![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1457122
¼¼°èÀÇ Â÷·® ¾Ö³Î¸®Æ½½º ½ÃÀå ¿¹Ãø(2024-2029³â)Vehicle Analytics Market - Forecasts from 2024 to 2029 |
Â÷·® ¾Ö³Î¸®Æ½½º ½ÃÀåÀº 2022³â¿¡´Â 79¾ï 200¸¸ ´Þ·¯·Î Æò°¡µÇ¾úÀ¸¸ç CAGR 13.45%·Î ¼ºÀåÇßÀ¸¸ç 2029³â¿¡´Â 191¾ï 1,600¸¸ ´Þ·¯ ±Ô¸ð¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
Â÷·® ¾Ö³Î¸®Æ½½ºÀº ÀÚµ¿Â÷°¡ ¼öÁýÇÑ µ¥ÀÌÅ͸¦ ü°èÀûÀ¸·Î Á¶»çÇÏ¿© ÅëÂû·Â ÀÖ´Â Á¤º¸¸¦ ÃßÃâÇϰí ÀÚµ¿Â÷ ±â´ÉÀÇ ´Ù¾çÇÑ Ãø¸éÀ» °ÈÇÕ´Ï´Ù. Â÷·® ¾Ö³Î¸®Æ½½ºÀº ¼¾¼, Â÷·®¿ë ÄÄÇ»ÅÍ, ±³Åë »óȲ µî ¿ÜºÎ ¼Ò½ºÀÇ µ¥ÀÌÅ͸¦ »ç¿ëÇÏ¿© ÀÌÇØ°ü°èÀÚ°¡ ¼º´ÉÀ» Çâ»ó½Ã۰í À¯Áöº¸¼ö¸¦ °£¼ÒÈÇϸç Àü¹ÝÀûÀÎ È¿À²¼ºÀ» ³ôÀÏ ¼ö ÀÖµµ·Ï Áö¿øÇÕ´Ï´Ù.
°ø±Þ¸Á ÃÖÀûÈ, ¿¬µ¿µÈ ÀÚµ¿Â÷ ¼ºñ½º, º¸Çè ÅÚ·¹¸Åƽ½º, Â÷·® °ü¸®, ¿¹Áö º¸Àü, ¿îÀüÀÚ Çൿ ¸ð´ÏÅ͸µ, »ç¿ë·®¿¡ µû¸¥ °ú±Ý µî ¼ö¸¹Àº ºÎ¹®¿¡¼ ÀÌ ºÎ¹®ÀÌ È°¿ëµÇ°í ÀÖ½À´Ï´Ù. Â÷·® ¾Ö³Î¸®Æ½½º´Â ¸Ó½Å·¯´× ¹× ±âŸ Á¢±Ù¹ýÀ» »ç¿ëÇÏ¿© ´ë±Ô¸ð µ¥ÀÌÅÍ ¼¼Æ®¸¦ ÀÌÇØÇϱâ À§ÇØ Çϵå¿þ¾î¿Í °í±Þ ¼ÒÇÁÆ®¿þ¾î Ç÷§ÆûÀ» °áÇÕÇÏ¿© »ç¿ëÇÕ´Ï´Ù. À̸¦ ÅëÇØ ÀÇ»ç °áÁ¤ÀÚ´Â ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÀÇ»ç °áÁ¤À» ³»¸®°í ÀÚµ¿Â÷ »ê¾÷ÀÇ Áö¼ÓÀûÀÎ ¹ßÀüÀ» ÃËÁøÇÒ ¼ö ÀÖ½À´Ï´Ù.
Â÷·® ¾Ö³Î¸®Æ½½º ¼Ö·ç¼ÇÀ» ÅëÇØ ¿îÀüÀÚ¿Í Â÷·®/Â÷·® ¼ÒÀ¯ÀÚ´Â Â÷·®ÀÇ ÇöÀç »óȲ¿¡ ´ëÇÑ µ¥ÀÌÅ͸¦ ¼öÁýÇϰí ÁÖÇàÁßÀÎ Â÷·®ÀÇ ¿îÀüÀÚ ÇൿÀ» ¾Ë ¼ö ÀÖ½À´Ï´Ù. ÀÌ ¼Ö·ç¼ÇÀº ¿îÀü Áß ¿îÀüÀÚ¿Í Â÷·® ¼º´É¿¡ ´ëÇÑ ÀÚ¼¼ÇÑ ºÐ¼®À» Á¦°øÇÕ´Ï´Ù.
°Ô´Ù°¡, Â÷·® ¼ÒÀ¯ÀÚµé »çÀÌÀÇ °æÀï Áõ°¡´Â Â÷·® ¼ÒÀ¯ÀÚµéÀÌ ÀÌ·¯ÇÑ °í±Þ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä¸¦ ´õ¿í ÃËÁøÇϰí, ÁÖÇà¿¡ ´ëÇÑ º¸´Ù ¸íÈ®ÇÑ ³íÀǸ¦ ½Ç½ÃÇϰí, ¼öÀÍÀ» ±Ø´ëÈÇϱâ À§ÇÑ Ãß°¡ Á¶Ä¡¸¦ ÃëÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¹»óµË´Ï´Ù. °Ô´Ù°¡ ÀÌ¿ë ±â¹Ý º¸Çè ä¿ëÀÌ Áõ°¡Çϰí ÀÖ´Â °Íµµ ÇâÈÄ 5³â°£ ½ÃÀå ¼ºÀå¿¡ ±àÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµÇ´Â ÁÖ¿ä ¿äÀÎ Áß ÇϳªÀÔ´Ï´Ù.
¶ÇÇÑ Â÷·® °ü¸® ¾÷°èÀÇ ÁÖ¿ä ±â¾÷Àº ÃÖÁ¾ »ç¿ëÀÚÀÇ ¿ä±¸°¡ ³ô¾ÆÁö°í Àֱ⠶§¹®¿¡ ÃֽŠ¹× ÃÖ÷´Ü ¼Ö·ç¼ÇÀ» °³¹ßÇϱâ À§ÇØ ¿¬±¸ °³¹ß¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖÀ¸¸ç, ¾ÕÀ¸·Î ¼ö³â°£ Â÷·® ¾Ö³Î¸®Æ½½º ¼Ö·ç¼Ç ½ÃÀåÀ» È®´ëÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¼±µµÀû ÀÎ ÀÚµ¿Â÷ Á¦Á¶¾÷üÀÇ Â÷·® ¾Ö³Î¸®Æ½½º ¼Ö·ç¼ÇÀÇ Ã¤ÅÃÀÌ ¼¼°èÀûÀ¸·Î È®´ëµÊ¿¡ µû¶ó ¼ö¿ä°¡ ´õ¿í Áõ°¡ÇÏ°í ¿¹Ãø ±â°£ µ¿¾È Â÷·® ¾Ö³Î¸®Æ½½º ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¿¹¸¦ µé¾î, 2022³â 3¿ù Daimler TruckÀº Àεµ¿¡ Áö´ÉÇü Æ®·° ¿î¿µ ½Ã½ºÅÛÀ» Áö¿øÇÏ´Â R&D ¼¾Å͸¦ ¼³¸³Çß½À´Ï´Ù.
ÀÌ¿ë ±â¹Ý º¸ÇèÀÇ Àαâ Áõ°¡´Â ÀÚµ¿Â÷ÀÇ °í±Þ ºÐ¼® äÅÃÀ» ÃËÁøÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÁÖ¿ä ¿äÀÎ Áß ÇϳªÀÔ´Ï´Ù. ¿Ö³ÄÇϸé À̵éÀº ¿îÀüÀÚÀÇ ÇൿÀ» ½Ç½Ã°£À¸·Î »ó¼¼ÇÏ°Ô ºÐ¼®ÇÏ¿© ÀÚµ¿Â÷ º¸Çè ȸ»ç°¡ º¸Çè·á¸¦ º¸´Ù Á¤È®ÇÏ°Ô °¡°ÝÇÒ ¼ö ÀÖµµ·Ï Çϱ⠶§¹®ÀÔ´Ï´Ù. ¶ÇÇÑ, »ç¿ë»óȲ ±â¹ÝÀÇ º¸ÇèÀº ÁÖÇà°Å¸®°¡ ÁÙ¾îµé°Å³ª º¸´Ù ¾ÈÀüÇÑ ¿îÀü½À°üÀ» ÀÍÈ÷°Å³ª ÇßÀ» °æ¿ì¿¡ ¼ÒºñÀÚ¿¡°Ô Àμ¾Æ¼ºê¸¦ ÁÖ¾î º¸Çè·á ºñ¿ëÀ» Á¦¾îÇÏ´Â ´É·ÂÀ» ±âÀçÇϰí ÀÖ½À´Ï´Ù.
¶ÇÇÑ, ÀÚµ¿ ÅÚ·¹¸Åƽ½º¸¦ Ȱ¿ëÇÔÀ¸·Î½á ¿îÀüÀÚ´Â °ú°ÅÀÇ ¿îÀü Çൿ¿¡¼ ¹è¿ì°í ÀÚ½ÅÀÇ ¿îÀü ÆÐÅÏÀ» Àß ÀνÄÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ º¸Çèȸ»çÀÇ °æ¿ì »ç°í ¹ß»ý ½Ã ¿îÀü µ¥ÀÌÅÍ¿¡ ´ëÇÑ Á¤È®ÇÑ ÅëÂû·ÂÀ» ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù. À̰ÍÀº ¶ÇÇÑ ¿îÀüÀÚ¿Í ÀÚµ¿Â÷ ¼ÒÀ¯ÀÚÀÇ ÇãÀ§ û±¸·ÎºÎÅÍ º¸È£ÇÏ´Â µ¥ µµ¿òÀÌ µÇ¸ç ½ÇÁ¦·Î ¹«½¼ ÀÏÀÌ ÀϾ´ÂÁö¸¦ ¸íÈ®ÇÏ°Ô ÇÕ´Ï´Ù.
Â÷·® ¾Ö³Î¸®Æ½½º ½ÃÀåÀº ÀÚµ¿Â÷ÀÇ ¿¬°á¼º Áõ°¡¿¡ Å« ¿µÇâÀ» ¹ÞÀ¸¸ç, ÀÚµ¿Â÷ÀÇ È¿À²¼º, ¾ÈÀü¼º ¹× ¼º´ÉÀÇ ´Ù¾çÇÑ Ãø¸éÀ» °³¼±Çϱâ À§ÇØ Á¶»çÇÒ ¼ö Àִ dzºÎÇÑ ½Ç½Ã°£ µ¥ÀÌÅ͸¦ »ý¼ºÇϰí ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷´Â ÅÚ·¹¸Åƽ½º ½Ã½ºÅÛ, Â÷·® žÀç ¼¾¼, »ç¹° ÀÎÅÍ³Ý ÀåÄ¡ µîÀÇ ±â¼ú·Î ÀÎÇÑ Â÷·® ¿¬°á¼º Çâ»óÀ¸·Î À§Ä¡ Á¤º¸, ¼Óµµ, ¿£Áø °Ç° »óÅÂ, ¿¬·á ¼Òºñ·®, ¿îÀüÀÚ Çൿ¿¡ °üÇÑ ¹æ´ëÇÑ ¾çÀÇ µ¥ÀÌÅ͸¦ »ý¼ºÇϰí ÀÖ½À´Ï´Ù. Â÷·® ¾Ö³Î¸®Æ½½º ½Ã½ºÅÛÀº ÀÌ µ¥ÀÌÅ͸¦ Ȱ¿ëÇÏ¿© ¿îÀüÀÚ ¾ÈÀü, Â÷·® °ü¸®, ¿¹Áö º¸Àü ¹× ¿îÀü ÃÖÀûÈ¿¡ ´ëÇÑ ÅëÂû·ÂÀ» Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù.
Â÷·® ¾Ö³Î¸®Æ½½º ¼¼°è ½ÃÀåÀº ¼ÒÇÁÆ®¿þ¾î ¹× ¼ºñ½º·Î ±¸ºÐµË´Ï´Ù. ¼ÒÇÁÆ®¿þ¾î ºÎ¹®Àº Â÷·® ¾Ö³Î¸®Æ½½º ¼Ö·ç¼ÇÀÇ Ã¤ÅÃÀÌ ¼¼°èÀûÀ¸·Î Áõ°¡Çϰí Àֱ⠶§¹®¿¡ ½ÃÀå¿¡¼ ÀÏÁ¤ÇÑ Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¼ÒÇÁÆ®¿þ¾î ±¸¼º ¿ä¼Ò´Â ±â¾÷ÀÌ Â÷·® ¹× º¸°í¸¦ À§ÇØ ¼öÁýÇÏ´Â ´Ù¸¥ ½Ç½Ã°£ µ¥ÀÌÅ͸¦ ¸ð´ÏÅ͸µÇÏ°í °ü¸®ÇÏ´Â µ¥ ÇÊ¿äÇÕ´Ï´Ù.
¼ÒÇÁÆ®¿þ¾î´Â ¼öÁýµÈ Á¤º¸¸¦ ÀÇ¹Ì ÀÖ´Â µ¥ÀÌÅÍ·Î º¯È¯ÇÏ´Â ½Ã½ºÅÛÀ¸·Î ±¸¼ºµÇ¸ç, ¿¹¸¦ µé¾î º¸°í¼¸¦ ÀÛ¼ºÇϱâ À§ÇÑ ¼ÒÇÁÆ®¿þ¾î°¡ ÀÖ½À´Ï´Ù. ±×·¯³ª ±â¼ú Çâ»ó°ú ¼ö¿ä Áõ°¡·Î ÀÎÇØ ÁÖ¿ä ½ÃÀå °ü°èÀÚ´Â ÃֽŠ½Ã½ºÅÛ ¹× ¼ÒÇÁÆ®¿þ¾î °³¹ßÀ» À§ÇÑ ¿¬±¸ °³¹ß¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ÀÌ´Â ¿¹Ãø ±â°£ µ¿¾È Â÷·® ¾Ö³Î¸®Æ½½º ¼ÒÇÁÆ®¿þ¾î ½ÃÀåÀÇ ¼ºÀåÀ» ´õ¿í ÃËÁøÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
À¯·´Àº ÁÖ¿ä Áö¿ª ½ÃÀåÀÌ µÉ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
Áö¿ªÀûÀ¸·Î Â÷·® ¾Ö³Î¸®Æ½½º ½ÃÀåÀº ºÏ¹Ì, ³²¹Ì, À¯·´, Áßµ¿, ¾ÆÇÁ¸®Ä«, ¾Æ½Ã¾ÆÅÂÆò¾çÀ¸·Î ±¸ºÐµË´Ï´Ù. À¯·´¿¡´Â ÁÖ¿ä °í±Þ ÀÚµ¿Â÷ Á¦Á¶¾÷ü°¡ Á¸ÀçÇϱ⠶§¹®¿¡ À¯·´ÀÌ ½ÃÀå¿¡¼ ÁÖ¸ñÇØ¾ß ÇÒ Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶ÇÇÑ À¯·´ ±â¾÷µéÀº ÀÚÀ²ÁÖÇàÂ÷¿Í Ä¿³ØÆ¼µåÄ«¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. ÀÌ¿Í °°ÀÌ ÀÚÀ²ÁÖÇà ±â¼ú Á¦°ø¿¡ ´ëÇÑ ±Þ¼ÓÇÑ ÁöÃâÀº À¯·´¿¡¼ ½ÃÀå ¼ºÀåÀÇ ÁÖ¿ä ¿äÀÎ Áß Çϳª·Î º¸ÀÔ´Ï´Ù.
¶ÇÇÑ ºÏ¹Ì´Â ±â¼úÀÇ Á¶±â ä¿ë°ú È®¸³µÈ ÀÎÇÁ¶óÀÇ Á¸Àç·Î ÀÎÇØ ¾çÈ£ÇÑ ¼ºÀå ±âȸ¸¦ º¸¿©ÁÙ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾çÀº ÀüÀÚ»ó°Å·¡ »ê¾÷ÀÇ ±Þ¼ºÀå°ú ¶óÀ̵å ÇìÀϸµ ¼ºñ½º µ¿Çâ Áõ°¡·Î ÀÎÇØ ¼ºÀå·üÀÌ ´Ã¾î³¯ °ÍÀ¸·Î ¿¹»óµÇ¸ç Áß±¹°ú Àεµ µî ±¹°¡¿¡¼ ÀÌ·¯ÇÑ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä¸¦ Å©°Ô °ßÀÎÇϰí ÀÖ½À´Ï´Ù.
The vehicle analytics market is evaluated at US$7.902 billion for the year 2022 and is projected to grow at a CAGR of 13.45% to reach a market size of US$19.116 billion by the year 2029.
Vehicle analytics is the methodical examination of data collected by automobiles to extract insightful information and enhance many facets of their functioning. Vehicle analytics helps stakeholders increase performance, simplify maintenance, and boost overall efficiency by using data from sensors, onboard computers, and outside sources like traffic conditions.
Numerous fields, including supply chain optimisation, linked automobile services, insurance telematics, fleet management, predictive maintenance, driver behaviour monitoring, and usage-based charging, use this discipline. Vehicle analytics uses a mix of hardware and advanced software platforms to understand large datasets using machine learning and other approaches. This helps decision-makers make well-informed decisions and promotes ongoing advances in the automotive industry.
The vehicle analytics solutions allow the drivers and the fleet/vehicle owners to gather data regarding the current situation of the vehicle, along with knowing the behaviour of the vehicle's driver throughout the journey. These solutions provide a detailed analysis of the performance of the driver and the vehicle throughout the journey.
Furthermore, the rising competition among the fleet owners is further anticipated to drive the demand for these advanced solutions by the fleet owners, to have clearer insights about the journey and take further steps to maximize the revenue. Moreover, the rising adoption of usage-based insurance is also one of the prime factors that are expected to positively impact the market's growth during the next five years.
Furthermore, key players in the fleet management industry are investing heavily in R&D to develop the latest and most advanced solutions due to the growing requirements from their end-users, which is also anticipated to augment the market for vehicle analytics solutions during the coming years. The growing adoption of vehicle analytics solutions by big automakers globally is further expected to increase the demand and thus drive the growth of the vehicle analytics market during the forecast period. For instance, in March 2022, Daimler Truck set up a research and development centre in India to aid its intelligent truck operating system.
The rising popularity of usage-based insurance is one of the prime factors which is anticipated to drive the adoption of advanced analytics in vehicles. This is because these provide real-time in-depth analysis of driver behaviour, making it easier for auto insurers to more accurately price premiums. Also, usage-based insurance provides consumers with the ability to control their premium costs by providing them with incentives in the event of reduced miles driven, and the adoption of safer driving habits.
Also, by utilizing auto-telematics, drivers can learn from their previous driving behaviours and be well aware of their driving patterns. Also, it will be easier for insurers to develop accurate insights regarding driving data in the event of an accident. This will further help in protection against false claims by the driver or the owner of the vehicle and would clarify what happened actually.
The vehicle analytics market is being greatly impacted by the growing connection of automobiles, which is generating an abundance of real-time data that can be examined to enhance many facets of vehicle efficiency, safety, and performance. Vehicles are producing enormous volumes of data on location, speed, engine health, fuel consumption, and driver behaviour as a result of increased vehicle connectivity brought about by technology like telematics systems, onboard sensors, and Internet of Things devices. Vehicle analytics systems may use this data to offer insights into driver safety, fleet management, predictive maintenance, and operational optimisation.
Based on offerings, the global vehicle analytics market is segmented as software and services. The software segment is anticipated to hold a decent share of the market due to the increasing adoption of vehicle analytics solutions globally. Software components are necessary for organizations to monitor and manage their vehicle fleets and other real-time data that is collected for the preparation of reports.
The software consists of systems that convert the collected information into meaningful data, for instance, software for generating reports. However, the improvement in technology and growing requirements are further leading to investments by big market players in R&D for the development of the latest systems and software. This is further expected to propel the growth of the vehicle analytics software market during the forecast period.
Europe is anticipated to be the major regional market.
Geographically, the vehicle analytics market is segmented into North America, South America, Europe, the Middle East, Africa, and the Asia Pacific. The European region is anticipated to hold a noteworthy share of the market on account of the presence of key luxury automotive manufacturers in the region. Furthermore, European companies are spending heavily on autonomous and connected vehicles. Thus, the rapid spending on the Offering of autonomous technology is considered one of the prime factors for the growth of the market in the European region.
Furthermore, North America is projected to show good growth opportunities on account of the early adoption of technology and the presence of well-established infrastructure. The Asia Pacific region is projected to grow at a decent rate on account of rapid growth in the e-commerce industry coupled with a rising trend of ride-hailing services, which is significantly driving the demand for these solutions in countries like China and India.