½ÃÀ庸°í¼­
»óǰÄÚµå
1495945

¼Ö¶ó ½Ã¹Ä·¹ÀÌÅÍ ½ÃÀå - ¿¹Ãø(2024-2029³â)

Solar Simulator Market - Forecasts from 2024 to 2029

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Knowledge Sourcing Intelligence | ÆäÀÌÁö Á¤º¸: ¿µ¹® 105 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¼Ö¶ó ½Ã¹Ä·¹ÀÌÅÍ ½ÃÀåÀÇ 2022³â ½ÃÀå ±Ô¸ð´Â 2¾ï 5,660¸¸ 1,000´Þ·¯·Î Æò°¡µÇ¸ç, CAGR 6.03% ¼ºÀåÇÏ¿© 2029³â¿¡´Â 4¾ï 11¸¸ 9,000´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¼Ö¶ó ½Ã¹Ä·¹ÀÌÅʹ ž籤 Ư¼ºÀ» Æò°¡Çϱâ À§ÇØ ÀÚ¿¬±¤À» ½Ã¹Ä·¹À̼ÇÇÏ´Â ÀåÄ¡·Î, ½ÇÇè½Ç ȯ°æ¿¡¼­ žçÀüÁö Å×½ºÆ®¸¦ À§ÇÑ ÅëÁ¦µÈ ½Ç³» Å×½ºÆ® ½Ã¼³À» Á¦°øÇÏ´Â ¹®Á¦¸¦ ÇØ°áÇÕ´Ï´Ù. ¼Ö¶ó ½Ã¹Ä·¹ÀÌÅÍ´Â ±¤¿ø, Àü¿ø °ø±Þ ÀåÄ¡ ¹× ºÐ·ù ±âÁØ¿¡ µû¶ó ºöÀÇ Ãâ·ÂÀ» º¯°æÇÏ´Â ÇÊÅÍ·Î ±¸¼ºµË´Ï´Ù. ģȯ°æ ¿¡³ÊÁö¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó °¡Á¤¿ë ¿Â¼ö, Á¦Á¶ °ø°£, ³­¹æ, ³Ã¹æ µîÀÇ ¿ëµµ·Î ž翭 ½Ã¹Ä·¹ÀÌÅÍÀÇ »ç¿ëÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

žçÀüÁö, Àڿܼ± Â÷´Ü È­Àåǰ ¹× ÆäÀÎÆ®, ÀÇ·á ¹× ±âŸ ¿©·¯ ºÎ¹®ÀÇ ¿¬±¸°³¹ß¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡ÇÔ¿¡ µû¶ó, ¼Ö¶ó ½Ã¹Ä·¹ÀÌÅÍ´Â ±âÁ¸ÀÇ ½ÃÇè ¹× ¿¬±¸ ¹æ¹ýº¸´Ù ºñ¿ë È¿À²ÀûÀÎ ´ë¾ÈÀ» Á¦°øÇϱ⠶§¹®¿¡ ¼Ö¶ó ½Ã¹Ä·¹ÀÌÅÍ ½ÃÀåÀÇ ¼ºÀåÀÌ ¿¹»óµË´Ï´Ù. ¼Ö¶ó ½Ã¹Ä·¹ÀÌÅʹ ž籤¹ßÀü, È­Àåǰ, ÆäÀÎÆ® ¹× ÄÚÆÃ, Àڿܼ± Â÷´Ü ¼¶À¯ ¹× Á÷¹° µîÀÇ ¿¬±¸°³¹ß¿¡ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù.

½ÃÀå µ¿Çâ:

¼Ö¶ó ½Ã¹Ä·¹ÀÌÅÍ »ê¾÷À» À̲ô´Â ¸î °¡Áö ÁÖ¿ä ¿äÀÎÀÌ ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, Àç»ý¿¡³ÊÁö, ƯÈ÷ ž籤¹ßÀü¿¡ ´ëÇÑ Àü ¼¼°èÀûÀÎ °ü½ÉÀ¸·Î ÀÎÇØ ž籤 ÆÐ³ÎÀÇ ¼º´É°ú ½Å·Ú¼ºÀ» ±Ø´ëÈ­Çϱâ À§ÇÑ Á¤¹ÐÇÑ Å×½ºÆ® ¹× °ËÁõ¿¡ ´ëÇÑ Çʿ伺ÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ Å¾çÀüÁö ±â¼úÀÇ Çõ½ÅÀ¸·Î ÀÎÇØ ´Ù¾çÇÑ Å×½ºÆ® »ç¾çÀ» ÃæÁ·½Ãų ¼ö ÀÖ´Â º¹ÀâÇÑ ¼Ö¶ó ½Ã¹Ä·¹ÀÌÅÍ¿¡ ´ëÇÑ ¼ö¿äµµ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¾ö°ÝÇÑ Å×½ºÆ® Á¶°ÇÀ» ¿ä±¸ÇÏ´Â ¾ö°ÝÇÑ ±ÔÁ¦ ¿ä°Ç°ú ÀÎÁõ ÀýÂ÷·Î ÀÎÇØ ¼Ö¶ó ½Ã¹Ä·¹ÀÌÅÍÀÇ »ç¿ëÀÌ ´õ¿í ÃËÁøµÇ°í ÀÖ½À´Ï´Ù.

¶ÇÇÑ, ž籤 ÀÎÇÁ¶ó¿¡ ´ëÇÑ Àü ¼¼°è ÁöÃâ Áõ°¡´Â ¼Ö¶ó ½Ã¹Ä·¹ÀÌÅÍ·Î µÞ¹ÞħµÇ´Â öÀúÇÑ Å×½ºÆ® ÀýÂ÷ÀÇ Çʿ伺À» °­Á¶ÇÏ¸ç ½ÃÀå È®´ë¸¦ ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. Àü¹ÝÀûÀ¸·Î ÀÌ·¯ÇÑ ¿äÀεéÀÌ ¼Ö¶ó ½Ã¹Ä·¹ÀÌÅÍ ½ÃÀåÀ» °ßÀÎÇϰí ÀÖÀ¸¸ç, ž籤 ¿¡³ÊÁö ½Ã½ºÅÛÀÇ ¹ßÀü°ú °³¼±¿¡ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù.

½ÃÀå ÃËÁø¿äÀÎ:

  • ³ì»ö ¿¡³ÊÁö¿¡ ´ëÇÑ ¼ö¿ä ±ÞÁõÀº ½ÃÀå ¼ºÀåÀÇ ¿øµ¿·ÂÀÌ µÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¼Ö¶ó ½Ã¹Ä·¹ÀÌÅÍ »ê¾÷Àº Àç»ý¿¡³ÊÁö, ƯÈ÷ ž籤¹ßÀüÀÇ ±¤¹üÀ§ÇÑ È°¿ë¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó Å« ¿µÇâÀ» ¹Þ°í ÀÖ½À´Ï´Ù. ¼Ö¶ó ½Ã¹Ä·¹ÀÌÅʹ ž籤 ÆÐ³Î ¹× ±âŸ ž籤¹ßÀü(PV) Àåºñ¸¦ Å×½ºÆ®, °³¹ß ¹× ÀÎÁõÇÏ´Â µ¥ ÀÖ¾î ¸Å¿ì Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ¼Ö¶ó ½Ã¹Ä·¹ÀÌÅÍ¿¡ ´ëÇÑ ¼ö¿ä´Â ȯ°æ ¹®Á¦¿Í ź¼Ò ¹èÃâ·® °¨ÃàÀ» À§ÇÑ Á¤ºÎ Á¤Ã¥¿¡ ÈûÀÔ¾î Àü ¼¼°èÀûÀ¸·Î Àç»ý¿¡³ÊÁö·ÎÀÇ ÀüȯÀÌ °¡¼ÓÈ­µÊ¿¡ µû¶ó Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

´Ù¾çÇÑ È¯°æ Á¶°Ç¿¡¼­ ÆÐ³ÎÀÇ À¯È¿¼º, ¼ö¸í ¹× ¼º´ÉÀ» º¸ÀåÇϱâ À§ÇØ Á¤È®ÇÏ°í ½Å·ÚÇÒ ¼ö Àִ ž籤 ÆÐ³Î Å×½ºÆ®°¡ ÇÊ¿äÇϱ⠶§¹®¿¡ ÀÌ·¯ÇÑ ¼ö¿ä Áõ°¡ÀÇ ÁÖ¿ä ¿äÀÎ Áß ÇϳªÀÔ´Ï´Ù.

  • ž籤 ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡´Â ž翭 ½Ã¹Ä·¹ÀÌÅÍ ½ÃÀåÀÇ ¼ºÀå¿¡ ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¼Ö¶ó ½Ã¹Ä·¹ÀÌÅÍ ½ÃÀåÀº ž籤 ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÁöÃâ Áõ°¡·Î ÀÎÇØ Å« ¼ºÀåÀÌ ¿¹»óµË´Ï´Ù. Àü ¼¼°è Á¤ºÎ, °ø°ø ±â°ü ¹× ±â¾÷ÀÌ Àç»ý¿¡³ÊÁö, ƯÈ÷ ž籤¹ßÀü¿¡ ´ëÇÑ ³ë·ÂÀ» °­È­ÇÔ¿¡ µû¶ó ž籤 ÆÐ³ÎÀÇ Á¤¹ÐÇÑ Å×½ºÆ® ¹× °ËÁõ¿¡ ´ëÇÑ Çʿ伺ÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ´ë±Ô¸ð ž籤¹ßÀü ÇÁ·ÎÁ§Æ®¿¡ ¼³Ä¡Çϱâ Àü¿¡ ž籤 ÆÐ³ÎÀÇ ³»±¸¼º, ¼º´É ¹× È¿À²¼ºÀ» Æò°¡ÇÏ´Â µ¥ ÇÊ¿äÇÑ Àåºñ¸¦ Á¦°øÇÏ´Â ¼Ö¶ó ½Ã¹Ä·¹ÀÌÅÍ´Â ÀÌ·¯ÇÑ »óȲ¿¡¼­ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù.

ÀÌ·¯ÇÑ ÁöÃâ·Î ÀÎÇØ ½ÇÁ¦ ¿î¿µ »óȲÀ» Á¤È®ÇÏ°Ô ½Ã¹Ä·¹À̼ÇÇϰí ž籤 ¿¡³ÊÁö ½Ã½ºÅÛÀÇ ½Å·Ú¼º°ú È¿À²¼ºÀ» º¸ÀåÇÒ ¼ö ÀÖ´Â °í±Þ ¼Ö¶ó ½Ã¹Ä·¹ÀÌÅÍ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ž籤 ½Ã½ºÅÛÀÇ ±Ô¸ð¿Í º¹À⼺ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ¼Ö¶ó ½Ã¹Ä·¹ÀÌÅÍ¿¡ ±â¹ÝÇÑ Ã¶ÀúÇÑ Å×½ºÆ® ¹× ÀÎÁõ ÀýÂ÷ÀÇ Á߿伺ÀÌ ´õ¿í Ä¿Áö°í ÀÖ½À´Ï´Ù. ±× °á°ú, ž籤 ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡ÇÏ¿© ¼Ö¶ó ½Ã¹Ä·¹ÀÌÅÍ ½ÃÀåÀ» µÞ¹ÞħÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¼Ö¶ó ½Ã¹Ä·¹ÀÌÅÍ´Â Àü ¼¼°èÀûÀ¸·Î ž籤 ¿¡³ÊÁö ¿ë·®ÀÇ Áö¼ÓÀûÀÎ °³¹ß°ú ÃÖÀûÈ­¿¡ ÇʼöÀûÀÔ´Ï´Ù.

½ÃÀå ¾ïÁ¦¿äÀÎ:

  • ž籤 Ä¿ÆÐ½ÃÅÍÀÇ ºñ¿ë »ó½ÂÀº ž翭 ½Ã¹Ä·¹ÀÌÅÍ ½ÃÀåÀÇ ¼ºÀåÀ» Á¦ÇÑÇÒ ¼ö ÀÖ½À´Ï´Ù.

¼Ö¶ó ½Ã¹Ä·¹ÀÌÅÍ ½ÃÀåÀº ž翭 Ä¿ÆÐ½ÃÅÍ ºñ¿ë »ó½ÂÀ¸·Î ÀÎÇØ ¼ºÀåÀÌ µÐÈ­µÉ ¼ö ÀÖ½À´Ï´Ù. ž翭 Ä¿ÆÐ½ÃÅÍ´Â Àü±â ¿¡³ÊÁö¸¦ ÀúÀåÇϰí Á¦¾îÇÏ¿© ž翭 ½Ã¹Ä·¹ÀÌÅÍÀÇ Áö¼ÓÀûÀÌ°í ¾ÈÁ¤ÀûÀÎ ÀÛµ¿¿¡ ÇʼöÀûÀÔ´Ï´Ù. ±×·¯³ª ž翭 Ä¿ÆÐ½ÃÅÍ °¡°ÝÀÌ Å©°Ô »ó½ÂÇϸé ž翭 ½Ã¹Ä·¹ÀÌÅÍ Á¦Á¶¾÷ü¿Í »ç¿ëÀÚ ¸ðµÎ ¾î·Á¿ò¿¡ Á÷¸é ÇÒ ¼ö ÀÖ½À´Ï´Ù.

Ä¿ÆÐ½ÃÅÍ ºñ¿ëÀÇ »ó½ÂÀº Á¦Á¶¾÷üÀÇ »ý»ê ºñ¿ëÀ» Áõ°¡½ÃÄÑ Å¾翭 ½Ã¹Ä·¹ÀÌÅÍ ÀåºñÀÇ ¼Ò¸Å °¡°ÝÀ» »ó½Â½Ãų ¼ö ÀÖ½À´Ï´Ù. ÀÌ´Â ±¸¸Å Èñ¸ÁÀÚ, ƯÈ÷ ¿¹»êÀÌ Á¦ÇÑµÈ Áß¼Ò±â¾÷, Çмú ±â°ü ¹× ½Å»ý ±â¾÷ÀÇ ¼Ö¶ó ½Ã¹Ä·¹ÀÌÅÍ ±¸¸Å¸¦ ¹æÇØ ÇÒ ¼ö ÀÖ½À´Ï´Ù.

µû¶ó¼­ ž翭 Ä¿ÆÐ½ÃÅÍ °¡°Ý »ó½ÂÀÌ Å¾翭 ½Ã¹Ä·¹ÀÌÅÍ ½ÃÀå È®´ë¿¡ ¹ÌÄ¡´Â ¿µÇâÀº ½É°¢ÇÏ°í °©ÀÛ½º·´Áö´Â ¾ÊÁö¸¸ ÇØ´ç ºÎ¹®¿¡ ¾î·Á¿òÀ» ÃÊ·¡ÇÏ°í º¯È­¸¦ °¡Á®¿Ã ¼ö ÀÖ½À´Ï´Ù. ¸ð¸àÅÒÀ» À¯ÁöÇϰí ÅÂ¾ç ¿¡³ÊÁö ±â¼úÀÇ Ãß°¡ ¹ßÀüÀ» ÃËÁøÇϱâ À§ÇØ Á¦Á¶¾÷ü¿Í ¼ÒºñÀÚ´Â Á¢±Ù ¹æ½ÄÀ» º¯°æÇϰí Àú·ÅÇÑ ´ë¾ÈÀ» ã¾Æ¾ß ÇÒ ¼öµµ ÀÖ½À´Ï´Ù.

¾Æ½Ã¾ÆÅÂÆò¾çÀÌ ÁÖ¿ä Áö¿ª ½ÃÀåÀÌ µÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

Áß±¹, Àεµ, Àεµ³×½Ã¾Æ¿Í °°Àº ±¹°¡µéÀÇ Å¾籤¹ßÀü ¼ö¿ä Áõ°¡¿Í Áö¿ª Á¤ºÎÀÇ Ä£È¯°æ ¿¡³ÊÁö Áö¿ø Á¤Ã¥À¸·Î ÀÎÇØ ¼Ö¶ó ½Ã¹Ä·¹ÀÌÅÍÀÇ ¼ö¿ä´Â ¾Æ½Ã¾ÆÅÂÆò¾ç¿¡¼­ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾ç¿¡ ÀÌ¾î ºÏ¹Ì¿Í À¯·´¿¡¼­µµ ¹èÃâ·® °¨ÃàÀ» À§ÇÑ ¾ö°ÝÇÑ ¹ý·üÀÌ Á¦Á¤µÇ¾î Àç»ý¿¡³ÊÁö ÇÁ·ÎÁ§Æ®¿Í ¿¡³ÊÁö È¿À² ºÎ¹®¿¡ ´õ ¸¹Àº ³ë·ÂÀ» ±â¿ïÀ̰í ÀÖ½À´Ï´Ù. »ó¾÷ ¹× »ê¾÷ °³¹ßÀÇ È®´ë´Â Àü·Â ¼ö¿äÀÇ Áõ°¡¿Í ÁÖ¿ä ±¹°¡ÀÇ Å¾籤 ¾ÖÇø®ÄÉÀÌ¼Ç °³¹ß ¹× »ó¿ëÈ­¿¡ ´ëÇÑ Á¤ºÎ Áö¿øÀ¸·Î À̾îÁ® ¼Ö¶ó ½Ã¹Ä·¹ÀÌÅÍÀÇ ½ÃÀå ȯ°æÀ» Àû±ØÀûÀ¸·Î °­È­Çϰí ÀÖ½À´Ï´Ù.

ž籤À» ÀÌ¿ëÇÑ ¿¡³ÊÁö »ý»ê¿¡ À¯¸®ÇÑ È¯°æÀ¸·Î ÀÎÇØ ¶óƾ¾Æ¸Þ¸®Ä«´Â ž籤¹ßÀü ´É·ÂÀÇ °­±¹À¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ¼ö¿ä Áõ°¡, ±â¼ú ¹ßÀü ¹× Á¤ºÎ ±ÔÁ¦´Â ÀÌ Áö¿ªÀÇ ¼Ö¶ó ½Ã¹Ä·¹ÀÌÅÍ ¹× ž籤¹ßÀü »ê¾÷À» »õ·Î¿î Â÷¿øÀ¸·Î ²ø¾î¿Ã¸®°í ÀÖ½À´Ï´Ù. Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«¿¡¼­´Â ž籤¹ßÀü ÇÁ·ÎÁ§Æ®, Àç»ý¿¡³ÊÁö ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ, Àü·Â ÀÎÇÁ¶ó ¾÷µ¥ÀÌÆ®°¡ ¼Ö¶ó ½Ã¹Ä·¹ÀÌÅÍ ½ÃÀåÀÇ ÁÖ¿ä ÃËÁø¿äÀÎÀÌ µÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ÁÖ¿ä °³¹ß ³»¿ë:

  • 2023³â 5¿ù, General Atomics Electromagnetic Systems(GA-EMS)´Â TSIS-2(Total Solar Irradiance Sensor 2) ¿ìÁÖ¼± ÇÁ·ÎÁ§Æ®¸¦ Áö¿øÇϱâ À§ÇØ ¿ìÁÖ¼± ½Ã¹Ä·¹ÀÌÅ͸¦ °³¹ßÇÏ¿© Äݷζ󵵴ëÇб³ Ç×°ø¿ìÁÖ¹°¸®Çבּ¸¼Ò(LASP)¿¡ ³³Ç°Çß´Ù°í ¹ßÇ¥Çß½À´Ï´Ù. ³³Ç°Çß´Ù°í ¹ßÇ¥Çß½À´Ï´Ù.
  • 2022³â 12¿ù, Ű»çÀÌÆ® Å×Å©³î·¯Áö½º(Keysight Technologies, Inc)´Â ž籤¹ßÀü(PV) ºÎ¹®ÀÇ °Åµ¿À» ÀçÇöÇϱâ À§ÇØ Ã·´Ü ¼³°è ¹× °ËÁõ ¼Ö·ç¼ÇÀ» Á¦°øÇϰí, ¼¼°è¸¦ ¿¬°áÇÏ°í ¾ÈÀüÀ» º¸ÀåÇϱâ À§ÇÑ Çõ½ÅÀ» °¡¼ÓÈ­ÇÏ´Â ¼±µµÀûÀÎ ±â¼ú ¹× ±â¾÷À¸·Î¼­ »õ·Î¿î ¸ðµâÇü ž籤 ¾î·¹ÀÌ ½Ã¹Ä·¹ÀÌÅÍ(SAS) MP4300A ½Ã¸®Á Ãâ½ÃÇßÀ¸¸ç, SAS ½Ã½ºÅÛÀº ¿ìÁÖ¼± ¹× ÀΰøÀ§¼ºÀÌ Á÷¸éÇÒ ¼ö ÀÖ´Â ¸ðµç »óȲ¿¡ ´ëÇÑ °íÃæ½Çµµ ½Ã¹Ä·¹À̼ÇÀ» Á¦°øÇÕ´Ï´Ù. ½Ã¹Ä·¹À̼ÇÀ» Á¦°øÇÕ´Ï´Ù.
  • 2022³â 6¿ù, G2V Optics´Â NASA Goddard Space Flight Centre°¡ ±Ëµµ¿¡¼­ À§¼º¿¡ ¿¬·á¸¦ °ø±ÞÇϱâ À§ÇÑ OSAM-1 ¿ìÁÖ¼± Å×½ºÆ®¸¦ Áö¿øÇÏ°í ¿ìÁÖ °ø°£¿¡¼­ Á¶¸³ ¹× Á¦Á¶¸¦ ½Ã¿¬Çϱâ À§ÇØ ¹Ì±¹ ¿¬¹æ Á¤ºÎ¿Í Çϵµ±Þ °è¾àÀ» ü°áÇß½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼Ò°³

  • ½ÃÀå °³¿ä
  • ½ÃÀå Á¤ÀÇ
  • Á¶»ç ¹üÀ§
  • ½ÃÀå ¼¼ºÐÈ­
  • ÅëÈ­
  • °¡Á¤
  • ±âÁØ ¿¬µµ¿Í ¿¹Ãø ¿¬µµ ŸÀÓ¶óÀÎ
  • ÀÌÇØ°ü°èÀÚ¿¡ ´ëÇÑ ÁÖ¿ä ÀÌÁ¡

Á¦2Àå Á¶»ç ¹æ¹ý

  • Á¶»ç µðÀÚÀÎ
  • Á¶»ç °úÁ¤

Á¦3Àå ÁÖ¿ä ¿ä¾à

  • ÁÖ¿ä Á¶»ç °á°ú
  • ¾Ö³Î¸®½ºÆ®ÀÇ °ßÇØ

Á¦4Àå ½ÃÀå ¿ªÇÐ

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
  • Porter's Five Forces ºÐ¼®
  • ¾÷°è ¹ë·ùüÀÎ ºÐ¼®
  • ¾Ö³Î¸®½ºÆ®ÀÇ °ßÇØ

Á¦5Àå ¼Ö¶ó ½Ã¹Ä·¹ÀÌÅÍ ½ÃÀå : À¯Çüº°

  • ¼Ò°³
  • ÆÞ½º ½Ã¹Ä·¹ÀÌÅÍ
  • Ç÷¡½Ã ½Ã¹Ä·¹ÀÌÅÍ
  • ¿¬¼Ó ½Ã¹Ä·¹ÀÌÅÍ

Á¦6Àå ¼Ö¶ó ½Ã¹Ä·¹ÀÌÅÍ ½ÃÀå : ±¤¿øº°

  • ¼Ò°³
  • ¼®¿µ ÅÖ½ºÅÙ ÇÒ·Î°Õ ·¥ÇÁ(QHT)
  • ¸ÞÅ» ÇÒ¶óÀÌµå ¾ÆÅ© ·¥ÇÁ(HMI)
  • ¹ß±¤ ´ÙÀÌ¿Àµå(LED)
  • Å©¼¼³í ¾ÆÅ© ·¥ÇÁ
  • ±âŸ

Á¦7Àå ¼Ö¶ó ½Ã¹Ä·¹ÀÌÅÍ ½ÃÀå : ¿ëµµº°

  • ¼Ò°³
  • ÀÇ·á Á¶»ç
  • žçÀüÁö ½ÃÇè°ú ¿¬±¸
  • Àΰø ȯ°æ ½ÃÇè
  • ±âŸ

Á¦8Àå ¼Ö¶ó ½Ã¹Ä·¹ÀÌÅÍ ½ÃÀå : Áö¿ªº°

  • ¼Ò°³
  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • ³²¹Ì
    • ºê¶óÁú
    • ¾Æ¸£ÇîÆ¼³ª
    • ±âŸ
  • À¯·´
    • ¿µ±¹
    • µ¶ÀÏ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®
    • À̽º¶ó¿¤
    • ±âŸ
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • Áß±¹
    • ÀϺ»
    • Àεµ
    • Çѱ¹
    • ´ë¸¸
    • ű¹
    • Àεµ³×½Ã¾Æ
    • ±âŸ

Á¦9Àå °æÀï ȯ°æ°ú ºÐ¼®

  • ÁÖ¿ä ±â¾÷°ú Àü·« ºÐ¼®
  • ½ÃÀå Á¡À¯À² ºÐ¼®
  • ÇÕº´, Àμö, ÇÕÀÇ¿Í Çù¾÷
  • °æÀï ´ë½Ãº¸µå

Á¦10Àå ±â¾÷ °³¿ä

  • Abet Technologies
  • G2V Optics
  • Solar Light
  • TS-Space System
  • Sciencetech Inc.
  • Holmarc Opto-Mechatronics ltd.
  • Ossila
  • Sinseil International
ksm 24.06.24

The solar simulator market is evaluated at US$256.601 million for the year 2022 and is projected to grow at a CAGR of 6.03% to reach a market size of US$400.119 million by the year 2029.

Solar simulators are devices that simulate natural sunshine for the evaluation of photonic characteristics and solve the problem of providing a controlled indoor test facility for solar cell testing in laboratory settings. The solar simulator is made up of light sources, power supplies, and filters that change the beam's output to suit classification criteria. Owing to a growing need for green energy, solar simulators are increasingly being used in applications such as household hot water, manufacturing space, heating, and cooling, among others.

With increased investment in the research and development of solar cells, ultraviolet-resistant cosmetics and paints, medical treatments, and many other fields, the solar simulator market is anticipated to grow, as solar simulators provide a more cost-effective alternative to traditional testing and research methods. Solar simulators are used in the research and development of PV, cosmetics, paints and coatings, UV protection fabrics and textiles, and other products.

MARKET TRENDS:

Several major factors are driving the solar simulator industry. For instance, the need for precise testing and validation of solar panels to guarantee maximum performance and dependability is fueled by the global emphasis on renewable energy sources, particularly solar power. Innovations in solar cell technology also increase the demand for complex solar simulators that can meet a variety of testing specifications. Solar simulator usage is further encouraged by strict regulatory requirements and certification procedures that demand exact testing conditions.

Furthermore, increasing global expenditures on solar infrastructure highlight the need for thorough testing procedures backed by solar simulators, which further propels market expansion. Overall, these factors propel the solar simulator market, which is essential to the advancement and improvement of solar energy systems.

MARKET DRIVERS:

  • Surging demand for green energy is anticipated to drive the market's growth.

The solar simulator industry has been greatly impacted by the growing need for renewable energy, especially the extensive use of solar power. To test, develop, and certify solar panels and other photovoltaic (PV) equipment, solar simulators are crucial tools. The demand for solar simulators has increased in tandem with the acceleration of the worldwide shift towards renewable energy sources, which is being pushed by environmental concerns and government measures to cut carbon emissions.

The necessity for precise and trustworthy solar panel testing to guarantee the panels' effectiveness, longevity, and performance in a range of environmental circumstances is one of the main factors contributing to this rise in demand.

  • Increasing investments in solar infrastructure are predicted to impact the solar simulator market growth.

The solar simulator market is expected to increase at a significant rate due to the growing expenditures made on solar infrastructure. As governments, utilities, and corporations throughout the globe increase their dedication to renewable energy, especially solar power, there is an increasing need for precise testing and validation of solar panels. In this context, solar simulators are crucial because they provide the necessary instruments to assess the durability, performance, and efficiency of solar panels before their installation in large-scale solar projects.

The demand for sophisticated solar simulators that can accurately simulate real-world operating circumstances and guarantee the dependability and efficiency of solar energy systems is fueled by these expenditures. Furthermore, the significance of thorough testing and certification procedures backed by solar simulators increases with the size and complexity of solar systems. As a result, it is anticipated that rising investments in solar infrastructure would support the market for solar simulators, which are essential for the ongoing development and optimisation of solar energy capacity globally.

MARKET RESTRAINTS:

  • Higher costs of solar capacitors might restrict the solar simulator market growth.

The solar simulator market may expand more slowly as a result of the greater cost of solar capacitors. By storing and controlling electrical energy, solar capacitors are essential to the continuous and dependable operation of solar simulators. However, both solar simulator makers and users may face difficulties if the price of solar capacitors increases considerably.

Increasing production costs for manufacturers due to increasing capacitor costs might result in higher retail pricing for solar simulator equipment. This may discourage prospective buyers from purchasing solar simulators, especially smaller companies, academic institutions, or startups with tight budgets.

Therefore, even while the effects of increased solar capacitor prices on the expansion of the solar simulator market would not be severe or sudden, they could present difficulties and call for changes within the sector. To sustain momentum and propel further advancements in solar energy technology, manufacturers and consumers may need to modify their approaches and look for affordable alternatives.

Asia Pacific is anticipated to be the major regional market.

The demand for solar simulators is expected to be highest in the Asia Pacific region due to rising solar power demand in nations like China, India, and Indonesia as well as regional government policies supporting green energy. Following Asia-Pacific, North America and Europe have enacted strict laws to reduce emissions and are focusing more on renewable energy projects and energy-efficient sectors. The expansion of commercial and industrial development has led to an increase in power demand and government support for the development and commercialization of solar applications across the major countries, positively enhancing the market landscape for solar simulators.

Owing to favourable circumstances for energy production utilizing solar applications, Latin America has emerged as a powerhouse of solar capacity. Growing demand, technological advancements, and government legislation are propelling the solar simulator and the solar power industry in the area to new heights. Solar projects and investment in renewable energy infrastructure, as well as the replacement of electricity infrastructure, are projected to be major drivers for the solar simulator market in the Middle East and Africa.

Key Developments:

  • In May 2023, in support of the Total and Spectral Solar Irradiance Sensor-2 (TSIS-2) spacecraft programme, General Atomics Electromagnetic Systems (GA-EMS) announced that it has developed and delivered a spacecraft simulator to the University of Colorado (CU) Laboratory for Atmospheric and Space Physics (LASP).
  • In December 2022, to replicate the behaviour of photovoltaic (PV) segments, Keysight Technologies, Inc., a leading technology company that provides advanced design and validation solutions to help accelerate innovation to connect and secure the world, released the new MP4300A Series Modular Solar Array Simulator (SAS). The SAS system provides a high-fidelity simulation of every situation a spacecraft or satellite may face.
  • In June 2022, to help NASA's Goddard Space Flight Centre test the OSAM-1 spacecraft which aims to refuel a satellite in orbit and show in-space assembly and manufacturing G2V Optics completed a subcontract with the US federal government.

Segmentation:

By Type

  • Pulse Simulator
  • Flash Simulator
  • Continuous Simulator

By Light Source

  • Quartz Tungsten Halogen Lamps (QHT)
  • Metal Halide Arc Lamps (HMI)
  • Light Emitting Diodes (LED)
  • Xenon Arc Lamps
  • Others

By Application

  • Medical Research
  • Solar Cell Testing and Research
  • Artificial Environment Testing
  • Others

By Geography

  • North America
  • USA
  • Canada
  • Mexico
  • South America
  • Brazil
  • Argentina
  • Others
  • Europe
  • United Kingdom
  • Germany
  • France
  • Spain
  • Others
  • Middle East and Africa
  • Saudi Arabia
  • UAE
  • Israel
  • Others
  • Asia Pacific
  • China
  • Japan
  • India
  • South Korea
  • Taiwan
  • Thailand
  • Indonesia
  • Others

TABLE OF CONTENTS

1. INTRODUCTION

  • 1.1. Market Overview
  • 1.2. Market Definition
  • 1.3. Scope of the Study
  • 1.4. Market Segmentation
  • 1.5. Currency
  • 1.6. Assumptions
  • 1.7. Base, and Forecast Years Timeline
  • 1.8. Key Benefits for the stakeholder

2. RESEARCH METHODOLOGY

  • 2.1. Research Design
  • 2.2. Research Processes

3. EXECUTIVE SUMMARY

  • 3.1. Key Findings
  • 3.2. Analyst View

4. MARKET DYNAMICS

  • 4.1. Market Drivers
  • 4.2. Market Restraints
  • 4.3. Porter's Five Forces Analysis
    • 4.3.1. Bargaining Power of Suppliers
    • 4.3.2. Bargaining Power of Buyers
    • 4.3.3. Threat of New Entrants
    • 4.3.4. Threat of Substitutes
    • 4.3.5. Competitive Rivalry in the Industry
  • 4.4. Industry Value Chain Analysis
  • 4.5. Analyst View

5. SOLAR SIMULATOR MARKET, BY TYPE

  • 5.1. Introduction
  • 5.2. Pulse Simulator
    • 5.2.1. Market Trends and Opportunities
    • 5.2.2. Growth Prospects
  • 5.3. Flash Simulator
    • 5.3.1. Market Trends and Opportunities
    • 5.3.2. Growth Prospects
  • 5.4. Continuous Simulator
    • 5.4.1. Market Trends and Opportunities
    • 5.4.2. Growth Prospects

6. SOLAR SIMULATOR MARKET, BY LIGHT SOURCE

  • 6.1. Introduction
  • 6.2. Quartz Tungsten Halogen Lamps (QHT)
    • 6.2.1. Market Trends and Opportunities
    • 6.2.2. Growth Prospects
  • 6.3. Metal Halide Arc Lamps (HMI)
    • 6.3.1. Market Trends and Opportunities
    • 6.3.2. Growth Prospects
  • 6.4. Light Emitting Diodes (LED)
    • 6.4.1. Market Trends and Opportunities
    • 6.4.2. Growth Prospects
  • 6.5. Xenon Arc Lamps
    • 6.5.1. Market Trends and Opportunities
    • 6.5.2. Growth Prospects
  • 6.6. Others
    • 6.6.1. Market Trends and Opportunities
    • 6.6.2. Growth Prospects

7. SOLAR SIMULATOR MARKET, BY APPLICATION

  • 7.1. Introduction
  • 7.2. Medical Research
    • 7.2.1. Market Trends and Opportunities
    • 7.2.2. Growth Prospects
  • 7.3. Solar Cell Testing and Research
    • 7.3.1. Market Trends and Opportunities
    • 7.3.2. Growth Prospects
  • 7.4. Artificial Environment Testing
    • 7.4.1. Market Trends and Opportunities
    • 7.4.2. Growth Prospects
  • 7.5. Others
    • 7.5.1. Market Trends and Opportunities
    • 7.5.2. Growth Prospects

8. SOLAR SIMULATOR MARKET, BY GEOGRAPHY

  • 8.1. Introduction
  • 8.2. North America
    • 8.2.1. USA
      • 8.2.1.1. Market Trends and Opportunities
      • 8.2.1.2. Growth Prospects
    • 8.2.2. Canada
      • 8.2.2.1. Market Trends and Opportunities
      • 8.2.2.2. Growth Prospects
    • 8.2.3. Mexico
      • 8.2.3.1. Market Trends and Opportunities
      • 8.2.3.2. Growth Prospects
  • 8.3. South America
    • 8.3.1. Brazil
      • 8.3.1.1. Market Trends and Opportunities
      • 8.3.1.2. Growth Prospects
    • 8.3.2. Argentina
      • 8.3.2.1. Market Trends and Opportunities
      • 8.3.2.2. Growth Prospects
    • 8.3.3. Others
      • 8.3.3.1. Market Trends and Opportunities
      • 8.3.3.2. Growth Prospects
  • 8.4. Europe
    • 8.4.1. United Kingdom
      • 8.4.1.1. Market Trends and Opportunities
      • 8.4.1.2. Growth Prospects
    • 8.4.2. Germany
      • 8.4.2.1. Market Trends and Opportunities
      • 8.4.2.2. Growth Prospects
    • 8.4.3. France
      • 8.4.3.1. Market Trends and Opportunities
      • 8.4.3.2. Growth Prospects
    • 8.4.4. Spain
      • 8.4.4.1. Market Trends and Opportunities
      • 8.4.4.2. Growth Prospects
    • 8.4.5. Others
      • 8.4.5.1. Market Trends and Opportunities
      • 8.4.5.2. Growth Prospects
  • 8.5. Middle East and Africa
    • 8.5.1. Saudi Arabia
      • 8.5.1.1. Market Trends and Opportunities
      • 8.5.1.2. Growth Prospects
    • 8.5.2. UAE
      • 8.5.2.1. Market Trends and Opportunities
      • 8.5.2.2. Growth Prospects
    • 8.5.3. Israel
      • 8.5.3.1. Market Trends and Opportunities
      • 8.5.3.2. Growth Prospects
    • 8.5.4. Others
      • 8.5.4.1. Market Trends and Opportunities
      • 8.5.4.2. Growth Prospects
  • 8.6. Asia Pacific
    • 8.6.1. China
      • 8.6.1.1. Market Trends and Opportunities
      • 8.6.1.2. Growth Prospects
    • 8.6.2. Japan
      • 8.6.2.1. Market Trends and Opportunities
      • 8.6.2.2. Growth Prospects
    • 8.6.3. India
      • 8.6.3.1. Market Trends and Opportunities
      • 8.6.3.2. Growth Prospects
    • 8.6.4. South Korea
      • 8.6.4.1. Market Trends and Opportunities
      • 8.6.4.2. Growth Prospects
    • 8.6.5. Taiwan
      • 8.6.5.1. Market Trends and Opportunities
      • 8.6.5.2. Growth Prospects
    • 8.6.6. Thailand
      • 8.6.6.1. Market Trends and Opportunities
      • 8.6.6.2. Growth Prospects
    • 8.6.7. Indonesia
      • 8.6.7.1. Market Trends and Opportunities
      • 8.6.7.2. Growth Prospects
    • 8.6.8. Others
      • 8.6.8.1. Market Trends and Opportunities
      • 8.6.8.2. Growth Prospects

9. COMPETITIVE ENVIRONMENT AND ANALYSIS

  • 9.1. Major Players and Strategy Analysis
  • 9.2. Market Share Analysis
  • 9.3. Mergers, Acquisitions, Agreements, and Collaborations
  • 9.4. Competitive Dashboard

10. COMPANY PROFILES

  • 10.1. Abet Technologies
  • 10.2. G2V Optics
  • 10.3. Solar Light
  • 10.4. TS-Space System
  • 10.5. Sciencetech Inc.
  • 10.6. Holmarc Opto-Mechatronics ltd.
  • 10.7. Ossila
  • 10.8. Sinseil International
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦