Global Information
회사소개 | 문의 | 비교리스트

페로브스카이트 태양광발전(2023-2033년)

Perovskite Photovoltaics 2023-2033

리서치사 IDTechEx Ltd.
발행일 2022년 06월 상품코드 1088880
페이지 정보 영문 242 Slides 배송안내 1-2일 (영업일 기준)
US $ 6,500 ₩ 8,463,000 PDF Download (1-5 Users) help
5명까지 액세스 권한이 부여되는 라이선스입니다. 텍스트 등의 PDF 내용 편집은 불가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다.
US $ 9,200 ₩ 11,978,000 PDF Download (6-10 Users) help
10명까지 액세스 권한이 부여되는 라이선스입니다. 텍스트 등의 PDF 내용 편집은 불가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다.

페로브스카이트 태양광발전(2023-2033년) Perovskite Photovoltaics 2023-2033
발행일 : 2022년 06월 페이지 정보 : 영문 242 Slides

본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문목차를 참고해주시기 바랍니다.

페로브스카이트 PV 시장은 탠덤 셀과 실내 셀의 채택으로 2033년까지 12억 달러로 성장할 것입니다.

페로브스카이트 태양광 발전은 이미 저비용의 박막 아키텍처와 조정 가능한 흡수를 통해 새로운 애플리케이션을 통해 놀라운 효율성을 입증했습니다. 이 IDTechEx 보고서는 페로브스카이트 PV의 적합성과 시장 기회, 혁신 기회 및 진입 장벽에 대해 살펴봅니다. 안정성의 주요 과제를 해결하기 위한 방법과 특수 재료의 제조 방법 및 요구 사항을 평가합니다.

실리콘 태양광 발전(PV) 시장은 매년 가속화되고 있습니다. 재생 가능한 에너지원으로 나아가기 위한 세계적인 이니셔티브가 있고 지속 가능성에 대한 대중의 의식이 높아지고 있습니다. 따라서 새로운 PV 기술이 혼합되어 수요 격차를 해소할 수 있는 기회가 많이 있습니다.

페로브스카이트는 특정 물질 구조를 가진 물질군을 말합니다. 태양광 발전에 사용되는 것은 이 용도에 매우 적합한 독특한 전자적 특성과 광학적 특성을 조합한 것입니다. 페로브스카이트 PV가 실리콘 PV를 즉시 대체할 것으로 예상되지는 않지만, 채택에는 상당한 동기가 있습니다. 페로브스카이트 PV는 실리콘 PV와 유사하게 높은 전력 밀도를 낮은 비용으로, 적은 무게로, 그리고 더 간단한 제조 공정을 제공할 수 있습니다. 또한 실리콘과 결합하여 단일 접합 태양 전지의 효율 한계를 뛰어넘을 수 있는 탠덤 셀 아키텍처를 만들 수 있습니다. 여러 회사가 단일 접합 페로브스카이트 및 탠덤 PV 개발에 착수하고 있으며, 그 중 일부는 향후 1-2년 내에 상업적으로 출시할 계획으로 파일럿 라인과 시험을 진행 중입니다.

이 보고서에서 답변한 주요 질문은 다음과 같습니다.

    - 페로브스카이트 PV는 무엇이며 기후 변화를 해결하기 위해 어떻게 사용될 수 있는가?
    - 기존의 경쟁력 있는 PV 기술은 무엇인가?
    - 다양한 시장 세분화는 무엇인가?
    - 페로브스카이트 PV의 기술 준비 수준은 어느 정도인가?
    - 시장 성장의 주요 동력과 장애물은 무엇인가?
    - 주요 성장 기회는 어디에 있는가?
    - 예상 비용은 얼마인가?
    - 주요 참가자는 누구인가?
    - 페로브스카이트의 대체 적용은 무엇인가?

1. 주요 요약

  • 1.1. 페로브스카이트 PV란?
  • 1.2. 페로브스카이트 태양광 발전의 동기
  • 1.3. 페로브스카이트 PV
  • 1.4. 태양광 발전 기술 현황
  • 1.5. 페로브스카이트 PV, 신흥 IoT 애플리케이션 공략
  • 1.6. 수직통합을 위한 페로브스카이트 PV
  • 1.7. 페로브스카이트 PV 과제
  • 1.8. 박막 페로브스카이트 PV 로드맵
  • 1.9. 포터의 다섯 가지 힘: 박막 페로브스카이트 PV 시장
  • 1.10. 박막 페로브스카이트 PV의 SWOT 해석
  • 1.11. 실리콘 탠덤 구조물의 페로브스카이트
  • 1.12. 탠덤 PV 곧 출시
  • 1.13. 탠덤 셀 과제
  • 1.14. 실리콘-페로브스카이트 탠덤 PV 로드맵
  • 1.15. 포터의 다섯 가지 힘: 실리콘-페로브스카이트 탠덤 PV 시장
  • 1.16. Tandem PV의 SWOT 해석
  • 1.17. Perovskite 응용 프로그램의 시장 준비 상태
  • 1.18. 공급망에서의 기회
  • 1.19. 페로브스카이트 PV 상용화 진행 중
  • 1.20. 페로브스카이트의 대체 적용: 개요
  • 1.21. 주요 내용(1)
  • 1.22. 주요 내용(2)

2. 시장 전망

3. 소개

4. 박막 페로브스카이트 태양전지

5. 실리콘 탠덤 태양전지의 페로브스카이트

6. 안정성 문제 해결

7. PEROVSKITE PV를 위한 확장 가능한 증착 방법

8. 페로브스카이트 태양전지 재료


JYH 22.06.16

Perovskite Photovoltaics 2023-2033
Covering tandem, thin-film, flexible, and building-integrated perovskite solar cells, along with perovskite LEDs, sensors and photodetectors.

Perovskite PV market to grow to US$1.2 billion by 2033 with adoption of tandem and indoor cells.

Perovskite photovoltaics have already demonstrated remarkable efficiencies, with new applications enabled by their low cost, thin film architecture and tuneable absorption. This IDTechEx report explores the suitability and market opportunities of perovskite PV as well as the innovation opportunities and barriers to entry. It evaluates methods to resolve the main challenge of stability, as well as manufacturing methods and requirements for speciality materials.

The silicon photovoltaic (PV) market is accelerating every year. There are global initiatives to move towards renewable energy sources and public consciousness of sustainability is increasing. As such there is plenty of opportunity for new PV technologies to enter the mix and meet gaps in demand.

Perovskites refer to a family of materials with a specific material structure. Those used in photovoltaics have unique combination of electronic and optical properties that are extremely well-suited to this application. Perovskite PV is not expected to imminently replace silicon PV as the dominant technology; however, there is substantial motivation for its adoption. Perovskite PV can provide similarly high power density as silicon PV at lower cost, a fraction of the weight, and with a simpler manufacturing process. It can also be combined with silicon to create tandem cell architectures that can surpass the efficiency limits of single junction solar cells. Several companies are working on developing single junction perovskite and tandem PV, some of which have pilot lines and trials in progress with plans to launch commercially within the next year or two.

Perovskite photovoltaics can be utilized in either a thin film (left) or tandem 'perovskite-on-silicon' architecture, targeting applications such as indoor energy harvesting or rooftop PV respectively.

Remarkably rapid efficiency gains

Perovskite PV research took off in 2009. Since then, research into the field has catapulted. Record efficiencies are already on par with those of silicon PV, a technology with decades of research behind it. Additionally, perovskite PV does not use toxic or rare materials, and the manufacturing is well-suited to scalable solution-based deposition methods. This gives perovskite PV an edge over the existing dominant thin film alternatives such as cadmium telluride (CdTe) and copper indium gallium selenide (CIGS), which suffer from expensive synthesis and material scarcity.

Despite the demonstration of high efficiency perovskite solar cells, commercial adoption is limited by concerns over long-term stability. Perovskites are well-known to degrade following exposure to environmental factors such as heat, air, humidity, and UV light. Encapsulation techniques and material engineering are crucial to prevent degradation of the perovskite film - solving these high value problems is a compelling commercial opportunity.

Enabling emerging applications

Perovskite PV is very versatile. It can be used in mainstream applications such as in solar farms and rooftops. Since the weight of a perovskite module can be at least 90 % lighter than a silicon module, it is particularly well-suited to novel applications as well such as vertical building integration and structures with low weight tolerance. These are applications that mainstream silicon-based PV is not compatible with and therefore provide a niche opportunity for perovskite PV. Flexible solar modules are another exciting recent development in photovoltaics. Thin film perovskite PV is naturally well-suited to flexible designs. Conformality allows for greater practicality and aesthetic control when integrating into building facades as well as electronic devices.

With the emergence of Internet of Things (IoT), it could also be a very suitable choice for self-powered smart electronics. Batteries are typically used to power small appliances. Where hundreds or thousands of individual electronics are in use, replacing batteries can be unsustainable both in terms of labour costs and number of disposable batteries. Employing low-cost PV powered devices with lifespans of 10 years could be far more economical. There is already very early-stage commercialisation of self-powered electronics using organic PV. This market is still very small and there is plenty of room for new entrants. Perovskite PV promises higher efficiencies and simpler synthesis than organics, and potentially longer lifespans.


The future appears optimistic for perovskite PV, since the technology has advanced much more rapidly than any other photovoltaic technology. Unlike CdTe and CIGS active layers, perovskites do not require rare or expensive raw materials. The synthesis is straightforward, and deposition can be carried out without the need for a vacuum or high temperatures. The possibility of creating flexible devices also opens up new applications that mainstream silicon PV cannot target due to their bulk, weight, and rigidity. Despite the promising advantages, concerns surrounding the lifespan of perovskite solar cells remain at the forefront of the discussion.

Key questions answered in this report:

  • What is perovskite PV and how can it be used to address climate change?
  • What are the competitive existing PV technologies?
  • What are the various market segmentations?
  • What is the technology readiness level of perovskite PV?
  • What are the key drivers and hurdles for market growth?
  • Where are the key growth opportunities?
  • What is the predicted cost?
  • Who are the key players?
  • What are alternative applications of perovskites?

IDTechEx has 10 years of expertise covering printed and flexible electronics, including thin film photovoltaics. Our analysts have closely followed the latest developments in the technology and associated markets, interviewed key players across the supply chain, attended conferences, and delivered consulting projects on the field. This report examines the current status and latest trends in technology performance, supply chain, manufacturing know-how, and application development progress. It also identifies the key challenges, competition and innovation opportunities facing perovskite PV.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.



  • 1.1. What is Perovskite PV?
  • 1.2. Motivation for Perovskite Photovoltaics
  • 1.3. Perovskite PV - A High Achiever
  • 1.4. Solar PV Technology Status
  • 1.5. Perovskite PV Targets Emerging IoT Applications
  • 1.6. Perovskite PV for Vertical Building Integration
  • 1.7. Perovskite PV Challenges
  • 1.8. Thin Film Perovskite PV Roadmap
  • 1.9. Porter's Five Forces: Thin Film Perovskite PV Market
  • 1.10. SWOT Analysis of Thin Film Perovskite PV
  • 1.11. Perovskite on Silicon Tandem Structures
  • 1.12. Tandem PV Coming to Rooftops Soon
  • 1.13. Tandem Cell Challenges
  • 1.14. Silicon-Perovskite Tandem PV Roadmap
  • 1.15. Porter's Five Forces: Silicon-Perovskite Tandem PV Market
  • 1.16. SWOT Analysis of Tandem PV
  • 1.17. Market Readiness of Perovskite Applications
  • 1.18. Opportunities in the Supply Chain
  • 1.19. Commercialisation of Perovskite PV Underway
  • 1.20. Alternative Applications of Perovskites: Overview
  • 1.21. Key Takeaways (1)
  • 1.22. Key Takeaways (2)


  • 2.1. Forecasting Methodology
  • 2.2. Forecasting Module Costs
  • 2.3. Total Installed PV Capacity Forecast
  • 2.4. Module Cost Forecast
  • 2.5. Cumulative Installed Solar Farm Capacity
  • 2.6. Annual Surface Area Production - Solar Farm
  • 2.7. Solar Farm PV Annual Revenue
  • 2.8. Cumulative Installed Rooftop Capacity
  • 2.9. Annual Surface Area Production - Rooftop
  • 2.10. Rooftop PV Annual Revenue
  • 2.11. PV Module Costs for Wireless Electronics
  • 2.12. Production Forecast for PV-Powered Wireless Electronics
  • 2.13. Annual Revenue PV for Wireless Electronics
  • 2.14. Total Annual Revenue of Perovskite PV
  • 2.15. Annual Perovskite Cell Material Requirements
  • 2.16. Substrates Production Forecast
  • 2.17. Substrate Annual Revenue Forecast
  • 2.18. Perovskite PV Deposition Methods Forecast


  • 3.1. Solar PV is the Fastest Growing Energy Source
  • 3.2. Current Landscape of Solar PV
  • 3.3. Solar PV Technology Status
  • 3.4. CdTe suffers from raw material concerns
  • 3.5. CIGS - Key player is exiting the market
  • 3.6. What is Perovskite PV?
  • 3.7. Perovskite PV - A High Achiever
  • 3.8. Motivation for Perovskite Photovoltaics
  • 3.9. Perovskite Research Begins to Plateau
  • 3.10. Emerging Research Topics in Perovskite PV
  • 3.11. Perovskite PV Incentivisation
  • 3.12. Have Perovskites Lived Up to Early Expectations?
  • 3.13. Comparing Emerging Thin Film Technologies
  • 3.14. Perovskite PV Challenges
  • 3.15. Perovskite PV could be low-cost alternative to GaAs
  • 3.16. Segmenting Perovskite PV Technologies
  • 3.17. Commercialisation of Perovskite PV Underway
  • 3.18. Perovskite PV Value Chain
  • 3.19. Suppliers to the Chain
  • 3.20. Opportunities in the Supply Chain


  • 4.1. Introduction: Motivation for Thin Film Solar Cells
  • 4.2. Thin-Film Perovskite Technology
    • 4.2.1. How Does a Thin Film Solar Cell Work?
    • 4.2.2. Key Solar Cell Performance Metrics
    • 4.2.3. Perovskite Solar Cell Evolution
    • 4.2.4. n-i-p vs p-i-n configurations
    • 4.2.5. Simple structures for scalable perovskite PV
    • 4.2.6. Silicon processing is costly and time intensive
    • 4.2.7. Perovskites can save time, money, and energy relative to silicon PV
    • 4.2.8. Thin Film Perovskite PV Cost Breakdown
    • 4.2.9. Thin Film Perovskite PV Roadmap
    • 4.2.10. Porter's Five Forces: Thin Film Perovskite PV Market
    • 4.2.11. SWOT Analysis of Thin Film Perovskite PV
    • 4.2.12. Summary: Thin Film Perovskite Technology
  • 4.3. Applications of Thin Film Perovskite PV
    • 4.3.1. Introduction: Applications for Thin-Film Solar
    • 4.3.2. Meeting Application Requirements - Existing Silicon vs Thin Film Perovskite
    • 4.3.3. Thin Film PV for Indoor Energy Harvesting
    • 4.3.4. Perovskite PV Could be Cost-Effective Alternative for Wireless Energy Harvesting
    • 4.3.5. Perovskite PV Targets Emerging IoT Applications
    • 4.3.6. Solar Powered Smart Packaging
    • 4.3.7. Where is Thin Film PV Envisaged in Cars?
    • 4.3.8. Perovskite PV for Vertical Building Integration
    • 4.3.9. Could Perovskites Solve Challenges in PV Automotive Application?
    • 4.3.10. Lightyear: Long Range Solar Electric Vehicle
    • 4.3.11. Hyundai Introduces Silicon Solar Panels on Cars
    • 4.3.12. Armor/ASCA Developing Portable PV Panels
    • 4.3.13. Summary
  • 4.4. Thin Film Perovskite Industry Players
    • 4.4.1. Saule Technologies: Overview
    • 4.4.2. Saule Technologies' Key Product
    • 4.4.3. Saule Technologies' Value Propositions
    • 4.4.4. Saule Technologies' Manufacturing Approach
    • 4.4.5. Saule Technologies' Business Model
    • 4.4.6. Saule Technologies: SWOT
    • 4.4.7. Microquanta Semiconductor: Targeting both thin film and silicon/perovskite tandem.
    • 4.4.8. Microquanta Emphasises Stability
    • 4.4.9. Microquanta Semiconductor: SWOT
    • 4.4.10. GCL New Energy: Established player planning to enter the perovskite market (I)
    • 4.4.11. GCL New Energy: Established player planning to enter the perovskite market (II)
    • 4.4.12. GCL New Energy: SWOT
    • 4.4.13. Swift Solar: Developing thin-film tandem cells
    • 4.4.14. Swift Solar's All-Perovskite Approach
    • 4.4.15. Swift Solar Perovskite PV for Electric Cars
    • 4.4.16. Non-Solution Deposition Techniques Could Benefit All-Perovskite Tandem
    • 4.4.17. Swift Solar: SWOT
    • 4.4.18. Summary of Players (perovskite thin film)


  • 5.1. Tandem Technology
    • 5.1.1. Thin film vs tandem perovskite PV
    • 5.1.2. Tandem Solar Cells to Surpass Theoretical Efficiency Limits of Single Junction
    • 5.1.3. Silicon-Perovskite Tandem Advantages
    • 5.1.4. Perovskite on Silicon Tandem Structures
    • 5.1.5. Tandem Cell Configurations
    • 5.1.6. Tandem Cell Challenges
    • 5.1.7. Tandem Process Flow
    • 5.1.8. Silicon-Perovskite Tandem Cost Breakdown
    • 5.1.9. Silicon-Perovskite Tandem PV Roadmap
    • 5.1.10. Porter's Five Forces: Silicon-Perovskite Tandem PV Market
    • 5.1.11. SWOT Analysis of Tandem PV
    • 5.1.12. Summary
  • 5.2. Applications of Tandem Silicon-Perovskite PV
    • 5.2.1. Introduction: Applications of Perovskite on Silicon Tandem
    • 5.2.2. Tandem PV Coming to Rooftops Soon
    • 5.2.3. Tandem PV Could Boost Solar Farms
    • 5.2.4. Could Silicon-Perovskite Tandem Work in Windows?
  • 5.3. Industry Players
    • 5.3.1. Oxford PV: Major player in silicon-perovskite tandem PV
    • 5.3.2. Business Model of Oxford PV
    • 5.3.3. Oxford PV is entering an unestablished market
    • 5.3.4. Oxford PV: SWOT
    • 5.3.5. CubicPV: Early stage silicon-perovskite developer
    • 5.3.6. CubicPV's Direct Wafer® Method
    • 5.3.7. CubicPV: SWOT
    • 5.3.8. Summary of Key Players (silicon-perovskite tandem)


  • 6.1. Stability poses a challenge to commercialisation
  • 6.2. Extrinsic degradation
  • 6.3. Intrinsic degradation mechanisms
  • 6.4. Material engineering can improve stability but compromise optical properties
  • 6.5. Glass-glass encapsulation to prevent extrinsic degradation
  • 6.6. Comparison of common polymer encapsulant materials
  • 6.7. Thin Film Encapsulation
  • 6.8. Al2O3 is an upcoming thin film encapsulant
  • 6.9. Commercial Flexible Encapsulation
  • 6.10. Tera Barrier's Solar Barrier Film
  • 6.11. Summary: Perovskite stability


  • 7.1. Introduction: Deposition of Perovskites
  • 7.2. Deposition Techniques for Scalable Processing
  • 7.3. Sputtering for High Purity Deposition
  • 7.4. AACVD is an emerging solution-based vacuum approach
  • 7.5. Inkjet Printing for High Spatial Resolution
  • 7.6. Blade coating is cheap but inconsistent
  • 7.7. Slot-die coating is promising for industry
  • 7.8. Spray coating - rapid but wasteful
  • 7.9. Poor spatial resolution wastes material
  • 7.10. Comparison of Deposition Methods
  • 7.11. How to Decide on Perovskite Deposition Methods?
  • 7.12. Towards Roll-to-Roll Printing
  • 7.13. Novel Deposition Technique by Creaphys/MBraun
  • 7.14. Summary of Deposition Methods


  • 8.1. Introduction to Materials for Perovskite PV
    • 8.1.1. Materials Opportunities
  • 8.2. Substrate Materials
    • 8.2.1. Substrate Choices: Conventional and Emerging
    • 8.2.2. Limitations of Rigid Glass Substrates
    • 8.2.3. Alternatives to Rigid Glass
    • 8.2.4. Flexible Glass Substrates
    • 8.2.5. What is Ultra-Thin Flexible Glass?
    • 8.2.6. Ultra-Thin Glass Improves Flexibility
    • 8.2.7. Encapsulation Advantages of Ultra-Thin Flexible Glass
    • 8.2.8. Corning Willow Flexible Glass
    • 8.2.9. Schott Solar Flexible Glass
    • 8.2.10. Plastic Substrates - Cheap and Flexible
    • 8.2.11. Barrier Layer Requirement Increases Cost of Plastic Substrates
    • 8.2.12. Why Use Metal Foil Substrates?
    • 8.2.13. Substrate Surface Roughness Impacts Cell Performance
    • 8.2.14. Substrate Material Supply Opportunities
    • 8.2.15. Substrate Cost Comparison
    • 8.2.16. Benchmarking Substrate Materials
    • 8.2.17. How to Choose a Substrate?
  • 8.3. Transparent Conducting Films
    • 8.3.1. Strong opportunity for development of alternative TCF materials
    • 8.3.2. Wide Choice of Transparent Conducting Films
    • 8.3.3. Key TCF properties: haze, transmission and sheet resistance
    • 8.3.4. Transparent Conductor Choice Influences Technical Approach
    • 8.3.5. Stretchable CNT conducting films
    • 8.3.6. Graphene faces a difficult compromise
    • 8.3.7. Benefits of silver nanowire TCFs
    • 8.3.8. Silver price volatility affects feedstock cost
  • 8.4. Perovskite Active Layer
    • 8.4.1. Perovskite Material Components
    • 8.4.2. Are Lead Concerns Justified?
    • 8.4.3. Public Perception vs Reality of Lead
    • 8.4.4. Material composition influences optics
    • 8.4.5. Perovskite Raw Materials - Commoditised Market
  • 8.5. Charge Transport Layers
    • 8.5.1. High Demand for Low Cost Transport Layers
    • 8.5.2. Organic charge transport layers have high complexity
    • 8.5.3. SFX - An Alternative to Spiro?
    • 8.5.4. Charge Transport Layer Can Limit Cell Efficiency
    • 8.5.5. Inorganic Charge Transport Layers
    • 8.5.6. Summary of Materials


  • 9.1. Alternative Applications of Perovskites: Overview
    • 9.1.1. Technology Status of Conventional and Alternative Applications of Perovskites
  • 9.2. Light Emitting Diodes
    • 9.2.1. Working Principle of Perovskite LEDs
    • 9.2.2. Opportunity for High Energy UV emitting Perovskite LEDS
    • 9.2.3. Wide Variety of Potential Markets for Perovskite LEDs
    • 9.2.4. Perovskite LEDs: SWOT
  • 9.3. Photodetectors
    • 9.3.1. Introduction to Thin Film Photodetectors
    • 9.3.2. Photodetector Working Principles
    • 9.3.3. Segmenting the Electromagnetic Spectrum
    • 9.3.4. Perovskite Absorption Limited to Visible Range
    • 9.3.5. Holst Centre Perovskite Based Image Sensors
    • 9.3.6. Photodetectors for Autonomous Vehicles
    • 9.3.7. Perovskite Photodetectors: SWOT
  • 9.4. X-Ray Detectors
    • 9.4.1. Siemens Healthineers: Direct X-Ray Sensing with Perovskites
    • 9.4.2. X-Ray Detectors: SWOT
  • 9.5. Perovskite quantum dots
    • 9.5.1. Perovskite quantum dots for color enhancement/conversion (I)
    • 9.5.2. Perovskite quantum dots for color enhancement/conversion (II)
    • 9.5.3. Perovskite Quantum Dot Lasers
    • 9.5.4. Perovskite Quantum Dots: SWOT
Back to Top
전화 문의