|
ÀÌ»êÈź¼Ò(CO2) Ȱ¿ë(2022-2042³â): ±â¼ú, ½ÃÀå Àü¸Á ¹× ±â¾÷
Carbon Dioxide Utilization 2022-2042: Technologies, Market Forecasts, and Players
|
¸®¼Ä¡»ç |
IDTechEx Ltd.
|
¹ßÇàÀÏ |
2022³â 05¿ù |
»óǰÄÚµå |
1073187 |
ÆäÀÌÁö Á¤º¸ |
¿µ¹® 284 Slides
| ¹è¼Û¾È³» |
1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ) |
°¡°Ý |
|
ÀÌ»êÈź¼Ò(CO2) Ȱ¿ë(2022-2042³â): ±â¼ú, ½ÃÀå Àü¸Á ¹× ±â¾÷
Carbon Dioxide Utilization 2022-2042: Technologies, Market Forecasts, and Players
|
¹ßÇàÀÏ : 2022³â 05¿ù | ÆäÀÌÁö Á¤º¸ : ¿µ¹® 284 Slides |
|
|
¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹®¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.
IDTechEx´Â 2042³â±îÁö Àü ¼¼°è ÀÌ»êÈź¼Ò Ȱ¿ë ½ÃÀåÀÌ 2,850¾ï ´Þ·¯¸¦ ³Ñ¾î¼³ °ÍÀ¸·Î Àü¸ÁÇϰí ÀÖ½À´Ï´Ù.
ÀÌ»êÈź¼Ò Ȱ¿ë(CO2U) ±â¼úÀº ź¼Ò Æ÷ȹ Ȱ¿ë ¹× ÀúÀå(CCUS) ±â¼úÀÇ ÇÏÀ§ ÁýÇÕÀ¸·Î, °ÇÃà ÀÚÀç, ÇÕ¼º ¿¬·á, ÈÇÐ ¹°Áú, ÇÃ¶ó½ºÆ½°ú °°Àº ºÎ°¡°¡Ä¡ Á¦Ç°À» ¸¸µé±â À§ÇØ ÀÎÀ§ÀûÀÎ CO2¸¦ »ý»êÀûÀ¸·Î »ç¿ëÇÏ´Â °ÍÀ» ¸»ÇÕ´Ï´Ù. CCUS´Â Àü ¼¼°è¿¡ ´ë±Ô¸ð·Î µµÀԵǾúÀ¸¸ç ¼¼°è °æÁ¦¸¦ Żź¼ÒÈÇÏ´Â Áß¿äÇÑ µµ±¸·Î ¿©°ÜÁý´Ï´Ù. ÁöÇÏ¿¡ ÀÌ»êÈź¼Ò¸¦ ÀúÀåÇÏ´Â °Í »Ó¸¸ ¾Æ´Ï¶ó, ±× Ȱ¿ë¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. CO2U´Â º¸´Ù ¼øÈ¯ÀûÀÎ °æÁ¦¸¦ ÃËÁøÇÒ ¼ö ÀÖÀ» »Ó¸¸ ¾Æ´Ï¶ó, °æ¿ì¿¡ µû¶ó¼´Â Ư¼ºÀÌ Çâ»óµÈ Á¦Ç°À̳ª °ø±Þ ¿ø·á ºñ¿ëÀÌ ³·Àº °øÁ¤À¸·Î ±Í°áµÉ ¼öµµ ÀÖ½À´Ï´Ù.
CO2U »ê¾÷Àº ¼¼°èÀÇ ¾ß½ÉÂù ±âÈÄ ¸ñÇ¥¸¦ ´Þ¼ºÇϱâ À§ÇÑ ÇØ°áÃ¥À¸·Î ź·ÂÀ» ¹Þ¾Ò½À´Ï´Ù. ¸¹Àº »ó¾÷È Àü´Ü°èÀÇ ÇÁ·ÎÁ§Æ®µéÀÌ ÇöÀç ¿î¿µ ÁßÀ̰ųª °Ç¼³ ÁßÀ̸ç, ÁÖ·Î À¯·´°ú ºÏ¹Ì¿¡ ÁýÁߵǾî ÀÖÀ¸¸ç, ´õ ¸¹Àº ÇÁ·ÎÁ§Æ®µéÀÌ °ø°ø ¹× ¹Î°£ ÅõÀÚ¿¡ ÀÇÇØ Áö¿øµÇ´Â ÆÄÀÌÇÁ¶óÀο¡ ÀÖ½À´Ï´Ù. ¾ÆÁ÷ Ãʱ⠴ܰèÀ̱ä ÇÏÁö¸¸, À¯ÀúÀÇ °ü½ÉÀ» ¹Þ°í ÀÖ½À´Ï´Ù. ±â¾÷°ú °³ÀεéÀÌ Àúź¼Ò Á¦Ç°¿¡ ´ëÇÑ ¼ö¿ä¸¦ âÃâÇϰí ÀÖ´Ù°í º¸µµµÇ°í ÀÖ½À´Ï´Ù.
ÀÌ º¸°í¼´Â ÇâÈÄ 20³â µ¿¾È ÀÌ ½ÅÈï ½ÃÀåÀ» Çü¼ºÇÒ ±â¼úÀû, °æÁ¦Àû, ȯ°æÀû Ãø¸éÀ» ½ÉÃþÀûÀ¸·Î ºÐ¼®ÇÏ¿© Àü ¼¼°è CO2 Ȱ¿ë »ê¾÷¿¡ ´ëÇÑ Æ÷°ýÀûÀÎ Àü¸ÁÀ» Á¦°øÇÕ´Ï´Ù. IDTechEx´Â Çâ»óµÈ ¼®À¯ ȸ¼ö, °ÇÃà ÀÚÀç, ¾×ü ¹× °¡½º ¿¬·á, Æú¸®¸Ó, ÈÇÐ ¹°Áú ¹× »ý¹°ÇÐÀû ¼öÀ² Çâ»ó(°î¹° ¿Â½Ç, ÇØÁ¶·ù ¹× ¹ßÈ¿)¿¡¼ CO2 »ç¿ë »ç·Ê¸¦ °ËÅäÇÏ¿© °¢ ¿µ¿ª ³»ÀÇ ±â¼ú Çõ½Å°ú ±âȸ¸¦ ¸ð»öÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÌ º¸°í¼¿¡´Â 11°³ÀÇ CO2U Á¦Ç° Ä«Å×°í¸®ÀÇ ±¸Çö¿¡ ´ëÇÑ 20³â°£ÀÇ ¼¼ºÎ ¿¹Ãø°ú 20°³ ÀÌ»óÀÇ ÀÎÅÍºä ±â¹Ý ȸ»ç ÇÁ·ÎÇÊÀÌ Æ÷ÇԵǾî ÀÖ½À´Ï´Ù.
ÀÌ º¸°í¼¿¡¼ ´äº¯ÇÑ ÁÖ¿ä Áú¹®Àº ´ÙÀ½°ú °°½À´Ï´Ù.
- CO2 Ȱ¿ëÀ̶õ ¹«¾ùÀÌ¸ç ±âÈÄ º¯È¸¦ ÇØ°áÇϱâ À§ÇØ ¾î¶»°Ô »ç¿ëµÉ ¼ö ÀÖ½À´Ï±î?
- ¿À´Ã³¯ ¾÷°è¿¡¼ CO2´Â ¾î¶»°Ô »ç¿ëµË´Ï±î?
- CO2UÀÇ ½ÃÀå ÀáÀç·ÂÀº ¾ó¸¶³ª µË´Ï±î?
- CO2´Â ¾î¶»°Ô À¯¿ëÇÑ Á¦Ç°À¸·Î ÀüȯµÉ ¼ö ÀÖÀ»±î¿ä?
- CO2U ÇÁ·Î¼¼½ºÀÇ ±â¼ú Áغñ ¼öÁØÀº ¾î´À Á¤µµÀԴϱî?
- CO2U ÇÁ·Î¼¼½ºÀÇ ¿¡³ÊÁö ¹× °ø±Þ ½ºÅå ¿ä±¸ »çÇ×Àº ¹«¾ùÀԴϱî?
- CO2 À¯·¡ Á¦Ç°ÀÇ ¼º´ÉÀº ±âÁ¸ Á¦Ç°°ú ºñ±³ÇßÀ» ¶§ ¾î¶»½À´Ï±î?
- CO2U ½ÃÀå ¼ºÀåÀÇ ÁÖ¿ä µ¿Àΰú Àå¾Ö¹°Àº ¹«¾ùÀԴϱî?
- CO2U ±â¼úÀÇ ºñ¿ëÀº ¾ó¸¶ÀԴϱî?
- CO2UÀÇ ÁÖ¿ä ¼ºÀå ±âȸ´Â ¾îµð¿¡ ÀÖ½À´Ï±î?
- CO2UÀÇ ÇÙ½É ÁÖü´Â ´©±¸ÀԴϱî?
- CO2U ±â¼úÀÇ ±âÈÄ ¿µÇâÀº ¹«¾ùÀԴϱî?
¸ñÂ÷
1. ÁÖ¿ä ¿ä¾à
- 1.1. ¿Ö CO2 Ȱ¿ëÀΰ¡?
- 1.2. »ê¾÷¿ë Żź¼Ò °úÁ¦
- 1.3. CO2 ÀÌ¿ë °æ·Î
- 1.4. »õ·Ó°Ô µîÀåÇÑ CO2 Ȱ¿ë ¾ÖÇø®ÄÉÀÌ¼Ç ºñ±³
- 1.5. CO2-EORÀº ¹«¾ùÀԴϱî?
- 1.6 CO2-EORÀÇ ¼¼°èÀû À§»óÀº ¹Ì±¹ÀÌ Áö¹èÇϰí ÀÖÁö¸¸ ´Ù¸¥ Áö¿ªÀÌ ºÎ»óÇϰí ÀÖ´Ù.
- 1.7. CO2-EOR SWOT ºÐ¼®
- 1.8 °Ç¼³ºÎ¹® ¹èÃâ¿¡¼ ÄÜÅ©¸®Æ®ÀÇ ¿ªÇÒ
- 1.9. CO2 À¯·¡ °ÇÃà ÀÚÀç
- 1.10. ½Ã¸àÆ® ¹× ÄÜÅ©¸®Æ® °ø±Þ¸Á¿¡¼ÀÇ CO2 »ç¿ë
- 1.11. CO2¿¡¼ ÆÄ»ýµÈ °ÇÃà ÀÚÀçÀÇ ÁÖ¿ä ÀÌÁ¡
- 1.12. CO2 À¯·¡ ÈÇÐ ¹°Áú
- 1.13. ÀÌ»êÈź¼Ò´Â °Å´ëÇÑ ¹üÀ§ÀÇ ÈÇй°Áú·Î ¹Ù²ð ¼ö ÀÖ´Ù.
- 1.14. ¾î¶² CO2U ±â¼úÀÌ ¾î¶² ÈÇÐ ¹°Áú¿¡ ´õ ÀûÇÕÇմϱî?
- 1.15.CO2 À¯·¡ ÈÇй°Áú ¹× Æú¸®¸ÓÀÇ ÁÖ¿ä »çÇ×
- 1.16. CO2 À¯·¡ ¿¬·á
- 1.17.CO2 À¯·¡ ¿¬·áÀÇ ÁÖ¿ä °æ·Î
- 1.18. CO2 À¯·¡ ¿¬·á SWOT ºÐ¼®
- 1.19. »ý¹°ÇÐÀû »ý»ê·® Áõ´ë¸¦ À§ÇÑ CO2 Ȱ¿ë
- 1.20. »ý¹°ÇÐÀû °øÁ¤¿¡¼ÀÇ CO2 Ȱ¿ë
- 1.21. »ý¹°ÇÐÀû ¼öÀ² »ó½Â¿¡ ´ëÇÑ CO2 »ç¿ë: Àå´ÜÁ¡
- 1.22. ½ÅÈï CO2 Ȱ¿ëÀÇ ÇÙ½É ÁÖü
- 1.23. CO2UÀÇ ¹Ì·¡ ½ÃÀå ÀáÀç·ÂÀ» À̲ô´Â ¿äÀÎ
- 1.24. ź¼Ò ÀÌ¿ë °¡´É¼º ¹× ±âÈÄ ÆíÀÍ
- 1.25. CO2 Ȱ¿ë: ÀϹÝÀûÀÎ Àå´ÜÁ¡
- 1.26. Á¦Ç°º° CO2 ÀÌ¿ë ¿ë·® ¿¹Ãø(¿¬°£ CO2 ¹é¸¸ Åæ), 2022-2042
2. ¼Ò°³
3. CO2 ¿ÀÀÏ È¸¼ö °È
4. °ÇÃàÀÚÀçÀÇ CO2 Ȱ¿ë
5. CO2 À¯·¡ ÈÇÐ ¹°Áú
6. CO2 À¯·¡ ¿¬·á
7. »ý¹°ÇÐÀû °øÁ¤¿¡¼ÀÇ CO2 Ȱ¿ë
8. CO2 Ȱ¿ë ½ÃÀå Àü¸Á
9. ºÎ·Ï
JYH 22.05.11
Title:
Carbon Dioxide Utilization 2022-2042: Technologies, Market Forecasts, and Players
Granular forecasts, interview-based company profiles, benchmarking, and market outlook of carbon dioxide utilization technologies in enhanced oil recovery, building materials, fuels, polymers, commodity chemicals, crop greenhouses, algae, and proteins.
IDTechEx forecasts global carbon dioxide utilization market to exceed $285 billion by 2042
Carbon dioxide utilization (CO2U) technologies are a sub-set of carbon capture utilization and storage (CCUS) technologies and refer to the productive use of anthropogenic CO2 to make value-added products such as building materials, synthetic fuels, chemicals, and plastics. CCUS have been deployed around the world at large-scale and are seen as a crucial tool to decarbonize the world's economy. As well as storing CO2 in the subsurface, there has been increasing interest in its utilization. CO2U can promote not only a more circular economy but also, in some cases, result in products with enhanced properties or processes with lower feedstock costs.
The CO2U industry has gained momentum as a solution to achieve the world's ambitious climate goals. Many pre-commercial projects are currently operating or under construction, mostly concentrated in Europe and North America, with more in the pipeline supported by public and private investments. Although still in its infancy, the market pull is coming from the users - businesses and individuals are reportedly creating demand for low-carbon products.
This report provides a comprehensive outlook of the global CO2 utilization industry, with an in-depth analysis of the technological, economic, and environmental aspects that are set to shape this emerging market over the next twenty years. IDTechEx considers CO2 use cases in enhanced oil recovery, building materials, liquid and gaseous fuels, polymers, chemicals, and in biological yield-boosting (crop greenhouses, algae, and fermentation), exploring the technology innovations and opportunities within each area. The report also includes a twenty-year granular forecast for the deployment of 11 CO2U product categories, alongside 20+ interview-based company profiles.
Emerging applications of CO2 utilization: inputs, manufacturing pathways, and products made from CO2. Source: IDTechEx.
The options are diverse
Despite its potential to create a market for waste CO2, not all CO2U technologies are created equal. These systems face a range of economic, technical, and regulatory challenges which need to be carefully considered so that the technologies that actually provide climate benefits - and are economically viable - can be prioritized and pursued. For instance, for many CO2U routes, the CO2 sequestration is only temporary with the CO2 utilized being released to the atmosphere once the product is consumed (e.g., CO2-derived fuels or proteins), whilst for others, the CO2 can be stored permanently (e.g., CO2-derived building materials). On the economic side, many CO2U pathways can be considerably more expensive than their fossil-based counterparts due to high energy requirements, low yields, or need of other expensive feedstock (e.g., green hydrogen, catalysts). The report provides insights into the most promising processes being developed in CO2U, highlighting the pros and cons of each pathway and end-product.
Innovative companies across the world are developing technologies to improve the energy efficiency of CO2 conversion processes and reduce their costs. The report gives an overview of these players' latest developments, with first-hand accounts of the challenges and opportunities within the industry.
The highest potential areas
Successful deployment for CO2-based polymers saw considerable growth in recent years, especially in Europe and Asia, with more than 250 thousand metric tons of CO2 already used in polymer manufacturing annually worldwide (based on currently operating plants). IDTechEx expects the sector to continue to expand, even though its climate mitigation potential is limited, mainly due to its intrinsic low CO2 utilization ratio (volume of CO2 per volume of CO2-derived product).
Construction materials, fuels, and commodity chemicals (e.g., methanol, ethanol, olefins) offer vast potential for CO2 utilization, but this will not be realized without development of an extensive CO2 network linking capture sites to usage sites, widespread deployment of clean energy, or regulatory support (e.g., sustainable fuel mandates). CO2-derived construction products in particular - such as concrete and aggregates - are set to gain considerable market share due to its helpful thermodynamics and ability to sequester CO2 permanently.
The niche areas
The solid carbon (e.g., carbon nanotubes, carbon fiber, diamonds) and protein sectors will remain niche applications of CO2 utilization, despite their high market value, due to, respectively, the small size of the market (in volumes) and fierce competition from incumbents. Waste CO2 utilization in algae cultivation is still in the early stages, and many hurdles need to be addressed before commodity-scale applications become a reality.
Key questions answered in this report:
- What is CO2 utilization and how can it be used to address climate change?
- How is CO2 used in the industry today?
- What is the market potential for CO2U?
- How can CO2 be converted into useful products?
- What is the technology readiness level of CO2U processes?
- What are the energy and feedstocks requirements for CO2U processes?
- How does the performance of CO2-derived products compare with their conventional counterparts?
- What are the key drivers and hurdles for CO2U market growth?
- How much do CO2U technologies cost?
- Where are the key growth opportunities for CO2U?
- Who are the key players in CO2U?
- What is the climate impact of CO2U technologies?
Analyst access from IDTechEx
All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report. TABLE OF CONTENTS
1. EXECUTIVE SUMMARY
- 1.1. Why CO2 Utilization?
- 1.2. The industrial decarbonization challenge
- 1.3. CO2 Utilization pathways
- 1.4. Comparison of emerging CO2 utilization applications
- 1.5. What is CO2-EOR?
- 1.6. Global status of CO2-EOR: U.S. dominates but other regions arise
- 1.7. CO2-EOR SWOT analysis
- 1.8. The role of concrete in the construction sector emissions
- 1.9. CO2-derived building materials
- 1.10. CO2 use in the cement and concrete supply chain
- 1.11. Key takeaways in CO2-derived building materials
- 1.12. CO2-derived chemicals
- 1.13. CO2 can be converted into a giant range of chemicals
- 1.14. Which CO2U technologies are more suitable to which chemicals?
- 1.15. Key points in CO2-derived chemicals and polymers
- 1.16. CO2-derived fuels
- 1.17. Main routes to CO2-derived fuels
- 1.18. CO2-derived fuels SWOT analysis
- 1.19. CO2 Utilization to boost biological yields
- 1.20. CO2 utilization in biological processes
- 1.21. CO2 use in biological yield-boosting: pros and cons
- 1.22. Key players in emerging CO2 Utilization
- 1.23. Factors driving CO2U future market potential
- 1.24. Carbon Utilization potential and climate benefits
- 1.25. CO2 Utilization: general pros and cons
- 1.26. CO2 utilization capacity forecast by product (million tonnes of CO2 per year), 2022-2042
- 1.27. Carbon utilization annual revenue forecast by product (million US$), 2022-2042
2. INTRODUCTION
- 2.1. Definition and report scope
- 2.2. The world needs an unprecedented transition away from fossil carbon
- 2.3. Why CO2 Utilization?
- 2.4. How is CO2 used and sourced today?
- 2.5. CO2 Utilization pathways
- 2.6. Reductive vs non-reductive methods
- 2.7. CO2 Utilization in Enhanced Oil Recovery
- 2.8. CO2 Utilization in Enhanced Oil Recovery
- 2.9. Main emerging applications of CO2 utilization
- 2.10. Carbon Utilization potential and climate benefits
- 2.11. Factors driving future market potential
- 2.12. Cost effectiveness of CO2 utilization applications
- 2.13. Carbon pricing is needed for most CO2U applications to break even
- 2.14. Traction in CO2U: funding worldwide
- 2.15. Traction in CO2U: funding and policies in Europe
- 2.16. Carbon utilization - technical challenges
- 2.17. Climate benefits of major CO2U applications (i)
- 2.18. Climate benefits of major CO2U applications (ii)
- 2.19. Technology readiness and climate benefits of CO2U pathways
- 2.20. Carbon utilization business models
- 2.21. CO2 Utilization: general pros and cons
- 2.22. Conclusions
3. CO2 ENHANCED OIL RECOVERY
- 3.1. What is CO2-EOR?
- 3.2. What happens to the injected CO2?
- 3.3. Types of CO2-EOR designs
- 3.4. The CO2 source: natural vs anthropogenic
- 3.5. The CO2 source impacts costs and technology choice
- 3.6. Global status of CO2-EOR: U.S. dominates but other regions arise
- 3.7. World's large-scale anthropogenic CO2-EOR facilities
- 3.8. CO2-EOR potential
- 3.9. Most CO2 in the U.S. is still naturally sourced
- 3.10. CO2-EOR main players in the U.S.
- 3.11. CO2-EOR main players in North America
- 3.12. Denbury Resources
- 3.13. CO2 transportation is a bottleneck
- 3.14. Century Plant: the current biggest CCUS/EOR project
- 3.15. Boundary Dam - battling capture technical issues
- 3.16. CO2-EOR in China
- 3.17. The economics of promoting CO2 storage through CO2-EOR
- 3.18. The impact of oil prices on CO2-EOR feasibility
- 3.19. Petra Nova's shutdown: lessons for the industry?
- 3.20. Carbon sequestration tax credits role: the U.S. 45Q
- 3.21. Climate considerations in CO2-EOR
- 3.22. The climate impact of CO2-EOR varies over time
- 3.23. CO2-EOR: an on-ramp for CCS and DACCS?
- 3.24. CO2-EOR in shale: the next frontier?
- 3.25. CO2-EOR SWOT analysis
- 3.26. Key takeaways: market
- 3.27. Key takeaways: environmental
4. CO2 UTILIZATION IN BUILDING MATERIALS
- 4.1.1. The role of concrete in the construction sector emissions
- 4.1.2. The role of cement in concrete's carbon footprint
- 4.1.3. The role of cement in concrete's carbon footprint (ii)
- 4.1.4. The Basic Chemistry: CO2 Mineralization
- 4.1.5. CO2 use in the cement and concrete supply chain
- 4.1.6. Can the CO2 used in building materials come from cement plants?
- 4.1.7. Carbonation of recycled concrete in a cement plant
- 4.1.8. Fortera Corporation
- 4.2. CO2 utilization in concrete curing or mixing
- 4.2.1. CO2 utilization in concrete curing or mixing
- 4.2.2. CO2 utilization in concrete curing or mixing (ii)
- 4.2.3. CarbonCure Technologies
- 4.2.4. Solidia
- 4.2.5. Carboclave
- 4.2.6. CarbiCrete
- 4.2.7. Orbix
- 4.2.8. CarbonBuilt
- 4.3. CO2 utilization in carbonates
- 4.3.1. CO2 utilization in carbonates
- 4.3.2. CarbonFree
- 4.3.3. CO2-derived carbonates from natural minerals
- 4.3.4. CO2-derived carbonates from waste
- 4.3.5. CO2-derived carbonates from waste (ii)
- 4.3.6. Carbon Upcycling Technologies
- 4.3.7. Blue Planet
- 4.3.8. Carbon8
- 4.4. Market analysis of CO2-derived building materials
- 4.4.1. The market potential of CO2 use in the construction industry
- 4.4.2. Supplying CO2 to a decentralized concrete industry
- 4.4.3. Prefabricated versus ready-mixed concrete markets
- 4.4.4. Market dynamics of cement and concrete
- 4.4.5. CO2U business models in building materials
- 4.4.6. CO2U technology adoption in construction materials
- 4.4.7. CO2 utilization players in mineralization
- 4.4.8. Factors influencing CO2U adoption in construction
- 4.4.9. Factors influencing CO2U adoption in construction (ii)
- 4.4.10. Concrete carbon footprint of key CO2U companies
- 4.4.11. Key takeaways in CO2-derived building materials
- 4.4.12. Key takeaways in CO2-derived building materials (ii)
- 4.4.13. Key takeaways in CO2-derived building materials (iii)
5. CO2-DERIVED CHEMICALS
- 5.1.1. The chemical industry's decarbonization challenge
- 5.1.2. CO2 can be converted into a giant range of chemicals
- 5.1.3. Using CO2 as a feedstock is energy-intensive
- 5.1.4. The basics: types of CO2 utilization reactions
- 5.2. CO2-derived chemicals: pathways and products
- 5.2.1. CO2 use in urea production
- 5.2.2. CO2 may need to be first converted into CO or syngas
- 5.2.3. Chiyoda
- 5.2.4. Fischer-Tropsch synthesis: syngas to hydrocarbons
- 5.2.5. Electrochemical CO2 reduction
- 5.2.6. Electrochemical CO2 reduction products
- 5.2.7. Low-temperature electrochemical CO2 reduction
- 5.2.8. Twelve
- 5.2.9. High-temperature solid oxide electrolyzers
- 5.2.10. Haldor Topsøe
- 5.2.11. Methanol is a valuable chemical feedstock
- 5.2.12. Cost parity has been a challenge for CO2-derived methanol
- 5.2.13. Thermochemical methods: CO2-derived methanol
- 5.2.14. Carbon Recycling International
- 5.2.15. Aromatic hydrocarbons from CO2
- 5.2.16. Artificial photosynthesis
- 5.3. CO2-derived polymers
- 5.3.1. CO2 in polymer manufacturing
- 5.3.2. Commercial production of polycarbonate from CO2
- 5.3.3. Covestro
- 5.3.4. Econic
- 5.3.5. Evonik
- 5.3.6. Asahi Kasei: CO2-based aromatic polycarbonates
- 5.4. CO2-derived pure carbon products
- 5.4.1. Carbon nanostructures made from CO2
- 5.4.2. Mars Materials
- 5.5. CO2-derived chemicals: market and general considerations
- 5.5.1. Players in CO2-derived chemicals by end-product
- 5.5.2. CO2-derived chemicals: market potential
- 5.5.3. Are CO2-derived chemicals climate beneficial?
- 5.5.4. Investments and industrial collaboration are key
- 5.5.5. Steel-off gases as a CO2U feedstock
- 5.5.6. Centralized or distributed chemical manufacturing?
- 5.5.7. What would it take for the chemical industry to run on CO2?
- 5.6. CO2-derived chemicals: takeaways
- 5.6.1. Which CO2U technologies are more suitable to which products?
- 5.6.2. Technical feasibility of main CO2-derived chemicals
- 5.6.3. Key takeaways in CO2-derived chemicals
6. CO2-DERIVED FUELS
- 6.1. What are CO2-derived fuels?
- 6.2. CO2 can be converted into a variety of energy carriers
- 6.3. Summary of main routes to CO2-fuels
- 6.4. The challenge of energy efficiency
- 6.5. CO2-fuels are pertinent to a specific context
- 6.6. CO2-fuels in shipping
- 6.7. CO2-fuels in aviation
- 6.8. Sustainable aviation fuel policies (i)
- 6.9. Sustainable aviation fuel policies (ii)
- 6.10. Liquid Wind
- 6.11. Obrist Group
- 6.12. Coval Energy
- 6.13. CO2-derived formic acid as a hydrogen carrier
- 6.14. Synthetic natural gas - thermocatalytic pathway
- 6.15. Biological fermentation of CO2 into methane
- 6.16. Drivers and barriers for power-to-gas technology adoption
- 6.17. Power-to-gas projects worldwide - current and announced
- 6.18. Can CO2-fuels achieve cost parity with fossil-fuels?
- 6.19. CO2-fuels rollout is linked to electrolyzer capacity
- 6.20. Low-carbon hydrogen is crucial to CO2-fuels
- 6.21. CO2-derived fuels projects announced
- 6.22. CO2-derived fuels projects worldwide over time - current and announced
- 6.23. CO2-fuels from solar power
- 6.24. Synhelion
- 6.25. Dimensional Energy
- 6.26. Companies in CO2-fuels by end-product
- 6.27. CO2-derived fuel: players
- 6.28. CO2-derived fuel: players (ii)
- 6.29. Sunfire: SOEC techonology
- 6.30. Audi synthetic fuels
- 6.31. Are CO2-fuels climate beneficial?
- 6.32. CO2-derived fuels SWOT analysis
- 6.33. CO2-derived fuels: market potential
- 6.34. Key takeaways
7. CO2 UTILIZATION IN BIOLOGICAL PROCESSES
- 7.1. CO2 utilization in biological processes
- 7.2. Main companies using CO2 in biological processes
- 7.3. CO2 utilization in greenhouses
- 7.4. CO2 enrichment in greenhouses
- 7.5. CO2 enrichment in greenhouses: market potential
- 7.6. CO2 enrichment in greenhouses: pros and cons
- 7.7. CO2 utilization in algae cultivation
- 7.8. CO2-enhanced algae or cyanobacteria cultivation
- 7.9. Cemvita Factory
- 7.10. CO2-enhanced algae cultivation: open vs closed systems
- 7.11. Algae CO2 capture from cement plants
- 7.12. Algae has multiple market applications
- 7.13. The algae-based fuel market has been rocky
- 7.14. Algae-based fuel for aviation
- 7.15. CO2-enhanced algae cultivation: pros and cons
- 7.16. CO2 utilization in microbial conversion
- 7.17. CO2 utilization in biomanufacturing
- 7.18. CO2-consuming microorganisms
- 7.19. LanzaTech
- 7.20. Newlight
- 7.21. Food and feed from CO2
- 7.22. Solar Foods
- 7.23. CO2-derived food and feed: market
- 7.24. Carbon fermentation: pros and cons
8. CO2 UTILIZATION MARKET FORECAST
- 8.1. Forecast scope & methodology
- 8.2. CO2-derived product benchmarking (i)
- 8.3. CO2-derived product benchmarking (ii)
- 8.4. Forecast product categories
- 8.5. CO2-derived product price forecast: methodology
- 8.6. CO2-derived product price forecast: input and results
- 8.7. CO2 utilization overall market forecast
- 8.8. CO2 utilization capacity forecast by category (million tonnes of CO2 per year), 2022-2042
- 8.9. CO2 utilization capacity forecast by product (million tonnes of CO2 per year), 2022-2042
- 8.10. Carbon utilization annual revenue forecast by category (million US$), 2022-2042
- 8.11. Carbon utilization annual revenue forecast by product (million US$), 2022-2042
- 8.12. CO2 utilization market forecast, 2022-2042: discussion
- 8.13. The evolution of the CO2U market
- 8.14. CO2-Enhanced Oil Recovery forecast
- 8.15. CO2-EOR forecast assumptions
- 8.16. CO2-EOR annual revenue (million US$) and oil production (million barrels per day), 2022-2042
- 8.17. CO2-EOR utilization rate by source (million tonnes of CO2 per year), 2022-2042
- 8.18. CO2-derived building materials forecast
- 8.19. CO2-derived building materials: forecast assumptions
- 8.20. CO2 utilization forecast in building materials by end-use (million tonnes of CO2 per year), 2022-2042
- 8.21. CO2-derived building materials volume forecast by product (million tonnes of product per year), 2022-2042
- 8.22. Annual revenue forecast for CO2-derived building materials by product (million US$), 2022-2042
- 8.23. CO2-derived building materials forecast, 2022-2042: discussion
- 8.24. CO2-derived fuels forecast
- 8.25. CO2-derived fuels: forecast assumptions
- 8.26. CO2 utilization forecast in fuels by fuel type (million tonnes of CO2 per year), 2022-2042
- 8.27. CO2-derived fuels volume forecast by fuel type (million tonnes of fuel per year), 2022-2042
- 8.28. Annual revenue forecast for CO2-derived fuels by fuel type (million US$), 2022-2042
- 8.29. CO2-derived fuels forecast, 2022-2042: discussion
- 8.30. CO2-derived fuels forecast, 2022-2042: discussion
- 8.31. CO2-derived chemicals forecast
- 8.32. CO2-derived chemicals: forecast assumptions
- 8.33. CO2 utilization forecast in chemicals by end-use (million tonnes of CO2 per year), 2022-2042
- 8.34. CO2 -derived chemicals volume forecast by end-use (million tonnes product per year), 2022-2042
- 8.35. Annual revenue forecast for CO2-derived chemicals by end-use (million US$), 2022-2042
- 8.36. CO2-derived chemicals forecast, 2022-2042: discussion
- 8.37. CO2 use in biological yield-boosting forecast
- 8.38. CO2 use in biological yield-boosting: forecast assumptions
- 8.39. CO2 utilization forecast in biological yield-boosting by end-use (million tonnes of CO2 per year), 2022-2042
- 8.40. Annual revenue forecast for CO2 use in biological yield-boosting by end-use (million US$), 2022-2042
- 8.41. CO2 use in biological yield-boosting forecast, 2022-2042: discussion
9. APPENDIX
- 9.1. Players in CO2-derived chemicals (i)
- 9.2. Players in CO2-derived chemicals (ii)
- 9.3. Players in CO2-derived chemicals (iii)
- 9.4. Players in CO2-derived chemicals (iv)
- 9.5. Players in CO2-derived polymers (i)
- 9.6. Players in CO2-derived polymers (ii)
- 9.7. Players in CO2-derived solid carbon
|

|
¹Ì±¹ÀÇ Åº»ê°¡½º ½ÃÀå ±Ô¸ð, Á¡À¯À², µ¿Ç⠺м®(2022-2030³â) : °ø±Þ¿ø(¼ö¼Ò, ¿¡Æ¿¾ËÄÚ¿Ã, ¿¡Æ¿·»¿Á»çÀ̵å, SNG), ¿ëµµ(½Äǰ°ú À½·á, ¼Ò¹æ, ¼®À¯¿Í °¡½º, ÀÇ·á, °í¹«)º°
»ê¾÷¿ë °¡½º ½ÃÀå : ¼¼°è »ê¾÷ ºÐ¼®, ±Ô¸ð, Á¡À¯À², ¼ºÀå, µ¿Çâ, ¿¹Ãø(2021-2031³â)
¼¼°èÀÇ ¿ëÁ¢ °¡½º/½Çµå °¡½º ½ÃÀå ±Ô¸ð : À¯Çüº°(¾Æ¸£°ï, ÀÌ»êÈź¼Ò, »ê¼Ò, ¼ö¼Ò, ±âŸ), ¿ëµµº°, ÀúÀ庰, ÃÖÁ¾ »ç¿ë ¾÷°èº°, Áö¿ªº° ¿¹Ãø(2022-2028³â)
¼¼°èÀÇ ºÎ½Ä ¹æÁöÁ¦ ½ÃÀå ¿¹Ãø(-2028³â) : ºÎ½ÄÁ¦ Á¾·ùº°(ÀÌ»êÈź¼Ò, Ȳȼö¼Ò, »ê¼Ò), ¿ëµµº°(¼®À¯ ¹× °¡½º »ý¼º, °¡°ø ¹× Á¦Ç° ÷°¡Á¦, ¼öó¸®), Áö¿ªº° ºÐ¼®
¼¼°èÀÇ ÀÌ»êÈź¼Ò ½ÃÀå ±Ô¸ð Á¶»ç : »ý»êº°(¿¬¼Ò, »ý¹°ÇÐÀû ¹æ¹ý), °ø±Þº°(Áý¾à, ÆÄÀÌÇÁ¶óÀÎ, Æ®·°, ½Ç¸°´õ, ¿Â»çÀÌÆ®), Áö¿ªº° ¿¹Ãø(2021-2027³â)
ÀÌ»êÈź¼Ò ½ÃÀå Á¡À¯À², ±Ô¸ð, µ¿Çâ, »ê¾÷ ºÐ¼® º¸°í¼(2022-2029³â) : ¿ëµµº°, ¿ø·áº°, Áö¿ªº°, ºÎ¹®º° ¿¹Ãø
¼¼°èÀÇ ÀÌ»êÈź¼Ò ½ÃÀå(2021-2025³â)
¼¼°èÀÇ ÀÌ»êÈź¼Ò ½ÃÀå : ¼Ò½º(¿¡Æ¿ ¾ËÄÚ¿Ã, ´ëü õ¿¬ °¡½º, ¼ö¼Ò, »êÈ ¿¡Æ¿·» µî), ¾ÖÇø®ÄÉÀ̼Ç(½Äǰ¡¤À½·á, ÀÇ·á, °í¹«, ¼®À¯¡¤°¡½º, ¼Ò¹æ µî), Áö¿ªº° ¿¹Ãø(2021-2027³â)
¼¼°èÀÇ ÀÌ»êÈź¼Ò ½ÃÀå : ¼Ò½º(¿¡Æ¿¾ËÄÚ¿Ã, ´ëü õ¿¬°¡½º), ¾ÖÇø®ÄÉÀ̼Ç(½Äǰ¡¤À½·á, ÀÇ·á), Áö¿ªº° ½ÃÀå ±Ô¸ð, ½ÃÀå Á¡À¯À² ¹× µ¿Ç⠺м®, ºÎ¹®º° ¿¹Ãø(2021-2028³â)
¼¼°èÀÇ ÀÌ»êÈź¼Ò ½ÃÀå(2021³â) : COVID-19ÀÇ ¿µÇâ°ú ȸº¹(-2030³â)
|