시장보고서
상품코드
1924743

SPECT 및 PET 방사성 의약품 시장 : 모달리티별, 방사성 의약품 유형별, 적응증별, 최종사용자별, 유통 채널별 - 세계 예측(2026-2032년)

SPECT & PET Radiopharmaceuticals Market by Modality, Radiopharmaceutical Type, Indication, End User, Distribution Channel - Global Forecast 2026-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 189 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

SPECT 및 PET 방사성 의약품 시장은 2025년에 74억 8,000만 달러로 평가되었습니다. 2026년에는 81억 8,000만 달러로 성장하고, CAGR 10.28%로 성장을 지속하여 2032년까지 148억 5,000만 달러에 이를 것으로 예측되고 있습니다.

주요 시장 통계
기준 연도 : 2025년 74억 8,000만 달러
추정 연도 : 2026년 81억 8,000만 달러
예측 연도 : 2032년 148억 5,000만 달러
CAGR(%) 10.28%

SPECT 및 PET 방사성 의약품의 임상적 역할과 진단 및 치료 경로에서의 전략적 중요성에 대해 간략하게 개괄한 기초 개요

본 Executive Summary는 SPECT 및 PET 방사성 의약품이 현대의 진단 및 치료 경로에서 필수적인 도구라는 것을 명확하게 제시하는 것으로 시작합니다. 서론에서는 이들 약물을 분자생물학, 영상물리, 임상 의사결정의 교차점에 위치시켜 심장학, 신경학, 종양학에서 정밀 진단, 치료 계획 수립, 치료 효과 평가를 가능하게 하는 역할을 강조하고 있습니다. 트레이서 케미컬과 이미징 기법이 결합하여 환자 계층화 및 맞춤 치료 경로 구축에 어떻게 기여하고, 외래 진단센터부터 3차 의료 대학병원에 이르는 임상 워크플로우를 형성하고 있는지를 중점적으로 설명합니다.

새로운 과학적 돌파구, 공급망 혁신, 규제 진화가 의료 현장 전반에서 SPECT 및 PET 방사성 의약품의 상황을 어떻게 재구성하고 있는가?

SPECT 및 PET 방사성 의약품의 환경은 과학적, 규제적, 운영상의 변화가 결합되어 혁신과 보급을 가속화하면서 재편되고 있습니다. 방사성 화학 및 사이클로트론 능력의 발전으로 사용 가능한 동위원소 선택의 폭이 넓어지고, 진단 민감도를 향상시키고, 실용적인 생물학적 지식을 제공하는 질병 특이적 추적자 개발이 가능해졌습니다. 동시에, 검출기 기술과 이미지 재구성 소프트웨어의 개선으로 특정 적응증에 대한 각 양식 간의 성능 차이가 줄어들어 임상 알고리즘과 투자 우선순위를 재검토할 수 있게 되었습니다.

2025년 미국 관세 조정이 SPECT 및 PET 방사성 의약품의 조달, 제조, 세계 유통에 미치는 영향에 대한 종합적인 평가

2025년 미국에서 발표된 관세 조정은 방사성 의약품 가치사슬 전체에 새로운 제약과 전략적 고려사항을 가져왔습니다. 수입관세 변경은 완제품인 방사성 의약품뿐만 아니라 전구체 화학물질, 발생장치 부품, 특수 포장재 등 중요한 업스트림공정 투입물에도 영향을 미칩니다. 이러한 조정으로 인해 조달팀과 제조업체는 업무의 연속성을 보장하고 조달 및 상환 프레임워크를 준수하기 위해 공급업체 선정, 재고 관리 정책, 서비스 제공 비용 모델을 재평가해야 합니다.

부문에 초점을 맞춘 인텔리전스를 통해 방사성 의약품의 양상, 화학적 특성, 임상 적응증, 최종 사용자 동향, 이해관계자의 유통 채널에 미치는 영향 등을 파악할 수 있습니다.

해당 분야의 세분화는 과학적 지식을 운영 및 상업적 선택으로 전환할 수 있는 실용적인 관점을 제공합니다. 양상에 따른 시장 분석에서는 PET와 SPECT를 구분하여 검토합니다. 이 구분은 여전히 핵심적인 요소로, 양식의 선택이 추적자 화학 선호도, 장비 투자, 임상 경로 설계에 영향을 미치기 때문입니다. PET 중심의 워크플로우에서는 사이클로트론 또는 발전기 연동형 동위원소가 중요시되며, 반감기가 짧기 때문에 보다 엄격한 스케줄 관리가 요구되는 경향이 있습니다. 반면, SPECT 워크플로우에서는 보다 광범위하게 이용 가능한 테크네튬계 키트와 확립된 유통 패턴을 활용할 수 있습니다.

지역별 동향을 파악하고, 미주, 유럽-중동 및 아프리카, 아시아태평양이 기술 도입, 공급 탄력성, 정책 환경에 미치는 영향을 이해합니다.

지역별 동향은 방사성 의약품 분야의 기술 도입, 공급망 설계, 규제 접근 방식에 실질적인 영향을 미칩니다. 미국 대륙에서는 주요 의료 센터의 첨단 임상 도입, 방사화학 인프라에 대한 민간 투자 확대, 혁신과 환자 안전의 균형을 맞추기 위한 규제 강화 등의 요소가 생태계의 특징을 형성하고 있습니다. 이러한 요인들은 기존의 학술 및 상업적 파트너십 내에서 복잡한 PET 추적자 개발을 촉진하는 동시에, 광범위한 지리적 범위에 걸쳐 추적자를 적시에 공급할 수 있도록 물류 최적화에 대한 관심을 불러일으키고 있습니다.

핵의학 분야의 방사성 의약품 혁신, 전략적 제휴, 상업적 스케일업, 가치사슬 통합을 형성하는 기업의 경쟁적 및 협력적 프로파일

방사성 의약품 분야에서 사업을 전개하는 기업들은 추적자 발굴, 동위원소 검출, 제조 스케일업, 유통 네트워크에 걸쳐 통합된 역량으로 차별화를 꾀하고 있습니다. 어떤 조직은 첨단 방사성 화학 플랫폼과 파이프라인 다각화에 집중하여 새로운 리간드의 임상시험으로의 신속한 전환을 가능하게 하고, 어떤 조직은 방사성 의약품 및 물류의 운영 우수성에 초점을 맞추고, 강력한 콜드체인 솔루션과 지역 유통 허브를 통해 단수명 동위 원소의 일관된 정시 배송을 보장합니다.의 일관된 정시 배송을 보장하는 조직도 있습니다.

업계 리더이 제품 개발을 가속화하고, 강력한 공급망을 확보하며, 임상 도입 경로를 최적화할 수 있도록 실질적인 전략적 제안을 제공합니다.

업계 리더은 경쟁 우위를 강화하고 방사성 의약품에 대한 강력한 접근성을 확보하기 위해 세 가지 상호보완적인 전략적 행동을 우선시해야 합니다. 첫째, 지역 생산 능력과 중요한 전구체 및 포장재에 대한 검증된 대체 공급업체를 결합한 유연한 제조 및 조달 아키텍처에 대한 투자입니다. 이러한 이중 접근 방식을 통해 단일 공급원의 혼란과 관세로 인한 비용 변동에 대한 노출을 줄이면서 임상 수요 피크에 대응할 수 있는 신속한 스케일업이 가능합니다.

제시된 결과의 근거가 되는 데이터 소스, 전문가 검증, 분석 프레임워크, 품질 보증 프로토콜을 설명하는 엄격한 조사 방법론

이 보고서는 질적 전문가 인터뷰, 주요 이해관계자와의 협의, 동료평가 문헌 및 규제 지침에 대한 체계적 검토를 통합한 혼합 방법론적 접근법을 기반으로 합니다. 임상연구자, 방사성 의약품 관리 책임자, 규제 전문가, 공급망 리더 등 업계 전문가를 초청하여 주제별 조사결과를 검증하고, 공개 문서에서는 잘 드러나지 않는 운영상의 실태를 추출하였습니다. 본 통합 분석은 편견을 줄이고, 과학적 타당성과 상업적 타당성을 모두 반영할 수 있도록 여러 관점의 삼각측량을 강조하고 있습니다.

방사성 의약품 분야의 전략적 시사점, 지속적 과제, 투자 및 임상 통합의 기회를 추출하는 최종 통합 분석

최종 통합 분석에서는 방사성 의약품 생태계 전반의 이해관계자들을 위한 전략적 시사점을 도출하고, 지속적인 과제와 실행 가능한 기회를 강조합니다. 지속적인 과제로는 단수명 동위원소공급망 취약성, 지역 간 규제 및 상환 환경의 차이, 초기 도입 기관을 넘어 임상 도입을 뒷받침할 수 있는 보다 강력한 실제 임상 증거의 필요성 등이 있습니다. 이러한 과제를 해결하기 위해서는 역량 강화, 규제 당국과의 대화, 그리고 환자에게 의미 있는 혜택을 입증할 수 있는 표적화된 임상 검증에 대한 공동의 노력이 필요합니다.

자주 묻는 질문

  • SPECT 및 PET 방사성 의약품 시장 규모는 어떻게 예측되나요?
  • SPECT 및 PET 방사성 의약품의 임상적 역할은 무엇인가요?
  • 2025년 미국의 관세 조정이 방사성 의약품에 미치는 영향은 무엇인가요?
  • SPECT 및 PET 방사성 의약품의 공급망 혁신은 어떤 변화를 가져오고 있나요?
  • 방사성 의약품 분야의 주요 기업은 어디인가요?

목차

제1장 서문

제2장 조사 방법

  • 조사 디자인
  • 조사 프레임워크
  • 시장 규모 예측
  • 데이터 트라이앵글레이션
  • 조사 결과
  • 조사 전제
  • 조사 제약

제3장 주요 요약

  • 최고경영진의 관점
  • 시장 규모와 성장 동향
  • 시장 점유율 분석, 2025
  • FPNV 포지셔닝 매트릭스, 2025
  • 새로운 매출 기회
  • 차세대 비즈니스 모델
  • 업계 로드맵

제4장 시장 개요

  • 업계 에코시스템과 밸류체인 분석
  • Porter의 Five Forces 분석
  • PESTEL 분석
  • 시장 전망
  • GTM 전략

제5장 시장 인사이트

  • 소비자 인사이트와 최종사용자 관점
  • 소비자 경험 벤치마킹
  • 기회 매핑
  • 유통 채널 분석
  • 가격 동향 분석
  • 규제 준수와 표준 프레임워크
  • ESG와 지속가능성 분석
  • 파괴적 변화와 리스크 시나리오
  • ROI와 CBA

제6장 미국의 관세의 누적 영향, 2025

제7장 AI의 누적 영향, 2025

제8장 SPECT 및 PET 방사성 의약품 시장 : 모달리티별

  • PET
  • SPECT

제9장 SPECT 및 PET 방사성 의약품 시장 방사성 의약품 유형별

  • 불소 18
    • FDG
    • 비FDG
  • 갈륨 68
  • 인듐 111
  • 요오드 123
  • 테크네튬 99M
    • 콜드 키트
    • 즉사용 가능

제10장 SPECT 및 PET 방사성 의약품 시장 : 적응증별

  • 심장병학
  • 신경학
  • 종양학

제11장 SPECT 및 PET 방사성 의약품 시장 : 최종사용자별

  • 학술연구기관
  • 진단센터
  • 병원

제12장 SPECT 및 PET 방사성 의약품 시장 : 유통 채널별

  • 오프라인
  • 온라인

제13장 SPECT 및 PET 방사성 의약품 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제14장 SPECT 및 PET 방사성 의약품 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제15장 SPECT 및 PET 방사성 의약품 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제16장 미국의 SPECT 및 PET 방사성 의약품 시장

제17장 중국의 SPECT 및 PET 방사성 의약품 시장

제18장 경쟁 구도

  • 시장 집중도 분석, 2025
    • 집중 비율(CR)
    • 허쉬만 허핀달 지수(HHI)
  • 최근 동향과 영향 분석, 2025
  • 제품 포트폴리오 분석, 2025
  • 벤치마킹 분석, 2025
  • Advanced Accelerator Applications
  • Bayer AG
  • Bracco Imaging S.p.A.
  • Cardinal Health, Inc.
  • Curium Pharma
  • Eckert & Ziegler
  • GE Healthcare
  • IBA Molecular
  • Isotopia Molecular Imaging Ltd.
  • Jubilant Pharma Limited
  • Lantheus Holdings, Inc.
  • Life Molecular Imaging GmbH
  • Mallinckrodt plc
  • Nihon Medi-Physics Co., Ltd.
  • NorthStar Medical Radioisotopes, LLC
  • Novartis AG
  • Positron Corporation
  • Spectrum Pharmaceuticals, Inc.
  • Telix Pharmaceuticals Limited
LSH

The SPECT & PET Radiopharmaceuticals Market was valued at USD 7.48 billion in 2025 and is projected to grow to USD 8.18 billion in 2026, with a CAGR of 10.28%, reaching USD 14.85 billion by 2032.

KEY MARKET STATISTICS
Base Year [2025] USD 7.48 billion
Estimated Year [2026] USD 8.18 billion
Forecast Year [2032] USD 14.85 billion
CAGR (%) 10.28%

A concise foundational overview introducing SPECT and PET radiopharmaceuticals, their clinical roles, and strategic relevance to diagnostic and therapeutic pathways

This executive summary opens with a clear framing of SPECT and PET radiopharmaceuticals as indispensable tools within contemporary diagnostic and therapeutic pathways. The introduction situates these agents at the intersection of molecular biology, imaging physics, and clinical decision-making, highlighting their role in enabling precision diagnostics, treatment planning, and response assessment across cardiology, neurology, and oncology. It emphasizes how tracer chemistry and imaging modality together inform patient stratification and personalized care pathways, shaping clinical workflows from outpatient diagnostic centers to tertiary academic hospitals.

The section underscores the technological differentiation between PET and SPECT modalities and how radiochemistry choices influence diagnostic specificity, tracer availability, and operational workflows. It also outlines key stakeholders and value chain touchpoints, from isotope producers and radiopharmacies to imaging centers and regulatory authorities, while noting the operational dependencies that influence access and uptake. Finally, the introduction establishes the analytical perspective of this report: to synthesize scientific advancements, regulatory trends, supply chain considerations, and commercial strategies that will inform executive decision-making in the near term.

How emerging scientific breakthroughs, supply chain innovations, and regulatory evolution are reshaping the SPECT and PET radiopharmaceutical landscape across care settings

The landscape of SPECT and PET radiopharmaceuticals is being reshaped by a convergence of scientific, regulatory, and operational changes that collectively accelerate innovation and adoption. Advances in radiochemistry and cyclotron capabilities have broadened the palette of usable isotopes, enabling more disease-specific tracers that improve diagnostic sensitivity and provide actionable biological insights. Concurrently, improvements in detector technology and image reconstruction software have narrowed the performance gap between modalities in certain indications, prompting reassessment of clinical algorithms and investment priorities.

On the regulatory front, there is a discernible trend toward adaptive review pathways and greater regulatory dialogue around centralized versus decentralized production models. These developments are encouraging manufacturers and healthcare providers to experiment with new supply arrangements, including regional radiopharmacies and on-site synthesis, while simultaneously raising expectations for robust quality assurance and cold-chain management. In parallel, strategic collaborations among industry, academic centers, and contract development organizations are accelerating translational research and commercial-scale validation of next-generation tracers. Taken together, these shifts are creating a more dynamic environment in which innovation, supply resilience, and outcome-driven evidence increasingly determine commercial success.

Comprehensive assessment of how United States tariff adjustments implemented in 2025 affect sourcing, manufacturing, and global distribution of SPECT and PET radiopharmaceuticals

Tariff adjustments announced for the United States in 2025 have introduced new constraints and strategic considerations across the radiopharmaceutical value chain. Changes in import duties affect not only finished radiopharmaceutical products but also critical upstream inputs such as precursor chemicals, generator components, and specialized packaging materials. These adjustments have prompted procurement teams and manufacturers to reevaluate supplier selection, inventory policies, and cost-to-serve models to preserve operational continuity and maintain compliance with procurement and reimbursement frameworks.

In response, companies are increasingly exploring regionalization strategies that reduce exposure to cross-border tariff volatility. Such strategies include diversifying sourcing to alternative jurisdictions, increasing local or regional production capacity, and negotiating longer-term supplier agreements to stabilize input costs. These operational shifts have downstream implications for distribution timelines and inventory management, necessitating closer coordination among radiopharmacies, logistics providers, and imaging centers to ensure tracer availability aligns with clinical scheduling.

Regulatory and contract terms are also under scrutiny; procurement teams are updating contractual clauses to better allocate tariff-related risk and to secure price adjustments or supply guarantees. Meanwhile, health systems and providers are assessing whether changes in sourcing influence clinical operations or patient access, and they are engaging suppliers to develop contingency playbooks. Overall, the tariff-driven adjustments in 2025 have reinforced the strategic importance of supply chain flexibility, contractual clarity, and proactive stakeholder communication in preserving access to critical diagnostic agents.

Segment-focused intelligence revealing modality, radiopharmaceutical chemistries, clinical indications, end-user dynamics, and distribution channel implications for stakeholders

The sector's segmentation provides a pragmatic lens to translate scientific capability into operational and commercial choices. Based on Modality, the market is studied across PET and SPECT, a distinction that remains central because modality selection drives tracer chemistry preferences, equipment investments, and clinical pathway design. PET-centered workflows emphasize cyclotron or generator-linked isotopes and often demand tighter scheduling due to shorter half-lives, whereas SPECT workflows can leverage more widely available technetium-based kits and established distribution patterns.

Based on Radiopharmaceutical Type, the market is studied across Fluorine 18, Gallium 68, Indium 111, Iodine 123, and Technetium 99M. Within this framework, Fluorine 18 is further studied across FDG and Non FDG conjugates, reflecting the dual role of FDG as a longstanding oncology workhorse and the growing diversity of non-FDG tracers targeting specific molecular pathways. Technetium 99M is further studied across Cold Kits and Ready To Use formulations, recognizing that kit-based approaches support decentralized preparation while ready-to-use formats facilitate streamlined operations in high-throughput centers.

Based on Indication, the market is studied across Cardiology, Neurology, and Oncology, acknowledging that clinical utility, reimbursement pathways, and evidence requirements vary substantially by therapeutic area. Based on End User, the market is studied across Academic And Research Institutes, Diagnostic Centers, and Hospitals, which captures the operational and procurement heterogeneity between research-grade production environments and routine clinical service providers. Based on Distribution Channel, the market is studied across Direct Tender, Online Channels, and Third Party Logistics, reflecting how procurement and logistics choices influence availability, lead times, and compliance obligations. An integrated view across these segmentations clarifies where investment in tracer development, production capacity, or distribution infrastructure will yield the greatest clinical and commercial returns.

Regional dynamics decoded to understand Americas, Europe Middle East and Africa, and Asia-Pacific influences on technology adoption, supply resilience, and policy environments

Regional dynamics materially influence technology adoption, supply chain design, and regulatory approaches across the radiopharmaceutical landscape. In the Americas, ecosystems are characterized by a mix of advanced clinical adoption in major healthcare centers, growing private investment in radiochemistry infrastructure, and an evolving regulatory emphasis on balancing innovation with patient safety. These factors encourage development of complex PET tracers within established academic and commercial partnerships, while also prompting attention to logistical optimization for timely tracer delivery across large geographic spans.

Europe, Middle East & Africa present a heterogeneous landscape in which regulatory harmonization across blocks and national differences in reimbursement create both opportunities and friction points. Western European markets have mature adoption curves for novel tracers and supportive reimbursement mechanisms for evidence-backed indications, whereas other markets in the region are more price-sensitive and prioritize supply reliability. Middle Eastern centers of excellence are rapidly adopting advanced tracers, often through strategic partnerships, while African markets are beginning to address foundational infrastructure and workforce capacity to enable broader access.

Asia-Pacific is characterized by rapid capacity expansion, significant investments in cyclotron capabilities, and a strong appetite for innovative imaging agents that support oncology and neurology care pathways. Several markets in the region are building domestic radiopharmaceutical manufacturing capabilities to reduce dependency on imports, which in turn accelerates regional clinical trials and commercial rollouts. Across all regions, cross-border supply chain resilience, regulatory clarity, and local clinical evidence generation remain decisive factors shaping adoption trajectories.

Competitive and collaborative profiles of companies shaping radiopharmaceutical innovation, strategic partnerships, commercial scale-up, and value chain integration in nuclear medicine

Companies operating in the radiopharmaceutical segment are differentiated by their integrated capabilities across tracer discovery, isotope procurement, manufacturing scale-up, and distribution networks. Some organizations concentrate on advanced radiochemistry platforms and pipeline diversification, enabling rapid translation of novel ligands into clinical trials. Others focus on operational excellence in radiopharmacy and logistics, ensuring consistent on-time delivery of short-lived isotopes through robust cold-chain solutions and regional distribution hubs.

Strategic partnerships between technology developers, academic centers, and contract manufacturing organizations have become a common vehicle to bridge early-stage innovation and commercial supply. These collaborations mitigate development risk, leverage specialized manufacturing expertise, and expand access to specialized facilities necessary for regulatory submissions and clinical validation. At the same time, mergers, acquisitions, and licensing agreements are increasingly used to secure proprietary tracers or to consolidate supply chains, creating vertically integrated capabilities that can reduce time-to-market for selected indications.

Across the competitive landscape, differentiation is emerging through investments in tracer specificity, manufacturing agility, and evidence generation. Companies that align tracer development with clear clinical utility, scalable production pathways, and well-articulated pricing and reimbursement strategies are best positioned to translate scientific promise into clinical impact and commercial sustainability.

Actionable strategic recommendations for industry leaders to accelerate product development, secure resilient supply chains, and optimize clinical adoption pathways

Industry leaders should prioritize three complementary strategic actions to strengthen competitive positioning and ensure resilient access to radiopharmaceuticals. First, invest in flexible manufacturing and sourcing architectures that combine regional production capacity with validated alternative suppliers for critical precursors and packaging materials. This dual approach reduces exposure to single-source disruptions and tariff-driven cost volatility while enabling rapid scaling to meet clinical demand peaks.

Second, accelerate clinically focused evidence generation by aligning tracer development programs with clear clinical endpoints and real-world utility studies that demonstrate impact on diagnostic confidence, treatment selection, or patient outcomes. Embedding health economics analyses and payer engagement early in development will smooth adoption pathways and support reimbursement discussions. Third, foster strategic commercial partnerships that integrate manufacturing, distribution, and clinical adoption initiatives; these collaborations should include clear contractual provisions for risk-sharing around supply disruptions, quality compliance, and intellectual property management.

Additionally, leaders should invest in workforce development and digital infrastructure to optimize scheduling, inventory management, and regulatory documentation. By combining operational resilience with targeted clinical evidence and collaborative commercialization, organizations can accelerate adoption while managing cost and compliance pressures.

Rigorous research methodology explaining data sources, expert validation, analytical frameworks, and quality assurance protocols underpinning the insights presented

This research draws upon a mixed-methods approach that integrates qualitative expert interviews, primary stakeholder consultations, and a systematic review of peer-reviewed literature and regulatory guidance. Industry subject-matter experts, including clinical investigators, radiopharmacy managers, regulatory specialists, and supply chain leaders, were engaged to validate thematic findings and to surface operational realities that are not always visible in public documentation. The synthesis emphasizes triangulating perspectives to reduce bias and to ensure that recommendations reflect both scientific plausibility and commercial practicality.

Analytical frameworks applied in the study include value chain mapping, regulatory pathway comparison, and scenario analysis for supply chain resilience. Data quality assurance protocols encompassed source verification, cross-referencing of regulatory statements, and iterative validation with domain experts. Where appropriate, comparative case studies were used to illustrate how different production models and distribution strategies perform under varying operational and policy constraints. Throughout, emphasis was placed on transparency in assumptions, clear documentation of data sources, and rigorous peer review of analytical outputs to bolster confidence in the insights provided.

Concluding synthesis that distills strategic implications, persistent challenges, and opportunities for investment and clinical integration within the radiopharmaceutical sector

The closing synthesis distills the strategic implications for stakeholders across the radiopharmaceutical ecosystem, underscoring persistent challenges and actionable opportunities. Persistent challenges include supply chain fragility for short-lived isotopes, variability in regulatory and reimbursement environments across regions, and the need for stronger real-world evidence to support clinical adoption beyond early-adopter centers. Addressing these challenges will require concerted efforts in capacity building, regulatory dialogue, and targeted clinical validation that demonstrates meaningful patient benefit.

Opportunities exist in expanding tracer specificity for underserved indications, optimizing distribution models to balance centralization and decentralization, and leveraging digital tools to improve scheduling and resource allocation. Strategic investments in regional manufacturing capacity and evidence-generation partnerships can unlock broader clinical use while reducing exposure to geopolitical and tariff pressures. Ultimately, stakeholders that blend scientific rigor with operational adaptability and proactive payer engagement will be best positioned to translate radiopharmaceutical innovation into sustainable clinical impact.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Definition
  • 1.3. Market Segmentation & Coverage
  • 1.4. Years Considered for the Study
  • 1.5. Currency Considered for the Study
  • 1.6. Language Considered for the Study
  • 1.7. Key Stakeholders

2. Research Methodology

  • 2.1. Introduction
  • 2.2. Research Design
    • 2.2.1. Primary Research
    • 2.2.2. Secondary Research
  • 2.3. Research Framework
    • 2.3.1. Qualitative Analysis
    • 2.3.2. Quantitative Analysis
  • 2.4. Market Size Estimation
    • 2.4.1. Top-Down Approach
    • 2.4.2. Bottom-Up Approach
  • 2.5. Data Triangulation
  • 2.6. Research Outcomes
  • 2.7. Research Assumptions
  • 2.8. Research Limitations

3. Executive Summary

  • 3.1. Introduction
  • 3.2. CXO Perspective
  • 3.3. Market Size & Growth Trends
  • 3.4. Market Share Analysis, 2025
  • 3.5. FPNV Positioning Matrix, 2025
  • 3.6. New Revenue Opportunities
  • 3.7. Next-Generation Business Models
  • 3.8. Industry Roadmap

4. Market Overview

  • 4.1. Introduction
  • 4.2. Industry Ecosystem & Value Chain Analysis
    • 4.2.1. Supply-Side Analysis
    • 4.2.2. Demand-Side Analysis
    • 4.2.3. Stakeholder Analysis
  • 4.3. Porter's Five Forces Analysis
  • 4.4. PESTLE Analysis
  • 4.5. Market Outlook
    • 4.5.1. Near-Term Market Outlook (0-2 Years)
    • 4.5.2. Medium-Term Market Outlook (3-5 Years)
    • 4.5.3. Long-Term Market Outlook (5-10 Years)
  • 4.6. Go-to-Market Strategy

5. Market Insights

  • 5.1. Consumer Insights & End-User Perspective
  • 5.2. Consumer Experience Benchmarking
  • 5.3. Opportunity Mapping
  • 5.4. Distribution Channel Analysis
  • 5.5. Pricing Trend Analysis
  • 5.6. Regulatory Compliance & Standards Framework
  • 5.7. ESG & Sustainability Analysis
  • 5.8. Disruption & Risk Scenarios
  • 5.9. Return on Investment & Cost-Benefit Analysis

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. SPECT & PET Radiopharmaceuticals Market, by Modality

  • 8.1. PET
  • 8.2. SPECT

9. SPECT & PET Radiopharmaceuticals Market, by Radiopharmaceutical Type

  • 9.1. Fluorine 18
    • 9.1.1. FDG
    • 9.1.2. Non FDG
  • 9.2. Gallium 68
  • 9.3. Indium 111
  • 9.4. Iodine 123
  • 9.5. Technetium 99M
    • 9.5.1. Cold Kits
    • 9.5.2. Ready To Use

10. SPECT & PET Radiopharmaceuticals Market, by Indication

  • 10.1. Cardiology
  • 10.2. Neurology
  • 10.3. Oncology

11. SPECT & PET Radiopharmaceuticals Market, by End User

  • 11.1. Academic And Research Institutes
  • 11.2. Diagnostic Centers
  • 11.3. Hospitals

12. SPECT & PET Radiopharmaceuticals Market, by Distribution Channel

  • 12.1. Offline
  • 12.2. Online

13. SPECT & PET Radiopharmaceuticals Market, by Region

  • 13.1. Americas
    • 13.1.1. North America
    • 13.1.2. Latin America
  • 13.2. Europe, Middle East & Africa
    • 13.2.1. Europe
    • 13.2.2. Middle East
    • 13.2.3. Africa
  • 13.3. Asia-Pacific

14. SPECT & PET Radiopharmaceuticals Market, by Group

  • 14.1. ASEAN
  • 14.2. GCC
  • 14.3. European Union
  • 14.4. BRICS
  • 14.5. G7
  • 14.6. NATO

15. SPECT & PET Radiopharmaceuticals Market, by Country

  • 15.1. United States
  • 15.2. Canada
  • 15.3. Mexico
  • 15.4. Brazil
  • 15.5. United Kingdom
  • 15.6. Germany
  • 15.7. France
  • 15.8. Russia
  • 15.9. Italy
  • 15.10. Spain
  • 15.11. China
  • 15.12. India
  • 15.13. Japan
  • 15.14. Australia
  • 15.15. South Korea

16. United States SPECT & PET Radiopharmaceuticals Market

17. China SPECT & PET Radiopharmaceuticals Market

18. Competitive Landscape

  • 18.1. Market Concentration Analysis, 2025
    • 18.1.1. Concentration Ratio (CR)
    • 18.1.2. Herfindahl Hirschman Index (HHI)
  • 18.2. Recent Developments & Impact Analysis, 2025
  • 18.3. Product Portfolio Analysis, 2025
  • 18.4. Benchmarking Analysis, 2025
  • 18.5. Advanced Accelerator Applications
  • 18.6. Bayer AG
  • 18.7. Bracco Imaging S.p.A.
  • 18.8. Cardinal Health, Inc.
  • 18.9. Curium Pharma
  • 18.10. Eckert & Ziegler
  • 18.11. GE Healthcare
  • 18.12. IBA Molecular
  • 18.13. Isotopia Molecular Imaging Ltd.
  • 18.14. Jubilant Pharma Limited
  • 18.15. Lantheus Holdings, Inc.
  • 18.16. Life Molecular Imaging GmbH
  • 18.17. Mallinckrodt plc
  • 18.18. Nihon Medi-Physics Co., Ltd.
  • 18.19. NorthStar Medical Radioisotopes, LLC
  • 18.20. Novartis AG
  • 18.21. Positron Corporation
  • 18.22. Spectrum Pharmaceuticals, Inc.
  • 18.23. Telix Pharmaceuticals Limited
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제