![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1302922
¼¼°èÀÇ ¸®¸ð³Ù Æú¸®¸Ó ½ÃÀå ¿¹Ãø(2023-2028³â)Limonene Polymers Market - Forecasts from 2023 to 2028 |
¸®¸ð³Ù Æú¸®¸Ó´Â °¨±Ö·ùÀÇ ²®Áú¿¡¼ ¹ß°ßµÇ´Â õ¿¬ ÈÇÕ¹°ÀÎ ¸®¸ð³Ù¿¡¼ ÃßÃâÇÑ »ýºÐÇØ¼º Æú¸®¸ÓÀÇ ÀÏÁ¾ÀÔ´Ï´Ù. ÀÌ Æú¸®¸Ó´Â Àç»ý °¡´ÉÇÑ ÀÚ¿øÀ¸·Î »ý»êÇÒ ¼ö ÀÖ°í ´Ù¾çÇÑ ÀÀ¿ë ºÐ¾ß¿¡¼ ±âÁ¸ÀÇ ¼®À¯ ±â¹Ý Æú¸®¸Ó¸¦ ´ëüÇÒ ¼ö ÀÖ´Â ÀáÀç·ÂÀ¸·Î ÀÎÇØ Áö¼Ó °¡´ÉÇÑ ¼ÒÀç ºÐ¾ß¿¡¼ °ü½ÉÀ» ¹Þ°í ÀÖ½À´Ï´Ù. ¸®¸ð³Ù Æú¸®¸Ó´Â ÀÚÀ¯ ¶óµðÄ® ÁßÇÕ, ¾çÀ̿ ÁßÇÕ, È¿¼Ò ÁßÇÕ µî ¿©·¯ °¡Áö ¹æ¹ýÀ» ÅëÇØ ÇÕ¼ºÇÒ ¼ö ÀÖ½À´Ï´Ù.
¶ÇÇÑ, ¸®¸ð³Ù Æú¸®¸Ó´Â µ¶¼ºÀÌ ³·±â ¶§¹®¿¡ ½Äǰ Æ÷Àå ¿ëµµ¿¡µµ ¾ÈÀüÇÏ°Ô »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. ¸®¸ð³Ù Æú¸®¸ÓÀÇ ¶Ç ´Ù¸¥ ÀÌÁ¡Àº ±× Ư¼ºÀ» Á¶Á¤ÇÒ ¼ö ÀÖ´Ù´Â °ÍÀÔ´Ï´Ù. ÇÕ¼º Á¶°ÇÀ» º¯°æÇÔÀ¸·Î½á ¿¬±¸ÀÚ´Â ¾ò¾îÁö´Â ÁßÇÕüÀÇ ºÐÀÚ·®, ±¸Á¶, Ư¼ºÀ» Á¦¾îÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ´Ù¿ëµµ·Î ¸®¸ð³Ù Æú¸®¸Ó´Â Á¢ÂøÁ¦, ÄÚÆÃÁ¦, ¹ÙÀÌ¿À ÀÇ·á±â±â µî ´Ù¾çÇÑ ¿ëµµ¿¡ ÀûÇÕÇÕ´Ï´Ù.
»ýºÐÇØ¼º °íºÐÀÚ´Â ¸Å¸³Áö¿Í ÇØ¾ç ÇÃ¶ó½ºÆ½ Æó±â¹°À» ÁÙÀÌ´Â ÀåÁ¡ÀÌ ÀÖ¾î À¯¸®ÇÑ Àç·á°¡ µÇ¾ú½À´Ï´Ù. ¼¼°è Á¤ºÎ´Â ÇÃ¶ó½ºÆ½ Æó±â¹°ÀÌ È¯°æ¿¡ ¹ÌÄ¡´Â ¿µÇâ¿¡ ´ëóÇϱâ À§ÇÑ ±ÔÁ¦¸¦ ½ÃÇàÇϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î À¯·´¿¬ÇÕ(EU)Àº ¸éºÀ, Ä®Áý, Á¢½Ã, »¡´ë, ¾àµ¿±â µî ƯÁ¤ ÀÏȸ¿ë ÇÃ¶ó½ºÆ½À» 2021³â±îÁö ±ÝÁöÇÏ´Â ÁöħÀ» äÅÃÇß½À´Ï´Ù. ÀÌ´Â ¸®¸ð³Ù Æú¸®¸Ó¿Í °°Àº »ýºÐÇØ¼º Æú¸®¸Ó¸¦ ºñ·ÔÇÑ Áö¼Ó°¡´ÉÇϰí ȯ°æÄ£ÈÀûÀÎ ¼ÒÀçÀÇ Çʿ伺¿¡ ´ëÇÑ »çȸÀûÀνÄÀ» ³ô¿©ÁÝ´Ï´Ù. ¶ÇÇÑ ¹Ì±¹ ³ó¹«ºÎ(USDA)¿¡´Â BioPreferred ProgramÀ̶ó´Â ÇÁ·Î±×·¥ÀÌ ÀÖÀ¸¸ç, ´Ù¾çÇÑ »ê¾÷¿¡¼ ¸®¸ð³Ù Æú¸®¸Ó¸¦ Æ÷ÇÔÇÑ ¹ÙÀÌ¿À Á¦Ç°ÀÇ »ç¿ëÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ ÇÁ·Î±×·¥Àº ¹ÙÀÌ¿À ÇÔ·® ¿ä±¸ »çÇ×À» ÃæÁ·ÇÏ´Â Á¦Ç°ÀÇ ÀÎÁõ ÇÁ·Î¼¼½º¸¦ Á¦°øÇÕ´Ï´Ù.
¿À·»Áö ±â¹Ý Æú¸®¸Ó´Â ¸®¸ð³ÙÀÌ Ç³ºÎÇÑ ¿À·»Áö ²®Áú·ÎºÎÅÍ ÇÕ¼ºµË´Ï´Ù. ÀÌ·¯ÇÑ ÁßÇÕü´Â Æ÷Àå, °ÇÃà, ÀÚµ¿Â÷¸¦ Æ÷ÇÔÇÑ ´Ù¾çÇÑ »ê¾÷¿¡¼ ÀáÀçÀûÀÎ ¿ëµµ°¡ ÀÖ½À´Ï´Ù. Æ÷Àå »ê¾÷¿¡¼´Â ¿À·»Áö ±â¹Ý Æú¸®¸Ó¸¦ »ç¿ëÇÏ¿© »ýºÐÇØ¼º ¹× ÅðºñÈ °¡´ÉÇÑ Æ÷ÀåÀ縦 Á¦Á¶ÇÏ¿© ÇÃ¶ó½ºÆ½ Æó±â¹°ÀÌ È¯°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. °Ç¼³ »ê¾÷¿¡¼´Â ±âÁ¸ÀÇ ¼®À¯°è Æú¸®¸Ó¸¦ ´ëüÇϴ ģȯ°æ Æú¸®¸Ó·Î Á¢ÂøÁ¦, ÄÚÆÃÁ¦, ´Ü¿Àç¿¡ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÚµ¿Â÷ »ê¾÷¿¡¼´Â ÀÌ·¯ÇÑ °íºÐÀÚ¸¦ »ç¿ëÇÏ¿© ÀÚµ¿Â÷ÀÇ ÀÎÅ׸®¾î ¹× ¿ÜÀå¿¡ »ç¿ëµÇ´Â °æ·®ÀÇ °í¼º´É ¼ÒÀ縦 Á¦Á¶ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿À·»Áö ±â¹Ý Æú¸®¸Ó´Â ´Ù¸¥ »ýºÐÇØ¼º Æú¸®¸Ó¿¡ ºñÇØ dzºÎÇϰí Àúºñ¿ëÀ̶ó´Â µ¶ÀÚÀûÀÎ ÀÌÁ¡ÀÌ Àֱ⠶§¹®¿¡ ¿¹Ãø ±â°£ Áß¿¡ ¼ö¿ä°¡ Å©°Ô ´Ã¾î³¯ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
Æ÷Àå »ê¾÷Àº ÇÃ¶ó½ºÆ½ÀÇ ÃÖ´ë ¼ÒºñÀÚ Áß ÇϳªÀÌ¸ç »ýºÐÇØ¼º Æ÷Àå Àç·á¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
¸®¸ð³Ù ÁßÇÕüÀÇ ÀåÁ¡ Áß Çϳª´Â »ýºÐÇØ¼ºÀÔ´Ï´Ù. À̵é ÁßÇÕü´Â ¹Ì»ý¹°¿¡ ÀÇÇØ ºÐÇØµÇ¾î ¹°, ÀÌ»êÈź¼Ò, ¹ÙÀÌ¿À¸Å½º µîÀÇ Ãµ¿¬ »ý¼º¹°ÀÌ µË´Ï´Ù. ÀÌ Æ¯Â¡Àº ȯ°æ ¿À¿°ÀÇ ¿øÀÎÀÌ µÇ´Â ºñ»ýºÐÇØ¼º Àç·á¸¦ ´ëüÇÒ ¼ö ÀÖ´Â Æ÷Àå Àç·á¿¡ Àû¿ëÇϱ⿡ ¸Å·ÂÀûÀÔ´Ï´Ù. ¶ÇÇÑ À½½Ä ¹× À½·á »ê¾÷°ú °°Àº ´Ù¾çÇÑ »ê¾÷¿¡¼ Áö¼Ó °¡´ÉÇÏ°í »ýºÐÇØ °¡´ÉÇÑ Æ÷Àå ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¸®¸ð³Ù Æú¸®¸Ó¿Í °°Àº »ýºÐÇØ¼º Æú¸®¸Ó´Â ½Äǰ°ú Á¢ÃËÇÏ´Â ¿ëµµ¿¡ »ç¿ëÇØµµ ¾ÈÀüÇÏ¸ç º¸Á¸ ±â°£ÀÇ ¿¬ÀåÀ̳ª ½ÄǰÀÇ ¾ÈÀü¼º Çâ»ó µîÀÇ ÀÌÁ¡ÀÌ ÀÖ½À´Ï´Ù.
Áö¿ªº°·Î º¸¸é ¸®¸ð³Ù Æú¸®¸Ó ½ÃÀåÀº ºÏ¹Ì, ³²¹Ì, À¯·´, Áßµ¿, ¾ÆÇÁ¸®Ä«, ¾Æ½Ã¾Æ ÅÂÆò¾çÀ¸·Î ±¸ºÐµË´Ï´Ù. ºÏ¹Ì´Â ¸®¸ð³Ù Æú¸®¸ÓÀÇ Áß¿äÇÑ ½ÃÀåÀÌÁö¸¸, ÀÌ´Â ÀÌ Áö¿ªÀÇ Áö¼Ó°¡´ÉÇϰí ȯ°æÄ£ÈÀûÀÎ ¼ÒÀç¿¡ ´ëÇÑ ³ôÀº ¼ö¿ä ¶§¹®ÀÔ´Ï´Ù. ±×¸°ºôµùÀÇ Ã¤Åà Áõ°¡, ȯ°æ¿¡ ´ëÇÑ °ü½É Áõ°¡, »ýºÐÇØ¼º Àç·áÀÇ »ç¿ëÀ» ÃËÁøÇÏ´Â ¾ö°ÝÇÑ Á¤ºÎ ±ÔÁ¦°¡ ºÏ¹Ì¿¡¼ ¸®¸ð³Ù Æú¸®¸Ó ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ °Ç¼³ »ê¾÷µµ ÀÌ Áö¿ªÀÇ ¸®¸ð³Ù Æú¸®¸Ó ¼ö¿ä¸¦ °ßÀÎÇϰí ÀÖ½À´Ï´Ù. ±×¸° ºôµùÀÇ Ã¤ÅÃÀ¸·Î °Ç¼³¿¡¼ Áö¼Ó°¡´ÉÇϰí ȯ°æÄ£ÈÀûÀÎ Àç·áÀÇ »ç¿ëÀÌ Å©°Ô Áõ°¡ÇÏ¿© ¸®¸ð³Ù Æú¸®¸Ó ¼ö¿ä¸¦ °ßÀÎÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ Á¤ºÎÀÇ Àå·ÁÃ¥°ú ³ë·Âµµ ºÏ¹ÌÀÇ ¸®¸ð³Ù Æú¸®¸Ó ½ÃÀå¿¡ ÀÌÀÍÀ» ÁÖ°í ÀÖ½À´Ï´Ù.
Limonene polymers are a class of biodegradable polymers derived from limonene, a natural compound found in the peels of citrus fruits. These polymers are gaining interest in the field of sustainable materials because of their ability to be produced from renewable resources and their potential to replace traditional petroleum-based polymers in various applications. Limonene polymers can be synthesized through several methods, including free radical polymerization, cationic polymerization, and enzymatic polymerization.
Additionally, limonene polymers have low toxicity, making them safe for use in food packaging applications. Another advantage of limonene polymers is their tunable properties. By modifying the synthesis conditions, researchers can control the molecular weight, structure, and properties of the resulting polymer. This versatility makes limonene polymers suitable for a range of applications, including adhesives, coatings, and biomedical devices.
Biodegradable polymers offer the advantage of reducing plastic waste in landfills and oceans, which makes them lucrative. Governments around the world are increasingly implementing regulations to address the environmental impacts of plastic waste. For instance, the European Union has adopted a directive banning certain single-use plastics by 2021, including cotton bud sticks, cutlery, plates, straws, and stirrers, which are expected to drive the demand for sustainable alternatives. This has increased public awareness of the need for sustainable and eco-friendly materials, including biodegradable polymers such as limonene polymers. Moreover, The United States Department of Agriculture (USDA) has a program called the BioPreferred Program, which promotes the use of bio-based products, including limonene polymers, in various industries. The program provides a certification process for products that meet the bio-based content requirements.
Orange-based polymers are synthesized from orange peels, which are a rich source of limonene. These polymers have potential applications in various industries, including packaging, construction, and automotive. In the packaging industry, orange-based polymers can be used to produce biodegradable and compostable packaging materials, reducing the environmental impact of plastic waste. The construction industry can use these polymers as an eco-friendly alternative to traditional petroleum-based polymers in adhesives, coatings, and insulation materials. The automotive industry can also use these polymers to produce lightweight, high-performance materials for vehicle interiors and exteriors. As orange-based polymers offer unique advantages over other biodegradable polymers, such as their abundance and low cost, their demand is expected to grow significantly during the projected period.
The packaging industry is one of the largest consumers of plastics and has been witnessing increasing demand for biodegradable packaging materials.
One of the advantages of limonene polymers is their biodegradability. These polymers can be broken down by microorganisms into natural products such as water, carbon dioxide, and biomass. This feature makes them attractive for applications in packaging materials, where they can replace non-biodegradable materials that contribute to environmental pollution. Further, the demand for sustainable and biodegradable packaging solutions in various industries, such as the food and beverage industry, is increasing. Biodegradable polymers such as limonene polymers are safe for use in food contact applications and offer advantages such as extended shelf life and improved food safety.
Based on geography, the limonene polymers market is segmented into North America, South America, Europe, the Middle East and Africa, and Asia Pacific. North America is a significant market for limonene polymers due to the high demand for sustainable and eco-friendly materials in the region. The increasing adoption of green building practices, rising environmental concerns, and stringent government regulations promoting the use of biodegradable materials are driving the demand for limonene polymers in North America. Additionally, the construction industry is also expected to drive the demand for limonene polymers in the region. With the adoption of green building practices, the use of sustainable and eco-friendly materials in construction has increased significantly, which is driving the demand for limonene polymers. Moreover, government incentives and efforts have also benefitted the North American limonene polymers market.