Global Information
회사소개 | 문의 | 비교리스트

세계의 다기능 복합재료 시장 : 기술, 기업, 성장 예측(2019-2029년)

Multifunctional Composites 2019-2029: Technology, Players, Market Forecasts

리서치사 IDTechEx Ltd.
발행일 2019년 04월 상품 코드 716063
페이지 정보 영문 201 Pages
가격
US $ 5,995 ₩ 7,208,000 PDF Download (1-5 Users) help
5명까지 액세스 권한이 부여되는 라이선스입니다. 텍스트 등의 PDF 내용 편집은 불가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다.
US $ 6,495 ₩ 7,810,000 PDF Download (1-5 Users) and 1 Hardcopy help
5명까지 액세스 권한이 부여되는 라이선스입니다. 텍스트 등의 PDF 내용 편집은 불가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다. 컬러 제본(컬러 하드카피본) 1부가 포함됩니다. FedEx를 이용하여 영국에서 3영업일 이내에 발송합니다.
US $ 8,495 ₩ 10,215,000 PDF Download (6-10 Users) help
10명까지 액세스 권한이 부여되는 라이선스입니다. 텍스트 등의 PDF 내용 편집은 불가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다.
US $ 8,995 ₩ 10,816,000 PDF Download (6-10 Users) and 1 Hardcopy help
10명까지 액세스 권한이 부여되는 라이선스입니다. 텍스트 등의 PDF 내용 편집은 불가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다. 컬러 제본(컬러 하드카피본) 1부가 포함됩니다. FedEx를 이용하여 영국에서 3영업일 이내에 발송합니다.


세계의 다기능 복합재료 시장 : 기술, 기업, 성장 예측(2019-2029년) Multifunctional Composites 2019-2029: Technology, Players, Market Forecasts
발행일 : 2019년 04월 페이지 정보 : 영문 201 Pages

본 상품은 영문 자료로 한글과 영문목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문목차를 참고해주시기 바랍니다.

세계의 다기능 복합재료(Multifunctional Composites) 시장을 조사했으며, 시장 정의와 개요, 재료 구분별 기술 개발 및 혁신 동향, 주요 기업과 활동, 각종 용도와 응용 제품, 10개년 시장 성장 예측, 주요 기업 개요 등의 정보를 정리하여 전해드립니다.

제1장 주요 요약

제2장 서론 : 섬유 강화 폴리머

  • 서론 : 복합재료
  • 복합재료의 편성
  • FRP 부품 제조 단계별 혁신
  • 주요 CFR 기업
  • 세계의 탄소섬유 시장 예측

제3장 기능성 재료 편성 : 나노카본과 금속화

  • FRP 첨가제로서 나노카본의 역할
  • 나노카본 재료의 복합재료 편성 루트
  • 나노카본 첨가제의 각종 종류 : 탄소나노튜브(CNT)
  • CNT 시장과 주요 기업
  • CNT 시트 동향과 기업
  • 나노카본 첨가제의 각종 종류 : CNT 연사
  • 사이징제로서의 나노카본
  • 나노카본 첨가제의 각종 종류 : 그래핀
  • 나노카본 첨가제의 각종 종류 : GPL(Graphene platelets)
  • 주요 기업
  • 서론 : 폴리머 복합재료에 금속 편성
  • 임베디드 금속 포일 및 메쉬
  • 복합재료용 금속화 섬유 및 직물 : 구리
  • 복합재료용 금속화 섬유 및 직물 : 니켈
  • 금속 나노와이어의 편성

제4장 전도성과 열전도율 강화

  • 전도성 강화 주요 촉진요인
  • 전도성 복합재료의 루트
  • 복합재료 정전기 방전을 위한 도입 기술
  • 방뢰
  • 전자파 차단(EMI shielding)
  • 전도성 강화를 위한 나노카본 : CNT
  • 전도성 강화를 위한 나노카본 : 그래핀
  • 열전도율 강화 용도 : 개요
  • 복합재료에 의한 제빙
  • 전기 가열식 제빙
  • 전자 기계식 제빙
  • 열기계식 제빙
  • 시장 예측 : 제빙 복합재료 등

제5장 임베디드 센서

  • 복합재료 SHM(structural health monitoring )용 임베디드 센서
  • 광섬유 센서(FOS) 비교
  • FBG 센서의 발전
  • 분산형 FOS의 발전
  • 압전 임베디드 웨이퍼와 나노섬유
  • 비파괴검사(NDT)용 임베디드 압전 트랜스듀서
  • 지속적 진공 모니터링 : 항공우주 부문 SHM 용
  • SHM용 프린티드 센서
  • 임베디드 SHM용 나노카본 센서
  • 항공우주 부문과 SHM
  • 풍력터빈 블레이드와 SHM
  • 석유 및 가스 부문용 복합재료 센서
  • 특허 분석
  • 시장 예측 등

제6장 에너지 저장 및 수확

  • 임베디드 에너지 저장과 다기능 복합재료
  • 서론 : 구조적 에너지 저장
  • 리튬이온 임베디드 배터리와 복합재료
  • Formula E에서 배우는 교훈
  • 박막전지의 활용
  • Stanford University : MES 복합재료
  • 전극으로서 이용 가능한 탄소섬유
  • 구조용 복합재료 배터리의 발전과 현황
  • Chalmers University, KTH : 코팅 섬유
  • 구조용 복합재료 슈퍼커패시터 : 주요 컴포넌트
  • Imperial College London : 탄소 에어로젤(carbon aerogels)
  • Lamborghini Terzo Millennio : MIT research
  • BAE Systems : 복합재료 슈퍼커패시터 및 배터리
  • IMDEA : 구조용 EDLC
  • 임베디드 에너지 저장 : 결론
  • 에너지수확기술 : 서론
  • 솔라 스킨
  • 임베디드 압전 섬유
  • 기타 임베디드 수확기 등

제7장 적응형 반응 메커니즘

  • 서론
  • 용도와 과제
  • 가변형 날개(Morphing wings) 타임라인
  • 압전 액추에이터 재료
  • 형상기억합금
  • 전기 활성 폴리머 복합재료
  • 자외선에 대한 반응
  • Bend-Twist coupling

제8장 자가치유 복합재료(Self-healing Composites)

  • 복합재료 부품 루트
  • 고속 중합에 의한 자가치유
  • 가역성 가교제에 의한 자가치유성 등

제9장 데이터 및 전력 전송

  • 서론
  • 표면파 이용
  • 코팅 탄소섬유
  • 수평 정렬 CNT
  • 임베디드 무선 센서 네트워크 등

제10장 복합재료 부품의 완전통합형 3D 일렉트로닉스 시스템

  • IME란?
  • IME : 회로 제조의 3D 친화적 프로세스
  • 3D 프린팅 : 기능성 섬유
  • 3D 프린팅 : 복합재료, 임베디드 센서
  • 3D 프린팅 : 구조용 일렉트로닉스 등

제11장 기업 개요

  • Acellent Technologies
  • Continuous Composites
  • DexMat
  • Imperial College Composites Centre
  • Inca Fiber
  • N12 Technologies
  • Tortech Nano Fiber
LSH 18.10.18

Fiber reinforced polymers have gained market maturity in numerous sectors and are forecast to maintain a consistent growth in both the medium and long term. This uptake is driven by their favourable blend of properties most notably being the lightweight mechanical performance.

The key next iteration for these products will be the concept of multifunctionality. This is the idea of making a structural part carry out additional role(s) beyond their current primary mechanical task. The added functionality can be diverse, and the emerging applications be outlined below.

This technical research was carried out through extensive primary research from IDTechEx analysts. For commercial or near-commercial technologies granular 10-year market forecasts are provided and company profiles of key emerging players are provided alongside this report. The overall market for smart composite material with embedded functionality is expected to exceed 5 kilotons by 2029.

image1

Enhanced thermal and electrical conductivity is already commercially employed and is gaining more traction. This report explores the many routes into enhanced conductivity most notably through the inclusion of nanocarbon (graphene and CNTs) or metallic additives, coatings, mats, and wires. The main drivers for thermal conductivity are de-icing, heated tooling, and thermal dissipation. Electrical conductivity is again driven by the transportation sector with lightning strike protection, EMI shielding, electrostatic coating, and complete circuitry the main applications.

Embedded sensors can provide real-time part monitoring both in-production and in-operation. Structural health monitoring is challenging for composite parts with the aim to detect delamination, cracks or any other sign of mechanical fatigue. There are numerous competitive technologies in this field including a range of fiber optic sensors (FOS), piezoelectric wafers, and more. The obvious application is again in aerospace and defense but the role in Oil & Gas, overwrapped pressure vessels, and more should not be overlooked and are outlined in this report.

Energy harvesting and storage is a key area in an increasingly electrified transport sector. There has been minimal success in truly embedding energy harvesting devices with the continued emergence of solar skins deployed on the surface. However, energy storage is an important multifunctional development. IDTechEx believe this will go through two stages: the first-stage is embedding conventional Li-ion batteries within the composite laminar structures and the final goal is to have the composite act as a battery or supercapacitor itself. It is this second stage that has coined the termed "massless energy" where there are the greatest long-term opportunities.

Data and power transmission carried out by the composite part could remove the need for wires or signals and provide both robust and lightweight solutions. There are numerous attempts to achieve this utilising very diverse technology approaches ranging from the utilisation of electrically insulative coatings on carbon fibers to propagating surface waves between different dielectric layers.

Adaptive response mechanisms with embedded actuators is not a new concept with the idea or morphing or shape-changing wings over a century old. However, new innovations and deployment tests in both active and passive actuation makes this idea all the closer. Self-healing does not enable any electric functionality but is highly explored within the research community and sought after by end-users. Autonomic vs Nonautonomic and extrinsic vs intrinsic strategies and advancements for fiber reinforced polymers are outlined and analysed.

Fully embedded circuitry and electronic componentry can be perceived as a future end-goal for this field. This report looks at the different routes into enabling this utilising both in-mold electronics and 3D printing.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. EXECUTIVE SUMMARY

  • 1.1. Introduction to multifunctional polymer composites
  • 1.2. Status of multifunctional composites by application
  • 1.3. What is structural electronics?
  • 1.4. Multifunctional composite forecasts
  • 1.5. What is the end goal?

2. INTRODUCTION TO FIBER REINFORCED POLYMERS

  • 2.1. Introduction to composites
  • 2.2. Composite combinations
  • 2.3. Innovations at each step to manufacture an FRP part
  • 2.4. Main CFRP players
  • 2.5. Global forecast for carbon fiber

3. INCORPORATION OF FUNCTIONAL MATERIALS: NANOCARBON AND METALLIZATION

  • 3.1. Role of nanocarbon as additives to FRPs
  • 3.2. Routes to incorporating nanocarbon material into composites
  • 3.3. Types of nanocarbon additives: CNT
  • 3.4. CNT market and main players
  • 3.5. Trends and players for CNT sheets
  • 3.6. Types of nanocarbon additives: CNT yarns
  • 3.7. Nanocarbon as fiber sizings
  • 3.8. Types of nanocarbon additives: Graphene
  • 3.9. Types of nanocarbon additives: Graphene platelets
  • 3.10. Graphene main players
  • 3.11. Introduction to incorporating metal to polymer composites
  • 3.12. Embedded metal foils and meshes
  • 3.13. Metallized fiber and fabrics for composites - copper
  • 3.14. Metallized fiber and fabrics for composites - nickel
  • 3.15. Incorporation of metal nanowires

4. ENHANCED ELECTRICAL AND THERMAL CONDUCTIVITY

  • 4.1. Key drivers for electrical conductivity enhancements
  • 4.2. Routes to electrically conductive composites
  • 4.3. Technology adoption for electrostatic discharge of composites
  • 4.4. Lightning Strike Protection
  • 4.5. EMI shielding
  • 4.6. Nanocarbon for enhanced electrical conductivity - CNTs
  • 4.7. Nanocarbon for enhanced electrical conductivity - Graphene
  • 4.8. Enhanced thermal conductivity - application overview
  • 4.9. Composite de-icing - introduction
  • 4.10. Composite de-icing strategies - overview
  • 4.11. Composite de-icing strategies - comparison
  • 4.12. Electrothermal de-icing - fixed wing aircraft
  • 4.13. Electrothermal de-icing - helicopters
  • 4.14. Electrothermal de-icing - Nanocarbon patents
  • 4.15. Electrothermal de-icing - CNT research
  • 4.16. Electrothermal de-icing - Graphene research
  • 4.17. Electromechanical expulsion - de-icing composites
  • 4.18. Thermomechanical expulsion - de-icing composites
  • 4.19. EU projects related to De-Icing
  • 4.20. De-icing wind turbines
  • 4.21. Composite material with embedded de-icing technology market forecast
  • 4.22. Heated composites tooling
  • 4.23. Conductive composites for thermal dissipation
  • 4.24. Pitch-based carbon fiber for higher thermal conductivity
  • 4.25. Nanocomposites for enhanced thermal conductivity - CNTs
  • 4.26. Nanocomposites for enhanced thermal conductivity - graphene

5. EMBEDDED SENSORS

  • 5.1. Embedded sensors for structural health monitoring of composites - introduction
  • 5.2. Embedded sensors for structural health monitoring of composites - types
  • 5.3. Embedded sensors for structural health monitoring of composites - methods
  • 5.4. Comparison of fiber optic sensors (FOS) for composite SHM
  • 5.5. Advancements in FBG sensors for composites
  • 5.6. Coating FBG for inclusion in a composite part
  • 5.7. Advancements in distributed FOS
  • 5.8. Interrogator for FOS in composite SHM
  • 5.9. Piezoelectric embedded wafers and nano-fibres
  • 5.10. Embedded piezoelectric transducers for NDT
  • 5.11. Continuous Vacuum Monitoring for aerospace SHM
  • 5.12. Printed sensors for SHM
  • 5.13. Nanocarbon Sensors for embedded SHM
  • 5.14. Utilising the structural fibers for sensing
  • 5.15. Aerospace incorporation for SHM
  • 5.16. SHM for wind turbine blades
  • 5.17. Composite sensors for the oil & gas sector
  • 5.18. Embedding sensors in composite overwrapped pressure vessels
  • 5.19. Sensing infusion and curing in composite manufacturing
  • 5.20. Patent Analysis
  • 5.21. Market Forecast

6. ENERGY STORAGE AND HARVESTING

  • 6.1. Embedded energy storage for multifunctional composites
  • 6.2. Introduction to structural energy storage
  • 6.3. Composites with Li-ion embedded batteries
  • 6.4. Lessons from Formula E
  • 6.5. Utilisation of thin film batteries for embedded energy storage
  • 6.6. Stanford University - MES composite
  • 6.7. Carbon fiber is useable as an electrode
  • 6.8. Evolution and status of structural composite batteries
  • 6.9. Chalmers University and KTH - coated fibers
  • 6.10. Structural composite supercapacitor - main components
  • 6.11. Electrolyte options for supercapacitors
  • 6.12. Imperial College London - carbon aerogels
  • 6.13. Lamborghini Terzo Millennio - MIT research
  • 6.14. BAE Systems - composite supercapacitor and batteries
  • 6.15. Significant technology demonstrators
  • 6.16. IMDEA - Structural EDLC
  • 6.17. Metal oxide nanowires for structural supercapacitors
  • 6.18. Structural composite hybrid energy storage
  • 6.19. Key challenges still to be tackled
  • 6.20. Embedding energy storage conclusions
  • 6.21. Energy harvesting introduction
  • 6.22. Solar Skins
  • 6.23. Embedded Piezoelectric fibers
  • 6.24. Other embedded harvesters.

7. ADAPTIVE RESPONSE MECHANISMS

  • 7.1. Introduction
  • 7.2. Applications and Challenges
  • 7.3. Morphing wings timeline
  • 7.4. Introduction to modes of active morphing
  • 7.5. Piezoelectric Actuator Materials
  • 7.6. Piezoelectric actuators for morphing composites
  • 7.7. Shape Memory Alloys
  • 7.8. Electroactive polymer composites
  • 7.9. Flexsys - adaptive compliant wing
  • 7.10. Active morphing airfoil
  • 7.11. Active winglets
  • 7.12. Corrugated Morphing Skins
  • 7.13. Passive Morphing
  • 7.14. Response to UV-light
  • 7.15. Bend-Twist coupling

8. SELF-HEALING COMPOSITES

  • 8.1. Routes to "self-healing" composite parts
  • 8.2. Self-healing through rapid polymerisation
  • 8.3. Self-healing through reversible crosslinkers

9. DATA AND POWER TRANSMISSION

  • 9.1. Data and power transmission - introduction
  • 9.2. Utilising surface waves for internal data transmission
  • 9.3. Coated carbon fibers for data transmission
  • 9.4. Horizontally aligned CNTs for data transmission
  • 9.5. Embedded wireless sensor networks

10. FULLY-INTEGRATED 3D ELECTRONIC SYSTEMS IN COMPOSITE PARTS

  • 10.1. What is the end goal?
  • 10.2. What is in-mold electronics (IME)?
  • 10.3. IME: 3D friendly process for circuit making
  • 10.4. Molding electronics in 3D shaped composites
  • 10.5. 3D Printing of functional fibers
  • 10.6. 3D Printing of composites with embedded sensors - generative design and SHM
  • 10.7. 3D Printing of Structural Electronics

11. COMPANY PROFILES

  • 11.1. Acellent Technologies
  • 11.2. Bekaert
  • 11.3. Continuous Composites
  • 11.4. DexMat
  • 11.5. Imperial College Composites Centre
  • 11.6. Inca Fiber
  • 11.7. N12 Technologies
  • 11.8. Tortech Nano Fiber
  • 11.9. TWI
  • 11.10. Villinger R&D
Back to Top
전화 문의
F A Q