Global Information
회사소개 | 문의 | 위시리스트

열전 에너지수확기술 및 센싱(2020-2030년)

Thermoelectric Energy Harvesting and Sensing 2020-2030

리서치사 IDTechEx Ltd.
발행일 2019년 10월 상품 코드 239692
페이지 정보 영문 235 Pages
가격
US $ 5,495 ₩ 6,499,000 PDF Download (1-5 Users) help
5명까지 액세스 권한이 부여되는 라이선스입니다. 텍스트 등의 PDF 내용 편집은 불가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다.
US $ 5,995 ₩ 7,090,000 PDF Download (1-5 Users) and 1 Hardcopy help
5명까지 액세스 권한이 부여되는 라이선스입니다. 텍스트 등의 PDF 내용 편집은 불가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다. 컬러 제본(컬러 하드카피본) 1부가 포함됩니다. FedEx를 이용하여 영국에서 3영업일 이내에 발송합니다.
US $ 7,995 ₩ 9,456,000 PDF Download (6-10 Users) help
10명까지 액세스 권한이 부여되는 라이선스입니다. 텍스트 등의 PDF 내용 편집은 불가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다.
US $ 8,495 ₩ 10,047,000 PDF Download (6-10 Users) and 1 Hardcopy help
10명까지 액세스 권한이 부여되는 라이선스입니다. 텍스트 등의 PDF 내용 편집은 불가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다. 컬러 제본(컬러 하드카피본) 1부가 포함됩니다. FedEx를 이용하여 영국에서 3영업일 이내에 발송합니다.


열전 에너지수확기술 및 센싱(2020-2030년) Thermoelectric Energy Harvesting and Sensing 2020-2030
발행일 : 2019년 10월 페이지 정보 : 영문 235 Pages

열전 에너지수확기술 및 센싱(Thermoelectric Energy Harvesting and Sensing) 시장의 전망을 조사했으며, 열전 에너지수확기술 및 TEG의 정의와 개요, 기술개발의 동향, 새로운 제조 기술·용도·재료에 관한 동향, 주요 단체·관련 사업자의 개요 등을 정리하여 전해드립니다.

제1장 개요·결론

제2장 서론

  • 제벡 및 펠티어 효과
  • 열전발전기의 제조
  • 박막열전발전기
  • 재료 : 고ZT의 추구

제3장 새로운 원리 : 양자점·스핀류

  • 양자점
  • 스핀류 열전교환

제4장 저출력 : 저DELTA T·플렉서블/스트레처블

  • 온도차가 적은 환경에서의 센서급전
    • 일본의 대학
    • 중국의 대학
    • 미국 PNNL
    • 미국 GeorgiaTech
  • 플렉서블 열전 하베스터
    • 개요
    • Mxene·CNT
    • 스트레처블 열전 코일 : 소형 플렉서블 웨어러블 디바이스
  • 헬스케어
    • 개요
    • University Massachusetts Amherst

제5장 고출력 TEG의 현황

  • 개요
  • RGS Development, TEGnology, Komatsu KELK
  • Gentherm, Marlow
  • Alphabet의 Energy E1 열전발전기

제6장 새로운 제조 기술

  • TECA·Tellurex·Micropelt
  • 플렉서블 열전발전기의 제조 : Tyndall·AIST·ETH
  • 플렉서블 TEG의 ZT 강화
  • AIST : 플렉서블 기술
  • 프린티드 열전 : Otego
  • Osaka University

제7장 새로운 용도

  • 빌딩 파사드
  • 삽입형 열전
  • CE/웨어러블용 열전
    • 개요
    • Matrix PowerWatch
    • Matrix March 2019
    • 학술연구 등
  • IoT 급전
  • 폐열
    • Mitsubishi Materials
    • Paderborn University
  • 야간 방사 냉각
  • 군·항공우주
    • 군용 AETEG
    • 2 기능 제너레이터·프리쿨러
    • 군용 폐열 이용
    • 가스 터빈 센싱
  • 기타 예
  • 대형 구조물
    • 스마트 로드
    • 야외 방사 냉각 : Univs Colorado·Wyoming·California

제8장 신소재

  • 유기 재료
    • 박테리아 나노셀룰로오스
    • 불소 고무
    • PEDOT:PSS
  • 실리콘 칩의 통합
    • 합금 필름
    • 나노블레이드
  • 기타 무기 재료
  • e-textile
  • 고온용 신소재

제9장 열전센싱

  • 개요
  • MEMS 열전적외선 센서
  • 마이크로열전 가스 센서 : 수소·원자산소
  • 트랜스퍼 기준
  • 패브릭 센서
  • 자기급전 무선 센서
  • 헬스케어용 초고감도 히트 센서
  • 3 파라미터 대응 센서

제10장 관련 조직·사업자 개요

  • AIST
  • Alphabet Energy, Inc.
  • Applied Thermoelectric Solutions
  • Citizen Watch Japan
  • e-ThermoGentech Japan
  • EVERREDtronics Ltd
  • Ferrotec Corporation
  • Fujifilm Japan
  • Furukawa Japan
  • Gentherm
  • greenTEG
  • Hi Z Technology, Inc
  • KELK Ltd
  • Kyocera Japan
  • Laird Technologies
  • Lintec Japan
  • Mahle O-Flexx
  • Marlow Industries
  • mc10
  • Murata Japan
  • Novus
  • OTEGO
  • Panasonic Japan
  • Perpetua
  • PL Engineering
  • RGS Development
  • RMT
  • Romny Scientific
  • Showa Denko, Showa Holdings Japan
  • TECTEG Mfr
  • TES New Energy Japan
  • Thermolife Energy Corporation
  • Toshiba Japan
  • Yamaha
  • Yasanuga Japan
KSA 19.11.11

이 페이지에 게재되어 있는 내용은 최신판과 약간 차이가 있을 수 있으므로 영문목차를 함께 참조하여 주시기 바랍니다. 기타 자세한 사항은 문의 바랍니다.

Title:
Thermoelectric Energy Harvesting and Sensing 2020-2030
New principles, new applications, forecasts.

"A multi-billion dollar systems market for thermoelectric harvesting and sensing is emerging."

The new IDTechEx report, "Thermoelectric Energy Harvesting and Sensing 2020-2030" assesses a multi-billion dollar opportunity from major unsolved problems. The future is electric but 60% of the world's primary energy is wasted as heat. Turn that heat into electricity and the benefits are huge. The Internet of Things is nowhere near to reaching the predicted billions of nodes yearly monitoring everything from oil spills to forest fires and earthquakes. This is because batteries cannot be changed or charged in such deployments so you need to make the electricity at the node, typically in the dark where photovoltaics is not an option. Consequently, thermoelectric harvesting from heat differences is often a candidate. Another problem is smart watches expiring in hours. They have inadequate area for solar alone so how about electricity from heat now there is progress in viably exploiting small temperature differences? "

So far, thermoelectric energy generators TEGs are a small business because of cost and poor performance. Thermoelectrics is a poor third in energy harvester sales, well behind electrodynamics (wind and water turbines etc) and photovoltaics on everything. Nonetheless, 2019 was a bumper year for TEG research and new approaches to thermoelectrics and to thermoelectric sensing became active areas. For example, quantum and spin thermoelectrics now promise ten times the efficiency.

Yes, progress is poor in finding more efficient materials for conventional thermoelectrics at the temperatures where almost all the demand lies - up to 300C. However, taking a cue from other forms of energy harvesting, less efficient options with much more acceptable formats and costs are looking good. Welcome to wide area, stretchable, and biocompatible TEGs employing polymers and composites.

The Executive Summary and Conclusions of the report are sufficient for those in a hurry. Its new infograms explain the huge opportunities, impediments, patents, new materials, inventions and new approaches. There are ten year forecasts for different applications of thermoelectrics and wearables. The Introduction explains the basics, traditional manufacturing and formats and the trends. Go to Chapter 3 for New Principles: Quantum Dot and Spin-Driven. Chapter 4 closely examines Low Power: Flexible and Stretchable Thermoelectrics - the technology, new inventions, healthcare and wearables opportunities. Here is good news about viably harvesting electricity from small temperature differences with many examples. High power thermoelectric harvesting is very rare but Chapter 5 Status of High Power TEG examines latest approaches.

Chapter 6 assesses new manufacturing technologies, including the new polymer formulations, CNT, printing. The new Applications of Chapter 7 include building facades, roads, implants, wearables, internet of things, radiative cooling at night, gas turbines and military. The New Materials analysed in Chapter 8 include many polymers, silicon including within silicon chips and new heat sources. Chapter 9 Thermoelectric Sensing deals with using the Seebeck effect to do the actual sensing, a smaller market but now a vibrant one with fabrics, and flow, radiation and gas sensing involved. Indeed, the thermoelectric self-powered sensor using both effects is described. Finally Chapter 10 profiles relevant activity of 32 organisations.

Will market growth in thermoelectric energy harvesting primarily come from low or high power opportunities? Which researchers and manufacturers have the products with the most potential? Forecasts by industry? Significance of latest advances? Most active countries? It is all here in the new IDTechEx report, "Thermoelectric Energy Harvesting and Sensing 2020-2030".

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY AND CONCLUSIONS

  • 1.1. Purpose of this report
  • 1.2. Definition and status
    • 1.2.1. Definition
    • 1.2.2. Primary conclusions
    • 1.2.3. Patent analysis
  • 1.3. Impediments by power level
  • 1.4. New focus
    • 1.4.1. Overview
    • 1.4.2. Unsatisfied needs for low power TEGs
    • 1.4.3. Unsatisfied needs for high power TEGs
    • 1.4.4. New focus: healthcare
    • 1.4.5. Trend to flexible energy harvesting and sensing
  • 1.5. New models predict higher efficiencies possible: Univ. Houston/ A*STAR Hong Kong
    • 1.5.1. University of Houston
    • 1.5.2. A*STAR Hong Kong
  • 1.6. Market forecasts
    • 1.6.1. Thermoelectric energy harvesting transducers by application 2019-2030 - number million
    • 1.6.2. Thermoelectric energy harvesting transducers by application 2019-2030 - unit value dollars
    • 1.6.3. Thermoelectric energy harvesting transducers by application 2019-2030 - dollars million
    • 1.6.4. Thermoelectric sensors and actuators 2020-2030 $ billion
    • 1.6.5. Wearable technology forecast

2. INTRODUCTION

  • 2.1. The Seebeck and Peltier effects
  • 2.2. Manufacturing of thermoelectric generators
    • 2.2.1. Construction and materials
    • 2.2.2. Design considerations
  • 2.3. Thin film thermoelectric generators
  • 2.4. Materials: chasing high ZT

3. NEW PRINCIPLES: QUANTUM DOT AND SPIN-DRIVEN

  • 3.1. Quantum dot
  • 3.2. Spin driven thermoelectric effect STE

4. LOW POWER: LOW DELTA T AND FLEXIBLE/ STRETCHABLE

  • 4.1. Powering sensors with only a few degrees temperature difference
    • 4.1.1. Japanese universities
    • 4.1.2. Chinese universities
    • 4.1.3. PNNL USA
    • 4.1.4. GeorgiaTech USA
  • 4.2. Flexible thermoelectric harvesters
    • 4.2.1. Overview
    • 4.2.2. Mxenes, CNT
    • 4.2.3. Stretchable thermoelectric coils: miniature flexible wearable devices
  • 4.3. Healthcare
    • 4.3.1. Overview
    • 4.3.2. University Massachusetts Amherst

5. STATUS OF HIGH POWER TEG

  • 5.1. Overview
  • 5.2. RGS Development, TEGnology, Komatsu KELK
  • 5.3. Gentherm, Marlow
  • 5.4. Alphabet Energy's E1 thermoelectric generator

6. NEW MANUFACTURING TECHNOLOGIES

  • 6.1. Conventional beginnings TECA, former companies Tellurex, Micropelt
  • 6.2. Manufacturing of flexible thermoelectric generators: Tyndall, AIST, ETH
  • 6.3. Enhancing ZT of flexible TEGs
  • 6.4. AIST flexible technology
  • 6.5. Printed thermoelectrics - Otego
  • 6.6. Enhancement by pressure: Osaka University

7. NEW APPLICATIONS

  • 7.1. Building façades
  • 7.2. Implantable thermoelectrics
  • 7.3. Thermoelectrics in consumer electronics/wearables
    • 7.3.1. Overview
    • 7.3.2. Matrix PowerWatch
    • 7.3.3. Matrix March 2019
    • 7.3.4. Powering other wearables next
    • 7.3.5. Academic research on wearables
  • 7.4. Powering IoT
  • 7.5. Waste heat
    • 7.5.1. Mitsubishi Materials
    • 7.5.2. Paderborn University
  • 7.6. Radiative cooling at night
  • 7.7. Military and aerospace
    • 7.7.1. Military AETEG
    • 7.7.2. Bi-functional generator/ pre-cooler: DC power from aircraft bleed air
    • 7.7.3. Military waste heat
    • 7.7.4. Gas turbine sensing
  • 7.8. Other examples of thermoelectric progress
    • 7.8.1. Better formats
    • 7.8.2. Thermite powered thermoelectrics
  • 7.9. Major structures
    • 7.9.1. Smart roads
    • 7.9.2. Radiative cooling outdoors: Univs Colorado, Wyoming, California

8. NEW MATERIALS

  • 8.1. Organics
    • 8.1.1. Bacterial nanocellulose
    • 8.1.2. Fluoro-elastomer rubbers
    • 8.1.3. PEDOT:PSS as a thermoelectric
  • 8.2. Integration into silicon chips
    • 8.2.1. Alloy films
    • 8.2.2. Nanoblades
  • 8.3. Other inorganics
  • 8.4. e-textile integration
  • 8.5. New materials for high temperatures

9. THERMOELECTRIC SENSING

  • 9.1. Overview
  • 9.2. MEMS thermoelectric infrared sensors
  • 9.3. Micro-thermoelectric gas sensor: hydrogen and atomic oxygen
  • 9.4. Transfer standards
  • 9.5. Fabric sensors
  • 9.6. Self-powered wireless sensor
  • 9.7. Ultrasensitive heat sensor for healthcare
  • 9.8. Three parameters from one sensor

10. ORGANISATION PROFILES

  • 10.1. AIST Japan
  • 10.2. Alphabet Energy, Inc. USA
  • 10.3. Applied Thermoelectric Solutions USA
  • 10.4. Citizen Watch Japan
  • 10.5. e-ThermoGentech Japan
  • 10.6. EVERREDtronics Ltd China
  • 10.7. Ferrotec Corporation USA
  • 10.8. Fujifilm Japan
  • 10.9. Furukawa Japan
  • 10.10. Gentherm USA
  • 10.11. greenTEG Switzerland
  • 10.12. Hi Z Technology, Inc USA
  • 10.13. KELK Ltd
  • 10.14. Kyocera Japan
  • 10.15. Laird Technologies USA
  • 10.16. Lintec Japan
  • 10.17. Mahle O-Flexx Germany
  • 10.18. Marlow Industries USA
  • 10.19. mc10
  • 10.20. Murata Japan
  • 10.21. Novus USA
  • 10.22. OTEGO Germany
  • 10.23. Panasonic Japan
  • 10.24. Perpetua
  • 10.25. PL Engineering Russia
  • 10.26. RGS Development Netherlands
  • 10.27. RMT Russia
  • 10.28. Romny Scientific USA
  • 10.29. Showa Denko, Showa Holdings Japan
  • 10.30. TECTEG Mfr Canada
  • 10.31. TES New Energy Japan
  • 10.32. Thermolife Energy Corporation
  • 10.33. Toshiba Japan
  • 10.34. Yamaha
  • 10.35. Yasanuga Japan
Back to Top
전화 문의
F A Q