centers, and industry are a common route to de-risk early-stage development and validate therapeutic hypotheses. Licensing agreements and co-development partnerships allow companies to combine proprietary ligands, radiochemistry know-how, and clinical expertise to accelerate registration pathways. Meanwhile, strategic acquisitions are used to secure manufacturing capacity, expand geographic reach, and internalize critical supply chain capabilities.

Companies that prioritize regulatory intelligence, invest in robust GMP-compliant manufacturing, and maintain responsive technical support networks enjoy stronger adoption in clinical settings that require high reliability. Differentiation increasingly arises from the ability to offer end-to-end solutions-spanning tracer availability, quality control, clinical training, and reimbursement support-rather than from single product features alone. For investors and corporate strategists, evaluating potential partners requires careful assessment of manufacturing redundancy, intellectual property position, and demonstrated clinical outcomes to ensure alignment with long-term therapeutic and diagnostic roadmaps.

Concrete strategic and operational moves that industry leaders can implement immediately to build resilience, accelerate adoption, and capture clinical value in radiopharmaceuticals

Leaders aiming to capitalize on the evolving radiopharmaceutical environment should pursue a set of pragmatic actions that balance near-term resilience with long-term growth. Prioritizing diversification of supply sources and investing in localized production capacity where economically justified can reduce exposure to trade disruptions and tariffs, while strategic alliances with CDMOs or regional manufacturers can accelerate market entry with lower capital intensity. Implementing modular, automated synthesis and packaging platforms will improve throughput consistency and reduce operational risk across multiple sites.

Clinically, organizations should invest in evidence generation that demonstrates comparative effectiveness and patient-centered outcomes for new radiotracers and therapies, enabling stronger reimbursement positioning. Building multidisciplinary clinician engagement programs that include nuclear medicine, oncology, cardiology, and neurology stakeholders will support appropriate patient selection and protocol standardization. From a commercial standpoint, packaging service bundles that combine tracer supply, technical training, and regulatory support can differentiate offerings and foster long-term customer relationships.

Operationally, strengthening cold chain logistics, ensuring redundant supply pathways, and maintaining robust quality management systems will protect continuity of care. Decision-makers should also establish clear scenario planning processes to model the impact of trade policy changes, technological disruptions, or shifts in clinical guidelines, and use those scenarios to inform capital allocation and partnership choices. Taken together, these actions create a resilient platform from which organizations can scale clinical programs and capture the value emerging from theranostic innovations.

A transparent mixed-methods approach combining expert interviews, technical literature synthesis, and cross-source triangulation to ensure actionable and validated insights

The research behind this report combines qualitative expert engagement with systematic document review and triangulation to ensure a balanced and defensible evidence base. Primary inputs include structured interviews with clinicians, manufacturing experts, and supply chain managers to capture real-world operational constraints, clinical adoption drivers, and procurement considerations. These conversations are complemented by technical consultations with radiochemistry specialists and regulatory affairs professionals to validate assumptions about production methods, stability challenges, and compliance requirements.

Secondary research involved reviewing peer-reviewed literature, regulatory guidance documents, clinical trial registries, and publicly available company disclosures to map technology capabilities, clinical trial outcomes, and product approvals. Where available, white papers and technical notes on cyclotron operations, generator technology, and automated synthesis modules were used to clarify production characteristics and quality control practices. Information from logistics and healthcare infrastructure studies helped contextualize regional differences in deployment feasibility.

Data synthesis employed a triangulation approach that reconciled insights from interviews, technical documents, and clinical literature to identify consistent patterns and surface divergent viewpoints. Sensitivity analyses on operational scenarios were used to stress-test strategic implications, and iterative validation sessions with subject matter experts refined the final narrative. Throughout, methodological rigor emphasized transparency in source provenance, clarity about assumptions, and attention to clinical relevance to ensure the findings support practical decision-making.

A concise synthesis of the convergent scientific, operational, and policy forces that will determine which organizations succeed in advancing nuclear radiopharmaceutical care

Nuclear radiopharmaceuticals stand at a pivotal juncture where scientific innovation, production modernization, and evolving policy intersect to create significant clinical and commercial opportunities. The ascendancy of theranostics, the diversification of production technologies, and the increasing emphasis on automation and regulatory clarity are collectively expanding the practical reach of both diagnostic tracers and targeted therapies. Stakeholders that align manufacturing, clinical evidence generation, and strategic partnerships will be best positioned to translate technical promise into patient impact.

At the same time, trade policy shifts and regional infrastructure disparities introduce complexity that requires proactive planning. By prioritizing supply chain resilience, targeted investments in localized capabilities where appropriate, and robust clinical engagement to demonstrate value, organizations can navigate uncertainty while accelerating adoption. Ultimately, success will depend on the ability to integrate technical excellence with pragmatic operational strategies that ensure consistent access to high-quality radiopharmaceuticals for patients across diverse healthcare settings.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Definition
  • 1.3. Market Segmentation & Coverage
  • 1.4. Years Considered for the Study
  • 1.5. Currency Considered for the Study
  • 1.6. Language Considered for the Study
  • 1.7. Key Stakeholders

2. Research Methodology

  • 2.1. Introduction
  • 2.2. Research Design
    • 2.2.1. Primary Research
    • 2.2.2. Secondary Research
  • 2.3. Research Framework
    • 2.3.1. Qualitative Analysis
    • 2.3.2. Quantitative Analysis
  • 2.4. Market Size Estimation
    • 2.4.1. Top-Down Approach
    • 2.4.2. Bottom-Up Approach
  • 2.5. Data Triangulation
  • 2.6. Research Outcomes
  • 2.7. Research Assumptions
  • 2.8. Research Limitations

3. Executive Summary

  • 3.1. Introduction
  • 3.2. CXO Perspective
  • 3.3. Market Size & Growth Trends
  • 3.4. Market Share Analysis, 2025
  • 3.5. FPNV Positioning Matrix, 2025
  • 3.6. New Revenue Opportunities
  • 3.7. Next-Generation Business Models
  • 3.8. Industry Roadmap

4. Market Overview

  • 4.1. Introduction
  • 4.2. Industry Ecosystem & Value Chain Analysis
    • 4.2.1. Supply-Side Analysis
    • 4.2.2. Demand-Side Analysis
    • 4.2.3. Stakeholder Analysis
  • 4.3. Porter's Five Forces Analysis
  • 4.4. PESTLE Analysis
  • 4.5. Market Outlook
    • 4.5.1. Near-Term Market Outlook (0-2 Years)
    • 4.5.2. Medium-Term Market Outlook (3-5 Years)
    • 4.5.3. Long-Term Market Outlook (5-10 Years)
  • 4.6. Go-to-Market Strategy

5. Market Insights

  • 5.1. Consumer Insights & End-User Perspective
  • 5.2. Consumer Experience Benchmarking
  • 5.3. Opportunity Mapping
  • 5.4. Distribution Channel Analysis
  • 5.5. Pricing Trend Analysis
  • 5.6. Regulatory Compliance & Standards Framework
  • 5.7. ESG & Sustainability Analysis
  • 5.8. Disruption & Risk Scenarios
  • 5.9. Return on Investment & Cost-Benefit Analysis

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Nuclear Radiopharmaceutical Market, by Type

  • 8.1. Diagnostic
  • 8.2. Therapeutic

9. Nuclear Radiopharmaceutical Market, by Technology

  • 9.1. Pet
  • 9.2. Spect

10. Nuclear Radiopharmaceutical Market, by Radiotracer

  • 10.1. F-18
  • 10.2. I-131
  • 10.3. Lu-177
  • 10.4. Tc-99M

11. Nuclear Radiopharmaceutical Market, by End User

  • 11.1. Hospitals
  • 11.2. Imaging Centers
  • 11.3. Research Institutes

12. Nuclear Radiopharmaceutical Market, by Application

  • 12.1. Cardiovascular
  • 12.2. Neurology
  • 12.3. Oncology

13. Nuclear Radiopharmaceutical Market, by Region

  • 13.1. Americas
    • 13.1.1. North America
    • 13.1.2. Latin America
  • 13.2. Europe, Middle East & Africa
    • 13.2.1. Europe
    • 13.2.2. Middle East
    • 13.2.3. Africa
  • 13.3. Asia-Pacific

14. Nuclear Radiopharmaceutical Market, by Group

  • 14.1. ASEAN
  • 14.2. GCC
  • 14.3. European Union
  • 14.4. BRICS
  • 14.5. G7
  • 14.6. NATO

15. Nuclear Radiopharmaceutical Market, by Country

  • 15.1. United States
  • 15.2. Canada
  • 15.3. Mexico
  • 15.4. Brazil
  • 15.5. United Kingdom
  • 15.6. Germany
  • 15.7. France
  • 15.8. Russia
  • 15.9. Italy
  • 15.10. Spain
  • 15.11. China
  • 15.12. India
  • 15.13. Japan
  • 15.14. Australia
  • 15.15. South Korea

16. United States Nuclear Radiopharmaceutical Market

17. China Nuclear Radiopharmaceutical Market

18. Competitive Landscape

  • 18.1. Market Concentration Analysis, 2025
    • 18.1.1. Concentration Ratio (CR)
    • 18.1.2. Herfindahl Hirschman Index (HHI)
  • 18.2. Recent Developments & Impact Analysis, 2025
  • 18.3. Product Portfolio Analysis, 2025
  • 18.4. Benchmarking Analysis, 2025
  • 18.5. Advanced Accelerator Applications S.A.
  • 18.6. Bayer AG
  • 18.7. Bracco Imaging S.p.A.
  • 18.8. BWXT Medical Ltd.
  • 18.9. Cardinal Health, Inc.
  • 18.10. Clarity Pharmaceuticals Ltd.
  • 18.11. Curium Pharma SAS
  • 18.12. Eckert & Ziegler SE
  • 18.13. Eli Lilly and Company
  • 18.14. GE HealthCare Technologies Inc.
  • 18.15. ITM Isotope Technologies Munich SE
  • 18.16. Jubilant Pharmova Limited
  • 18.17. Lantheus Holdings, Inc.
  • 18.18. NorthStar Medical Radioisotopes, LLC
  • 18.19. Novartis AG
  • 18.20. RayzeBio, Inc.
  • 18.21. Shanghai United Imaging Healthcare Co., Ltd.
  • 18.22. Siemens Healthineers AG
  • 18.23. SOFIE Biosciences, Inc.
  • 18.24. Telix Pharmaceuticals Limited
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제