Global Information
회사소개 | 문의 | 위시리스트

스트럭쳐 일렉트로닉스 및 일렉트릭스로서의 스마트 재료(2019-2029년)

Smart Materials as Structural Electronics and Electrics 2019-2029

리서치사 IDTechEx Ltd.
발행일 2018년 11월 상품 코드 721790
페이지 정보 영문 250 Slides
가격
US $ 5,495 ₩ 6,729,000 PDF Download (1-5 Users) help
5명까지 액세스 권한이 부여되는 라이선스입니다. 텍스트 등의 PDF 내용 편집은 불가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다.
US $ 5,995 ₩ 7,342,000 PDF Download (1-5 Users) and 1 Hardcopy help
5명까지 액세스 권한이 부여되는 라이선스입니다. 텍스트 등의 PDF 내용 편집은 불가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다. 컬러 제본(컬러 하드카피본) 1부가 포함됩니다. FedEx를 이용하여 영국에서 3영업일 이내에 발송합니다.
US $ 7,995 ₩ 9,791,000 PDF Download (6-10 Users) help
10명까지 액세스 권한이 부여되는 라이선스입니다. 텍스트 등의 PDF 내용 편집은 불가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다.
US $ 8,495 ₩ 10,403,000 PDF Download (6-10 Users) and 1 Hardcopy help
10명까지 액세스 권한이 부여되는 라이선스입니다. 텍스트 등의 PDF 내용 편집은 불가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다. 컬러 제본(컬러 하드카피본) 1부가 포함됩니다. FedEx를 이용하여 영국에서 3영업일 이내에 발송합니다.


스트럭쳐 일렉트로닉스 및 일렉트릭스로서의 스마트 재료(2019-2029년) Smart Materials as Structural Electronics and Electrics 2019-2029
발행일 : 2018년 11월 페이지 정보 : 영문 250 Slides

스트럭쳐 일렉트로닉스 및 일렉트릭스로서의 스마트 재료(Smart Materials) 시장을 조사했으며, 시장 정의와 개요, 스트럭쳐 일렉트로닉스의 발전 역사와 향후 전망, 스마트 재료의 기능·형태 요건, 주요 제조 기술 개요 및 특징, 기술 개발 동향, 주요 제품 개요, 기업·연구기관·대학의 각종 활동 등의 정보를 정리하여 전해드립니다.

제1장 주요 요약 및 결론

  • 정의
  • 본 보고서의 목적
  • 중요성
  • 사례
  • 구현 기술
  • 해결해야 할 과제
  • 시장 규모
  • 신제품 및 기술 로드맵

제2장 서론 : 역사, 정의, 능력, 전망

  • 스트럭쳐 일렉트로닉스의 발전 역사

제3장 요구되는 스마트 재료의 기능 및 형태

  • 개요
  • 기능 및 형태의 합리성
  • 기능 및 형태 : 현재의 선택

제4장 제조 기술 : 리드하는 IME(IN MOLD ELECTRONICS)

  • IME란?
  • IME 프로세스란?
  • IME 전도성 잉크의 요건
  • 재료 포트폴리오의 다양성
  • 기능성 재료의 폭 확대
  • 응용 및 상업화 진전과 프로토타입 : 개요
  • IME 기능성 재료 공급업체
  • TactoTek의 접근 : IME SE의 리더

제5장 기타 제조 기술 : 컨포멀 프린팅, MID, 3DPE, 스프레이 등

  • 3D 표면에 대한 다이렉트 프린트
    • Optomec Aerosol : 시장 리더
    • 컨포멀 프린팅의 사례 :
      • Harvard University
      • University of Illinois at Urbana Champaign
      • Optomec
    • Pulse Electronics
    • GKN, Boeing : 787용 히터
    • Nano Dimension(이스라엘), Ceradrop(프랑스)
    • Neotech, Novacentrix, nScrypt
  • 성형회로부품(MID) : LDS
    • 개요
    • MID, LDS : LPKF, Festo
    • IME LDS의 각종 용도
    • MID - LPKF, Molex의 사례
    • MID - TRW의 사례
  • 프린티드 PCB
    • Ag 나노입자 잉크를 이용한 고속 PCB 프로토타이핑을 향한 진보
    • 프린티드 PCB : 신규 진출기업
  • 전사 : 테스트 스트립 인쇄와 라미네이션
  • 3D 프린티드 일렉트로닉스
    • 개요
    • Toyota
    • Aconity3D
    • Functionalize
    • Harvard University
    • Princeton University
    • Nascent Objects
    • AgIC
    • Voltera
    • Cartesian
    • Botfactory
    • Voxel8
    • 제조 옵션 비교

제6장 대규모 SE : 자동차, 항공기, 선박, 건조물, 도로

  • 개요
  • 자동차
    • 내하중 슈퍼커패시터가 강철 차체를 대체
    • Imperial College London
    • Queensland University of Technology
    • Trinity College Dublin
    • Vanderbilt University
    • ZapGo
  • PV 차체
    • 차체용 첨단 박막 PV
    • Sion Motors
    • IFEVS
    • EIEV
  • 발전 타이어
    • Triboelectric Univ
    • Univ. Bolton
  • 항공기
    • 솔라 항공기 사례 : Sunstar
    • Sunseeker Duo
    • Solar Impulse
    • SolarShip
    • American Semiconductor : 스마트 기체 및 날개
    • Boeing 787 Dreamliner
    • Airbus : 3D 프린팅 비행기
    • Nervous system : NASA
    • Morphing wing : FlexFoil, NASA 등
  • 보트 및 선박에 의한 대면적 파력발전
    • EIEV선
    • 예 : Okeanos Pearl
    • PlanetSolar, SolarLab
    • EIEV 조사선 등
  • 빌딩 및 건조물
    • 액티브 스마트 유리
    • Samsung의 OLE 윈도우
    • 건물 일체형 PV(BIPV)
    • 태양전지 타일
    • 태양열 온실
  • 스마트 브릿지 : 사례
  • 스마트 도로
    • 스마트 로드의 잠재적 기술
    • 현재의 도로 연구 프로젝트 : 압전 모션 하베스팅
    • 태양열 도로 : Missouri Department of Transportation
    • 태양열 도로
    • Bouygues Colas
    • Pavenergy
    • TNO SolaRoad 등
LSH 18.10.25

이 페이지에 게재되어 있는 내용은 최신판과 약간 차이가 있을 수 있으므로 영문목차를 함께 참조하여 주시기 바랍니다. 기타 자세한 사항은 문의 바랍니다.

The new IDTechEx report, "Smart Materials as Structural Electronics and Electrics 2019-2029" is alone in giving the big picture about a new industry transforming the materials industry and creating many new billion dollar businesses making things previously impossible to make such as electric cars, boats and aircraft that never recharge and windows that make electricity and use it to darken according to need. Encompassing making dumb steel, plastic, glass and concrete smart, it reveals many gaps in the market, role models of success and future roadmaps for the technology. We even give a technical and market view of twenty years ahead.

The executive summary and conclusions has many new infographics and graphs concisely presenting the findings of the PhD level IDTechEx analysts that travel intensively and otherwise research this emerging topic. The introduction explains the historical evolution of this approach and gives a taster of the melodrama to come. For example, darkening your window in an aircraft is with us now but a complete airframe nervous system and more are being trialled. The following chapters 3.4 and 5 give a deep understanding of the main technologies and materials involved, now you can touch the interior trim of your car to adjust your seat and solar wings of a huge drone keep it in the upper atmosphere for months, soon years. From in mold electronics to 3D printed electronics what materials and processes are used, how will they improve and what materials will be needed? What new products are becoming possible? For example, the term massless power has been coined by making a car body into a load-bearing supercapacitor and/or photovoltaics at a lighter weight than the dumb steel that is replaced. Such technologies will create multi-billion dollar businesses but bankrupt laggards. Chapter 6 closely examines what will make the most money - structural electronics for large things - road vehicles, trains, boats, ships, aircraft, bridges buildings, roads and more. What new materials and structures arrive when. Gaps in the market? Current examples? Good and bad research programs? All is assessed.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. EXECUTIVE SUMMARY AND CONCLUSIONS

  • 1.1. Definition
  • 1.2. Purpose of this report
  • 1.3. Significance
  • 1.4. Examples
    • 1.4.1. Reduce system weight, size, cost and improve functionality, reliability, life.
    • 1.4.2. Make new things possible
  • 1.5. Wide variety of enabling technologies
    • 1.5.1. In use
    • 1.5.2. Working well in laboratory and trials
    • 1.5.3. Later
  • 1.6. Much can be done with metal patterning on appropriate substrates
  • 1.7. Examples of organisations making the most commercially significant advances in structural electronics and electrics
  • 1.8. Challenges
  • 1.9. Market sizes
    • 1.9.1. Energy independent electric vehicles 2019-2039, mainly cars
    • 1.9.2. Solar road forecast $ billion
    • 1.9.3. Road sensing, non-solar harvesting, allied harvesting forecast
    • 1.9.4. Smart glass market $ million
    • 1.9.5. RFID sensor tags and systems $ million
  • 1.10. New product and technology roadmap 2019-2039

2. INTRODUCTION: HISTORY, DEFINITIONS, CAPABILITIES, DREAMS

  • 2.1. Progression to structural electronics
    • 2.1.1. Sequence
    • 2.1.2. 1900-1950: Components-in-a-box
    • 2.1.3. 1950-2016: PCBs in a box
    • 2.1.4. PCBs: multilayer, vias as heat pipes, load bearing
    • 2.1.5. Components and circuits shaped to fit into gaps: BAE Systems, Lola-Drayson, Within Technologies
    • 2.1.6. Examples of true structural electronics: Plastic Electronic, Smart Plastics Network
    • 2.1.7. Examples: Ford and T-ink
    • 2.1.8. Examples: Molex, VTT, Harvard University
    • 2.1.9. Examples: Hybrid structural-conventional: University of Texas at El Paso
    • 2.1.10. See the forest

3. FUNCTIONS AND FORMATS OF REQUIRED SMART MATERIALS

  • 3.1. Overview
    • 3.1.1. Huge materials opportunities
    • 3.1.2. Complex, evolving requirements, high added value
  • 3.2. Functions and formats rationale
  • 3.3. Functions and formats: current choices

4. MANUFACTURING: IN MOLD ELECTRONICS IME IN THE LEAD

  • 4.1. What is in-mould electronics?
    • 4.1.1. IME products have exceptional environmental tolerance
    • 4.1.2. Aircraft aerofoil flap with integral heater for de-icing using in-mold electronics
    • 4.1.3. IME: 3D friendly process for circuit making
    • 4.1.4. Related processes comparison IMD, IME, MID/LDS
  • 4.2. What is the in-mold electronic process?
    • 4.2.1. Comments on requirements
  • 4.3. Conductive ink requirements for IME
    • 4.3.1. New ink requirements: stretchability
    • 4.3.2. New ink requirements: portfolio approach
  • 4.4. Diversity of material portfolio
    • 4.4.1. New ink requirements: surviving heat stress
    • 4.4.2. New ink requirements: stability
    • 4.4.3. All materials in the stack must be reliable
    • 4.4.4. Design: general observations
  • 4.5. Expanding range of functional materials
    • 4.5.1. Stretchable carbon nanotube transparent conducting films
    • 4.5.2. Beyond IME conductive inks: adhesives
    • 4.5.3. Beyond conductive inks: thermoformed polymeric actuator?
  • 4.6. Overview of applications, commercialization progress, and prototypes
    • 4.6.1. In-mold electronic application: automotive
    • 4.6.2. White goods, medical and industrial control (HMI)
    • 4.6.3. Is IME commercial yet?
    • 4.6.4. First (ALMOST) success story: overhead console in cars
    • 4.6.5. Commercial products: wearable technology
    • 4.6.6. Automotive: direct heating of headlamp plastic covers
    • 4.6.7. Automotive: human machine interfaces
    • 4.6.8. White goods: human machine interfaces
    • 4.6.9. Mobile phone storage
  • 4.7. IME functional material suppliers
    • 4.7.1. Emerging value chain
    • 4.7.2. Stretchable conductive ink suppliers multiply
    • 4.7.3. IME conductive ink suppliers multiply
    • 4.7.4. IME with functional films made with evaporated lines
  • 4.8. Approach of TactoTek: the IME SE leader
    • 4.8.1. TactoTek Profile

5. OTHER MANUFACTURING: CONFORMAL PRINTING, MID, 3DPE, SPRAYING ETC

  • 5.1. Printing directly on a 3D surface
    • 5.1.1. Optomec Aerosol: market leader
    • 5.1.2. Conformal printing examples: Harvard University, University of Illinois at Urbana Champaign, Optomec
    • 5.1.3. Pulse Electronics
    • 5.1.4. Spraying leading edge 787 heater GKN, Boeing
    • 5.1.5. Nano Dimension Israel, Ceradrop France
    • 5.1.6. Neotech, Novacentrix, nScrypt
  • 5.2. Molded Interconnect Devices: Laser Direct Structuring
    • 5.2.1. Overview
    • 5.2.2. MID and LDS: LPKF, Festo
    • 5.2.3. Applications of laser direct structuring in IME
    • 5.2.4. MID - LPKF and Molex examples
    • 5.2.5. MID - TRW example
  • 5.3. Genuinely Printed PCB
    • 5.3.1. Progress towards rapid PCB prototyping using Ag nanoparticle inks
    • 5.3.2. Printed PCB: Newcomers
  • 5.4. Transfer printing: printing test strips & using lamination to compete with IME
  • 5.5. 3D printed electronics
    • 5.5.1. Overview
    • 5.5.2. Toyota Japan
    • 5.5.3. Aconity3D Germany, USA
    • 5.5.4. Functionalise USA
    • 5.5.5. Harvard University
    • 5.5.6. Princeton University
    • 5.5.7. Nascent Objects
    • 5.5.8. aGic Japan, Voltera Canada
    • 5.5.9. Cartesian USA, Botfactory USA
    • 5.5.10. Voxel8
    • 5.5.11. Manufacturing options compared

6. LARGE SE: VEHICLES, AIRCRAFT, SHIPS, BUILDINGS, ROADS

  • 6.1. Overview
    • 6.1.1. Road vehicles
    • 6.1.2. Solar trains, aircraft
    • 6.1.3. EH transducer principles and materials
    • 6.1.4. Best photovoltaic research-cell efficiencies
    • 6.1.5. Multipurpose vehicle bodywork: Daimler dream
    • 6.1.6. Self Healing
  • 6.2. Vehicles
    • 6.2.1. Load bearing supercapacitors replace steel bodywork
    • 6.2.2. Dream for supercapacitors and their derivatives: other planned benefits
    • 6.2.3. Imperial College London supercapacitor bodywork
    • 6.2.4. Queensland University of Technology Australia, Rice University USA
    • 6.2.5. Trinity College Dublin Ireland
    • 6.2.6. Vanderbilt University USA
    • 6.2.7. ZapGo UK
  • 6.3. Photovoltaic vehicle bodywork
    • 6.3.1. Parameters of 17 types
    • 6.3.2. Advanced thin film PV on car bodywork
    • 6.3.3. Sion Motors Germany, IFEVS Italy EIEV
  • 6.4. Electricity generating tires
    • 6.4.1. Triboelectric Univ Wisconsin Madison
    • 6.4.2. Triboelectric tires low power only? Georgiatech
    • 6.4.3. Dream of piezoelectric tires: Univ. Bolton UK
  • 6.5. Aircraft
    • 6.5.1. Solar aircraft examples: Sunstar
    • 6.5.2. Sunseeker Duo USA
    • 6.5.3. Solar Impulse Switzerland
    • 6.5.4. SolarShip Canada
    • 6.5.5. American Semiconductor: smart fuselage and wings
    • 6.5.6. Boeing 787 Dreamliner tinted windows
    • 6.5.7. Airbus concept 3D printed plane
    • 6.5.8. Nervous system: NASA
    • 6.5.9. Morphing wing: FlexFoil and NASA
    • 6.5.10. Conformal Load-Bearing Antenna Structure CLAS for aircraft
    • 6.5.11. Smart Composite Actuator SCA for aircraft
    • 6.5.12. Slotted Waveguide Antenna Stiffened Structure SWASS for aircraft
    • 6.5.13. Structural health monitoring aircraft NASA
  • 6.6. Boats, ships structural wide area wave power
    • 6.6.1. EIEV ships
    • 6.6.2. Example: 'Okeanos Pearl' New Zealand
    • 6.6.3. PlanetSolar, SolarLab Germany
    • 6.6.4. Research boat EIEV France
    • 6.6.5. IDTechEx concept: 3MW energy independent ship
    • 6.6.6. MW on the sea using flexible triboelectrics
    • 6.6.7. Triboelectric harvesting device timeline 2019-2039 with approximate power
    • 6.6.8. The DEG dream for wave power: Delft University Netherlands SBM Offshore UK
    • 6.6.9. University of Dallas Twistron electrostatic harvester for sails
  • 6.7. Buildings
    • 6.7.1. Buildings have a major impact on city energy consumption
    • 6.7.2. Active smart glass in buildings
    • 6.7.3. Active and passive glass darkening materials
    • 6.7.4. Samsung OLED window
    • 6.7.5. Building integrated photovoltaics BIPV
    • 6.7.6. Solar house tiles with battery
    • 6.7.7. Three in one windows NREL
    • 6.7.8. Building integrated photovoltaic thermal (BIPVT)
    • 6.7.9. Solar greenhouses generate electricity and optimally grow crops UC Santa Cruz
    • 6.7.10. Solar greenhouses: University of Colorado Boulder 2018
    • 6.7.11. Printable solar materials could turn parts of a house into solar panels
  • 6.8. Smart bridges: examples
  • 6.9. Smart roads
    • 6.9.1. Overview: road material becomes smart
    • 6.9.2. Realistic technology potential for smart roads
    • 6.9.3. Deicing and snow removal risks disappear with self-powered, automated road heating
    • 6.9.4. Current road research projects: piezoelectric motion harvesting
    • 6.9.5. Realistic solar roads, parking, paths, barriers overview
    • 6.9.6. Solar Roadways and Missouri Department of Transportation USA
    • 6.9.7. Solar roadway powering interactive lighting: Solar Roadways USA
    • 6.9.8. Solar Roadways structure and Sandpoint projects
    • 6.9.9. Bouygues Colas France
    • 6.9.10. Solar road Pavenergy China
    • 6.9.11. TNO SolaRoad Netherlands
    • 6.9.12. Japan: trials and concepts: Misawa and others
    • 6.9.13. Gantry vs road surface: Korea, China
    • 6.9.14. Solar wind/ sound barriers: Eindhoven University of Technology
    • 6.9.15. Smart cement mixtures could turn buildings into batteries
Back to Top
전화 문의
F A Q
 
IX banner