Global Information
회사소개 | 문의 | 위시리스트

구조용 일렉트로닉스 및 일렉트릭스 분야에서의 스마트 재료 기회(2020-2030년)

Smart Materials Opportunities in Structural Electronics and Electrics 2020-2030

리서치사 IDTechEx Ltd.
발행일 2019년 10월 상품 코드 721790
페이지 정보 영문 295 Slides
가격
US $ 5,495 ₩ 6,472,000 PDF Download (1-5 Users) help
5명까지 액세스 권한이 부여되는 라이선스입니다. 텍스트 등의 PDF 내용 편집은 불가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다.
US $ 5,995 ₩ 7,060,000 PDF Download (1-5 Users) and 1 Hardcopy help
5명까지 액세스 권한이 부여되는 라이선스입니다. 텍스트 등의 PDF 내용 편집은 불가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다. 컬러 제본(컬러 하드카피본) 1부가 포함됩니다. FedEx를 이용하여 영국에서 3영업일 이내에 발송합니다.
US $ 7,995 ₩ 9,416,000 PDF Download (6-10 Users) help
10명까지 액세스 권한이 부여되는 라이선스입니다. 텍스트 등의 PDF 내용 편집은 불가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다.
US $ 8,495 ₩ 10,005,000 PDF Download (6-10 Users) and 1 Hardcopy help
10명까지 액세스 권한이 부여되는 라이선스입니다. 텍스트 등의 PDF 내용 편집은 불가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다. 컬러 제본(컬러 하드카피본) 1부가 포함됩니다. FedEx를 이용하여 영국에서 3영업일 이내에 발송합니다.


구조용 일렉트로닉스 및 일렉트릭스 분야에서의 스마트 재료 기회(2020-2030년) Smart Materials Opportunities in Structural Electronics and Electrics 2020-2030
발행일 : 2019년 10월 페이지 정보 : 영문 295 Slides

스트럭쳐 일렉트로닉스 및 일렉트릭스로서의 스마트 재료(Smart Materials) 시장을 조사했으며, 시장 정의와 개요, 스트럭쳐 일렉트로닉스의 발전 역사와 향후 전망, 스마트 재료의 기능·형태 요건, 주요 제조 기술 개요 및 특징, 기술 개발 동향, 주요 제품 개요, 기업·연구기관·대학의 각종 활동 등의 정보를 정리하여 전해드립니다.

제1장 주요 요약 및 결론

  • 정의
  • 본 보고서의 목적
  • 중요성
  • 사례
  • 구현 기술
  • 해결해야 할 과제
  • 시장 규모
  • 신제품 및 기술 로드맵

제2장 서론 : 역사, 정의, 능력, 전망

  • 스트럭쳐 일렉트로닉스의 발전 역사

제3장 요구되는 스마트 재료의 기능 및 형태

  • 개요
  • 기능 및 형태의 합리성
  • 기능 및 형태 : 현재의 선택

제4장 제조 기술 : 리드하는 IME(IN MOLD ELECTRONICS)

  • IME란?
  • IME 프로세스란?
  • IME 전도성 잉크의 요건
  • 재료 포트폴리오의 다양성
  • 기능성 재료의 폭 확대
  • 응용 및 상업화 진전과 프로토타입 : 개요
  • IME 기능성 재료 공급업체
  • TactoTek의 접근 : IME SE의 리더

제5장 기타 제조 기술 : 컨포멀 프린팅, MID, 3DPE, 스프레이 등

  • 3D 표면에 대한 다이렉트 프린트
    • Optomec Aerosol : 시장 리더
    • 컨포멀 프린팅의 사례 :
      • Harvard University
      • University of Illinois at Urbana Champaign
      • Optomec
    • Pulse Electronics
    • GKN, Boeing : 787용 히터
    • Nano Dimension(이스라엘), Ceradrop(프랑스)
    • Neotech, Novacentrix, nScrypt
  • 성형회로부품(MID) : LDS
    • 개요
    • MID, LDS : LPKF, Festo
    • IME LDS의 각종 용도
    • MID - LPKF, Molex의 사례
    • MID - TRW의 사례
  • 프린티드 PCB
    • Ag 나노입자 잉크를 이용한 고속 PCB 프로토타이핑을 향한 진보
    • 프린티드 PCB : 신규 진출기업
  • 전사 : 테스트 스트립 인쇄와 라미네이션
  • 3D 프린티드 일렉트로닉스
    • 개요
    • Toyota
    • Aconity3D
    • Functionalize
    • Harvard University
    • Princeton University
    • Nascent Objects
    • AgIC
    • Voltera
    • Cartesian
    • Botfactory
    • Voxel8
    • 제조 옵션 비교

제6장 대규모 SE : 자동차, 항공기, 선박, 건조물, 도로

  • 개요
  • 자동차
    • 내하중 슈퍼커패시터가 강철 차체를 대체
    • Imperial College London
    • Queensland University of Technology
    • Trinity College Dublin
    • Vanderbilt University
    • ZapGo
  • PV 차체
    • 차체용 첨단 박막 PV
    • Sion Motors
    • IFEVS
    • EIEV
  • 발전 타이어
    • Triboelectric Univ
    • Univ. Bolton
  • 항공기
    • 솔라 항공기 사례 : Sunstar
    • Sunseeker Duo
    • Solar Impulse
    • SolarShip
    • American Semiconductor : 스마트 기체 및 날개
    • Boeing 787 Dreamliner
    • Airbus : 3D 프린팅 비행기
    • Nervous system : NASA
    • Morphing wing : FlexFoil, NASA 등
  • 보트 및 선박에 의한 대면적 파력발전
    • EIEV선
    • 예 : Okeanos Pearl
    • PlanetSolar, SolarLab
    • EIEV 조사선 등
  • 빌딩 및 건조물
    • 액티브 스마트 유리
    • Samsung의 OLE 윈도우
    • 건물 일체형 PV(BIPV)
    • 태양전지 타일
    • 태양열 온실
  • 스마트 브릿지 : 사례
  • 스마트 도로
    • 스마트 로드의 잠재적 기술
    • 현재의 도로 연구 프로젝트 : 압전 모션 하베스팅
    • 태양열 도로 : Missouri Department of Transportation
    • 태양열 도로
    • Bouygues Colas
    • Pavenergy
    • TNO SolaRoad 등
LSH 18.10.25

이 페이지에 게재되어 있는 내용은 최신판과 약간 차이가 있을 수 있으므로 영문목차를 함께 참조하여 주시기 바랍니다. 기타 자세한 사항은 문의 바랍니다.

The new IDTechEx report, "Smart Material Opportunities in Structural Electronics 2020-2030" analyses and forecasts a $200 billion opportunity. Making dumb structures smart means saving in weight, space and cost but it also makes new things possible such as huge solar drones up for five years beaming the internet to everyone. The new solar cars never plug in. The Executive Summary and Conclusions says expect better appliances, wearables, vehicles lasting generations. Think one-piece flexible phones with no case, smart fuselages and smart roads. Learn enablers: additive metal and dielectric patterning and new organic, inorganic and composite materials merged. From transparent concrete to stretchable ink patterns, it introduces the e-window performing three functions and the wave blanket as a power station, all facilitated by new materials and processing with huge sales potential. Many infograms pull together market readiness of composites and how improved metal patterning can create electricity and bend light. See separate forecasts for vehicles, building and ground-integrated photovoltaics, for in-mold electronics, flexible AMOLEDs and other SE technologies. Even elements of this are forecasted including embedded RFID, solar cars, building integrated photovoltaics, smart glass. Appraise technology roadmaps for flexible phones as they integrate flexible batteries.

The Introduction reveals the evolution of the needs and practices with phones, wearables, vehicles, structures and more. Which of the 12 energy harvesting technologies lend themselves to being incorporated in the new monolithic smart structures? Tesla sunroof with electric tinting and lighting functions in one glass, human body area networks, energy positive solar boats and self-healing plastics are among the host of examples explained.

Chapter 3 Vehicle Integrated Photovoltaics VIPV introduces such things as energy positive solar cars, autonomous solar flying wings that replace trucks and those upper atmosphere solar drones. Infograms show how many disciplines leverage to deliver many benefits here. Why the importance of single crystal silicon bodywork but potential of GaAs film and thin film, 3 junction InGaP, GaAs, InGaAs. Which companies, why, by when?

Chapter 4 pulls together Smart Roads, Bridges, Buildings emphasising new materials and potential. Here is the largest sector BIPV including solar tiles and windows. What materials and benefits? Scope for heat and piezoelectric harvesting roads? Why did solar roads and environs fail in Germany and France but they look good in the UK, Netherlands, Japan, China and Hungary? What new materials? What next?

Chapter 5 goes deeper with Materials and Manufacturing: Large Structural Electrics. Here is structural battery and supercapacitor technology from graphene and CNT, glass and carbon fiber to vanadium and ruthenium boosting pseudocapacitance. Learn new reinforcement with multifunctional resins. Understand progress of electrically multifunctional fibers, smart glass electrically changing color, tint, display, darkness, photovoltaic action, even greenhouses optimising both electricity creation and plant growth with new dyes. Throughout there are many examples of research progress and deployment.

Chapter 6 Monolithic Flexible Display Materials and Technology examines the materials and processes as glass-free AMOLEDS become a complete flexible phone or other device. No need for a case. What is monolithic now and what gets incorporated later? How do you print flexible quantum dot displays? What seven key components merge into flexible OLEDs?

Chapters 7 addresses in detail the vital new subject of Vehicle and Consumer Goods Simplification: In Mold Electronics with its stretchable inks, dielectric patterning and so on. Chapter 8 covers alternatives and complementary materials and processes such as Conformal Printing, MID, 3D printed electronics using elastomers and metals, optronics and the research on spraying of electrically active new materials. "Smart Material Opportunities in Structural Electronics 2020-2030" analyses and forecasts a formidable new business opportunity.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. EXECUTIVE SUMMARY AND CONCLUSIONS

  • 1.1.Changing the world
  • 1.2.Purpose of this report
  • 1.3.Primary conclusions
    • 1.3.1.Technological megatrend
    • 1.3.2.Benefits
    • 1.3.3.Challenges
    • 1.3.4.Why now?
    • 1.3.5.Focus
  • 1.4.Evolution
  • 1.5.Most promising SE functions in business potential with examples
  • 1.6.SE opportunity vs progress by business sector
  • 1.7.SE manufacturing and technology readiness by applicational sector and date
  • 1.8.Structural electronics as protective coating or wrap: applications compared
  • 1.9.Structural electronics as load bearing structure: applications compared
  • 1.10.Structural electronics technologies compared
    • 1.10.1.Thickness vs area
    • 1.10.2.In use
    • 1.10.3.Working well in laboratory and trials
    • 1.10.4.Later
  • 1.11.Formats of technology
  • 1.12.Status of multifunctional composites by application
  • 1.13.Much more can be done with metal patterning on appropriate substrates
  • 1.14.Some organisations attempting significant SE advances
  • 1.15.Patent analysis
    • 1.15.1.Structural electronics
    • 1.15.2.Structural solar
  • 1.16.Market forecasts
    • 1.16.1.Overview 2020-2030
    • 1.16.2.Solar energy-independent cars 2019-2030 - Number of vehicles (thousand)
    • 1.16.3.Solar energy-independent cars 2019-2030 - Market Value (US$ billion)
    • 1.16.4.Smart glass market size ($ million) 2019-2030
    • 1.16.5.Building integrated photovoltaics BIPV
    • 1.16.6.RFID sensor tags and systems $ million
  • 1.17.SE product and technology roadmaps 2019-2040
    • 1.17.1.General
    • 1.17.2.Roadmap to flexible displays and phones
    • 1.17.3.Roadmap for solar and supercapacitor cars

2. INTRODUCTION: PHONES, WEARABLES, VEHICLES, STRUCTURES

  • 2.1.Progression to structural electronics
    • 2.1.1.Sequence
    • 2.1.2.Multiple sources
    • 2.1.3.Beginnings: PCBs: multilayer, heat pipe vias, load bearing PCB
    • 2.1.4.True structural electronics: Plastic Electronic, Smart Plastics Network
    • 2.1.5.Hybrid structural-conventional
    • 2.1.6.Hybrid structural conventional: wearables Matrix Powerwatch
    • 2.1.7.Flexible mobile phones
  • 2.2.Emerging structural electronics
    • 2.2.1.Tesla sunroof with electric tinting and integrated lighting
    • 2.2.2.Energy harvesting suitable for SE
  • 2.3.Combining many functions
    • 2.3.1.Overview and healthcare
    • 2.3.2.Triboelectric integrated with other sensing/ harvesting
  • 2.4.Vehicles
    • 2.4.1.Load bearing supercapacitors replace steel bodywork

3. VEHICLE INTEGRATED PHOTOVOLTAICS VIPV

  • 3.1.Basics
    • 3.1.1.Definitions and history
    • 3.1.2.Energy positive vehicles
    • 3.1.3.New user propositions enabled by structural solar
  • 3.2.Importance of solar cars
  • 3.3.Tipping points for sales of solar cars
  • 3.4.Tipping points for sales of solar trucks, buses and trains
  • 3.5.Corporate and geographical positioning
  • 3.6.Chemistry
  • 3.7.Format
  • 3.8.Leading solar cars compared: Sono, Lightyear, Hanergy, Toyota
  • 3.9.Solar buses and trucks
  • 3.10.Energy Independent Electric Vehicles EIEV

4. SMART ROADS, BRIDGES, BUILDINGS

  • 4.1.Overview
  • 4.2.Smart roads and other paving
    • 4.2.1.Overview
    • 4.2.2.Smart road probability of success vs current investment
    • 4.2.3.Piezoelectric motion harvesting US, UK
    • 4.2.4.Realistic solar roads, parking, paths, barriers overview
    • 4.2.5.Solar roads in France and Germany a failure
    • 4.2.6.Mirai Labo Japan
    • 4.2.7.Pavenergy China
    • 4.2.8.Platio Hungary
    • 4.2.9.Solar Roadways USA
    • 4.2.10.Tokyo Government Japan
    • 4.2.11.TNO SolaRoad Netherlands
  • 4.3.Gantry vs road surface: Korea, China
  • 4.4.Solar wind / sound barriers: Eindhoven University of Technology
  • 4.5.Building integrated photovoltaics
    • 4.5.1.Overview
    • 4.5.2.BAPV vs BIPV
    • 4.5.3.BIPV technologies and location

5. MATERIALS AND MANUFACTURING: LARGE STRUCTURAL ELECTRICS

  • 5.1.Overview
  • 5.2.Dream for supercapacitors and their derivatives: other planned benefits
  • 5.3.Structural battery technology
  • 5.4.Structural supercapacitor technology
    • 5.4.1.Imperial College London; Chalmers Sweden
    • 5.4.2.Queensland University of Technology Australia, Rice University USA
    • 5.4.3.Trinity College Dublin Ireland
    • 5.4.4.Vanderbilt University USA
    • 5.4.5.ZapGo UK
  • 5.5.Smart glass technology
    • 5.5.1.Active smart glass in buildings - Market drivers
    • 5.5.2.Active and passive glass darkening materials
  • 5.6.Smart cement technology
    • 5.6.1.Batteries as cement
    • 5.6.2.Battery charging cement Magment (TM)
  • 5.7.Structural photovoltaic materials and future
    • 5.7.1.Choice of operating principles
    • 5.7.2.Comparison of performance and issues
    • 5.7.3.Sharp conversion efficiency 37.9%
    • 5.7.4.Perovskite silicon tandem: record 25.2% efficiency
    • 5.7.5.CIGS PV in action
    • 5.7.6.pcSi PV in action
    • 5.7.7.scSi PV in action
    • 5.7.8.GaAs PV in action
    • 5.7.9.Future structural photovoltaics plus structural supercapacitor
    • 5.7.10.Three in one PV window material
    • 5.7.11.Building integrated photovoltaic thermal (BIPVT)
  • 5.8.Multi-functional PV materials
    • 5.8.1.Optimising crop growth in greenhouses
    • 5.8.2.Desalination and optimising growth
    • 5.8.3.Fiber making and storing electricity
    • 5.8.4.Fiber and film making electricity two ways and storing

6. MONOLITHIC FLEXIBLE DISPLAY MATERIALS AND TECHNOLOGY

  • 6.1.First step: OLED on plastic substrate
  • 6.2.Inkjet printing organic materials for thin film encapsulation of OLEDs
  • 6.3.Printed OLED: key players
  • 6.4.Printing for monolithic flexible displays is near
  • 6.5.Printing flexible quantum dot displays
  • 6.6.Resulting flexible devices 2018-2020
  • 6.7.Key components for flexible OLEDs

7. VEHICLE AND CONSUMER GOODS SIMPLIFICATION: IN MOLD ELECTRONICS

  • 7.1.What is in-mould electronics?
    • 7.1.1.IME products have exceptional environmental tolerance
    • 7.1.2.Aircraft aerofoil flap with integral heater for de-icing using in-mold electronics
    • 7.1.3.IME: 3D friendly process for circuit making
    • 7.1.4.Related processes comparison IMD, IME, MID/LDS
  • 7.2.What is the in-mold electronic process?
    • 7.2.1.Comments on requirements
  • 7.3.Conductive ink requirements for IME
    • 7.3.1.New ink requirements: stretchability
    • 7.3.2.New ink requirements: portfolio approach
  • 7.4.Diversity of material portfolio
    • 7.4.1.New ink requirements: surviving heat stress
    • 7.4.2.New ink requirements: stability
    • 7.4.3.All materials in the stack must be reliable
    • 7.4.4.Design: general observations
  • 7.5.Expanding range of functional materials
    • 7.5.1.Stretchable carbon nanotube transparent conducting films
    • 7.5.2.Beyond IME conductive inks: adhesives
    • 7.5.3.Beyond conductive inks: thermoformed polymeric actuator?
  • 7.6.Overview of applications, commercialization progress, and prototypes
    • 7.6.1.In-mold electronic application: automotive
    • 7.6.2.White goods, medical and industrial control (HMI)
    • 7.6.3.Is IME commercial yet?
    • 7.6.4.First (ALMOST) success story: overhead console in cars
    • 7.6.5.Commercial products: wearable technology
    • 7.6.6.Automotive: direct heating of headlamp plastic covers
    • 7.6.7.Automotive: human machine interfaces
    • 7.6.8.White goods: human machine interfaces
    • 7.6.9.Mobile phone storage
  • 7.7.IME functional material suppliers
    • 7.7.1.Emerging value chain
    • 7.7.2.Stretchable conductive ink suppliers multiply
    • 7.7.3.IME conductive ink suppliers multiply
    • 7.7.4.IME with functional films made with evaporated lines
  • 7.8.Approach of TactoTek: the IME SE leader
    • 7.8.1.TactoTek Profile

8. CONFORMAL PRINTING, MID, 3DPE, SPRAYING

  • 8.1.Printing directly on a 3D surface
    • 8.1.1.Optomec Aerosol: market leader
    • 8.1.2.Conformal printing examples: Harvard University, University of Illinois at Urbana Champaign, Optomec
    • 8.1.3.Pulse Electronics
    • 8.1.4.Spraying leading edge 787 heater GKN, Boeing
    • 8.1.5.Nano Dimension Israel, Ceradrop France
    • 8.1.6.Neotech, Novacentrix, nScrypt
  • 8.2.Molded Interconnect Devices: Laser Direct Structuring
    • 8.2.1.Overview
    • 8.2.2.MID and LDS: LPKF, Festo
    • 8.2.3.Applications of laser direct structuring in IME
    • 8.2.4.MID - LPKF and Molex examples
    • 8.2.5.MID - TRW example
  • 8.3.Genuinely Printed PCB
    • 8.3.1.Progress towards rapid PCB prototyping using Ag nanoparticle inks
    • 8.3.2.Printed PCB: Newcomers
  • 8.4.Transfer printing: printing test strips & using lamination to compete with IME
  • 8.5.3D printed electronics
    • 8.5.1.Overview
    • 8.5.2.Toyota Japan
    • 8.5.3.Aconity3D Germany, USA
    • 8.5.4.Functionalise USA
    • 8.5.5.Harvard University
    • 8.5.6.Princeton University
    • 8.5.7.Nascent Objects
    • 8.5.8.aGic Japan, Voltera Canada
    • 8.5.9.Cartesian USA, Botfactory USA
    • 8.5.10.Voxel8
  • 8.6.Manufacturing options compared
Back to Top
전화 문의
F A Q
 
IX banner