¡Ø Ãß¼® ¿¬ÈÞ ÈÞ¹«¾È³» : 2024³â 9¿ù 16ÀÏ(¿ù) ~ 2024³â 9¿ù 18ÀÏ(¼ö)

½ÃÀ庸°í¼­
»óÇ°ÄÚµå
1521056

¼¼°èÀÇ ±â»ó ¿¹Ãø ¼­ºñ½º ½ÃÀå : ¿¹Ãø(2024-2029³â)

Weather Forecasting Services Market - Forecasts from 2024 to 2029

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Knowledge Sourcing Intelligence | ÆäÀÌÁö Á¤º¸: ¿µ¹® 140 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óÇ°Àº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¼¼°èÀÇ ±â»ó ¿¹Ãø ¼­ºñ½º ½ÃÀå ±Ô¸ð´Â 2024³â 28¾ï 8,600¸¸ ´Þ·¯¿¡¼­ 2029³â¿¡´Â 38¾ï 2,300¸¸ ´Þ·¯·Î ¼ºÀåÇϸç, CAGRÀº 5.78%¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

±â»ó ¿¹Ãø ¼­ºñ½º´Â ´Ù¾çÇÑ È¯°æ ¿äÀÎÀ» °üÂûÇÏ¿© ³¯¾¾¸¦ ¿¹ÃøÇÏ´Â °ÍÀ¸·Î ¼³¸íÇÒ ¼ö ÀÖ½À´Ï´Ù. ³¯¾¾ ¿¹ÃøÀº ÀϹÝÀûÀ¸·Î ´Ù¾çÇÑ ´ë±â º¯È­¸¦ °üÂûÇÏ°í °úÇÐ ±â¼úÀ» È°¿ëÇÏ¿© ƯÁ¤ Àå¼ÒÀÇ ³¯¾¾°¡ ¾î¶»°Ô µÉÁö ÀÚ¼¼È÷ °üÂûÇÔÀ¸·Î½á ÀÌ·ç¾îÁý´Ï´Ù. ±â»ó ¿¹Ãø¿¡´Â ÁÖ·Î µµÇ÷¯ ·¹ÀÌ´õ, À§¼º µ¥ÀÌÅÍ, ¶óµð¿ÀÁ¸µ¥, ÁöÇ¥ °üÃø ½Ã½ºÅÛ, ÄÄÇ»ÅÍ, AWIPS µî 6°¡Áö ÅøÀÌ »ç¿ëµË´Ï´Ù.

±â»ó¿¹º¸ ¼­ºñ½º´Â ¹Ì·¡ÀÇ ±âÈÄ º¯È­ °¡´É¼ºÀ» ¿¹ÃøÇÏ°í »çÀÌŬ·Ð, ÅÂdz µî ÀÚ¿¬ÀçÇØ¿¡ ´ëºñÇÒ ¼ö ÀÖµµ·Ï µµ¿ÍÁÖ´Â µî ¸ðµç »ç¶÷ÀÇ ÀÏ»ó»ýÈ°¿¡¼­ Áß¿äÇÑ ¿ªÇÒÀ» ÇÏ°í ÀÖ½À´Ï´Ù. ±â»ó ¿¹Ãø ¼­ºñ½º ¼ö¿ä´Â ½º¸¶Æ®ÆùÀÇ º¸±Þ°ú AIÀÇ µµÀÔ µî ±â¼úÀÇ ¹ßÀü°ú ÇÔ²² ÃÖ±Ù ±× ¼ö¿ä°¡ ±ÞÁõÇÏ°í ÀÖ½À´Ï´Ù. ¸¶ÀÌÅ©·Î¼ÒÇÁÆ®, ±¸±Û°ú °°Àº ´Ù¾çÇÑ ±â¾÷ÀÌ AI¸¦ žÀçÇÑ ±â»ó ¿¹Ãø ¼Ö·ç¼ÇÀ» µµÀÔÇÏ¿© º¸´Ù È¿À²ÀûÀÌ°í Á¤È®ÇÏ°Ô ³¯¾¾ º¯È­¸¦ ¿¹ÃøÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.

³ôÀº ÀÎÅÍ³Ý ÀÌ¿ë·ü°ú ½º¸¶Æ®Æù º¸±Þ·üµµ ±â»ó¿¹º¸ ¼­ºñ½º ¼ö¿ä¸¦ ²ø¾î¿Ã¸± °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¼¼°èÀºÇà¿¡ µû¸£¸é 2021³â¿¡´Â Àü ¼¼°è Àα¸ÀÇ ¾à 63%°¡ ÀÎÅͳݿ¡ Á¢¼ÓÇÒ ¼ö ÀÖ°Ô µÉ °ÍÀ̶ó°í ÇÕ´Ï´Ù. Àü ¼¼°è¿¡¼­ ÀÎÅÍ³Ý º¸±ÞÀÌ È®´ëµÊ¿¡ µû¶ó ¸ð¹ÙÀÏ ¾Û ±â¹Ý ±â»ó¿¹º¸ ¼­ºñ½º¿¡ ´ëÇÑ ¼ö¿äµµ Áõ°¡ÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

±â»ó ¿¹Ãø ¼­ºñ½ºÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¶Ç ´Ù¸¥ Å« ¿äÀÎÀº Àü ¼¼°è ¿À¿° Áõ°¡¿Í ±âÈÄ º¯È­¿¡ ´ëÇÑ ¿µÇâÀÔ´Ï´Ù. Áö±¸´Â ¿À¿°, ƯÈ÷ ¿Â½Ç°¡½ºÀÇ ±Þ°ÝÇÑ Áõ°¡¸¦ ¸ñ°ÝÇÏ°í ÀÖ½À´Ï´Ù. ¼¼°èº¸°Ç±â±¸(WHO)´Â ¸Þź°ú ź¼Ò¿Í °°Àº ´ë±â¿À¿°¹°ÁúÀÌ ±âÈÄ º¯È­¸¦ À¯¹ßÇÏ°í °Ç°­¿¡ ´Ù¾çÇÑ ¾Ç¿µÇâÀ» ³¢Ä¨´Ï´Ù°í ¹àÇû½À´Ï´Ù. ƯÈ÷ ¾Æ½Ã¾ÆÅÂÆò¾ç¿¡¼­´Â ±âÈÄ º¯È­ÀÇ ¿µÇâ°ú ¿À¿° Áõ°¡¸¦ °÷°÷¿¡¼­ º¼ ¼ö Àִµ¥, iQAirÀÇ ¹ßÇ¥¿¡ µû¸£¸é 2022³â¿¡´Â ¹æ±Û¶óµ¥½Ã, Àεµ, ÆÄÅ°½ºÅº, ÆÄÅ°½ºÅº, ³×ÆÈ, ŸÁöÅ°½ºÅº µî ¾Æ½Ã¾Æ 5°³±¹ÀÌ ¼¼°è¿¡¼­ °¡Àå ¿À¿°ÀÌ ½ÉÇÑ ±¹°¡ 10À§±Ç¿¡ ÁøÀÔÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

AI ¹× ML°ú °°Àº »õ·Î¿î ÷´Ü ±â¼úÀÇ µµÀÔÀº º¸´Ù Á¤È®ÇÏ°í ºü¸¥ ¿¹Ãø °á°ú¸¦ Á¦°øÇÒ °ÍÀ¸·Î º¸ÀÌÁö¸¸, ¼¼°è ½ÃÀå¿¡¼­ ³¯¾¾ ¿¹Ãø ¼Ö·ç¼Ç ¹× Á¦Ç°¿¡ ´ëÇÑ ¼ö¿ä¸¦ µÐÈ­½Ãų ¼öµµ ÀÖ½À´Ï´Ù. ÇöÀç °³¹ß ÁßÀÎ AI ¸ðµ¨Àº ¸çÄ¥°£ÀÇ µ¥ÀÌÅ͸¦ ±â¹ÝÀ¸·Î ³¯¾¾¸¦ ¿¹ÃøÇÒ ¼ö ÀÖ´Â ´É·ÂÀ» È®º¸ÇÏ¿© º¸´Ù Á¤È®ÇÏ°í ¿ì¼öÇÑ ¿¹ÃøÀ» »êÃâÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ½ÃÀå °³Ã´ÀÌ ÁøÇàµÇ¸é ±â»ó ¿¹Ãø ¼­ºñ½º ½ÃÀåÀÇ ¼ºÀå¿¡ ºÎÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù.

±â»ó¿¹º¸ ¼­ºñ½º ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ:

  • ¼¼°è ±âÈÄ º¯È­¿Í »ç¶÷µéÀÇ »î¿¡ ¹ÌÄ¡´Â ¿µÇâ Áõ°¡·Î ½ÃÀå ¼ºÀå ÃËÁø

±â»ó ¿¹Ãø ¼­ºñ½ºÀÇ ¼ºÀåÀ» Áõ°¡½ÃÅ°´Â ÁÖ¿ä ¿äÀÎ Áß Çϳª´Â ¼¼°è ±âÈÄÀÇ ±Ø´ÜÀûÀÎ º¯È­ÀÔ´Ï´Ù. Àü ¼¼°è ¿À¿° Áõ°¡´Â ´ë±â¸¦ µû¶æÇÏ°Ô ÇÏ°í ±âÈÄ¿¡ ±Ø´ÜÀûÀÎ º¯È­¸¦ °¡Á®¿É´Ï´Ù. ¹Ì±¹ ȯ°æº¸È£Ã»Àº ´ë±â Áß ¿À¿°¹°Áú°ú ±âÈÄ º¯È­´Â ¹ÐÁ¢ÇÑ °ü°è°¡ ÀÖ´Ù°í ¹àÇû½À´Ï´Ù. ÀÌ ±â°ü¿¡ µû¸£¸é ´ë±â ÁßÀÇ ÀϹÝÀûÀÎ ¿À¿° ¹°ÁúÀº ÁÖ·Î ¿Â½Ç°¡½º¿Í ¸ÕÁö¸¦ Æ÷ÇÔÇÕ´Ï´Ù. ÀÌ °¡½º´Â ±âÈÄ º¯È­ ÃËÁø ¹°ÁúÀ̶ó°íµµ ºÒ¸®¸ç Áö±¸ ¿Â³­È­ÀÇ ÁÖ¿ä ¿øÀÎ Áß ÇϳªÀÔ´Ï´Ù.

¿À¿° Áõ°¡·Î ÀÎÇÑ ±âÈÄ º¯È­ÀÇ ¿µÇâÀº ƯÈ÷ ¾Æ½Ã¾ÆÅÂÆò¾ç¿¡¼­ ½É°¢Çϸç, IQAirÀÇ °üÃø¿¡ µû¸£¸é ¾Æ½Ã¾ÆÅÂÆò¾ç ±¹°¡´Â ¼¼°è ÃÖ°í ¼öÁØÀÇ ¿À¿° ±¹°¡ÀÔ´Ï´Ù. °úÇÐȯ°æ¼¾ÅÍ(CSE)¿¡ µû¸£¸é Àεµ´Â ÃÖ±Ù ¼ö³â°£ ±âÈÄ Ãë¾à¼ºÀÌ µÎµå·¯Á³´Ù°í ÇÕ´Ï´Ù. ÀÌ ´Üü¿¡ µû¸£¸é ÀεµÀÇ Ãë¾à¼ºÀÌ °¡Àå Å« ÁÖ¿Í ÀÛÀº ÁÖ »çÀÌÀÇ °ÝÂ÷°¡ ÁÙ¾îµé°í ÀÖ´Ù°í ÇÕ´Ï´Ù.

  • ¼¼°èÀÇ ±â¿Â »ó½ÂÀº ³¯¾¾ ¿¹Ãø ¼­ºñ½º¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÀÚ±ØÇÏ°í ÀÖ½À´Ï´Ù.

¼¼°èÀÇ ±â¿Â »ó½Âµµ ±â»ó ¿¹Ãø ¼­ºñ½º ¼ö¿ä¸¦ Áõ°¡½ÃŲ °ÍÀ¸·Î ÃßÁ¤µË´Ï´Ù. ÃÖ±Ù ¼ö³â°£ Áö±¸ ¿Â³­È­·Î ÀÎÇØ Áö±¸ÀÇ Æò±Õ ±â¿ÂÀÌ »ó½ÂÇÏ°í ÀÖ½À´Ï´Ù. À¯·´¿¬ÇÕ(EU)ÀÇ Áö±¸°üÃø °èȹÀÎ ÄÚÆ丣´ÏÄí½º(Copernicus)¿¡ µû¸£¸é 2023³âÀº Áö±¸»ó¿¡¼­ °¡Àå µû¶æÇÑ ÇØ·Î ±â·ÏµÉ °ÍÀ̸ç, »ê¾÷ ¼öÁØ´ç Æò±Õ ±â¿ÂÀÌ ¾à 1.5¡É »ó½ÂÇÒ °ÍÀ̶ó°í ÇÕ´Ï´Ù.

¶Ç ´Ù¸¥ µ¥ÀÌÅÍ¿¡ µû¸£¸é 2023³â ¼¼°è Æò±Õ ±â¿ÂÀº ¾à 14.98¡É, 2024³â 1¿ù°ú 2¿ùÀÇ ¿¹»ó »ó½ÂÆøÀº ¾à 1.5¡É¶ó°í ÇÕ´Ï´Ù. ¸¶Âù°¡Áö·Î ¹Ì±¹ Çؾç´ë±âû(NOAA)Àº 2022³â À°Áö¿Í ¹Ù´ÙÀÇ Æò±Õ ±â¿ÂÀÌ ¾à 0.86¡É »ó½ÂÇÒ °ÍÀ¸·Î ¿¹»óÇß½À´Ï´Ù.

±â»ó¿¹º¸ ¼­ºñ½º ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ:

  • ½Å±â¼ú µµÀÔÀ¸·Î ±â»ó ¿¹Ãø ¼Ö·ç¼Ç ÆǸŸ¦ ¹æÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀΰøÁö´É°ú ¸Ó½Å·¯´×°ú °°Àº ½Å±â¼úÀÇ µµÀÔÀº ºü¸£°í Á¤È®ÇÑ ¿¹Ãø °á°ú¸¦ Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¼ÒÇÁÆ®¿þ¾î´Â À§¼º µ¥ÀÌÅͳª °ú°Å °üÃø µ¥ÀÌÅÍ¿Í °°Àº Á¦ÇÑµÈ ÀÚ¿øÀ» »ç¿ëÇÕ´Ï´Ù. ±¸±Û, ¸¶ÀÌÅ©·Î¼ÒÇÁÆ® µî ´Ù¾çÇÑ ±â¾÷ÀÌ AI ±â¹Ý ±â»ó ¿¹Ãø ¼Ö·ç¼ÇÀ» Ãâ½ÃÇÏ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼Ö·ç¼ÇÀº ·¹ÀÌ´õ¿Í °°Àº ¹«°Å¿î ÀåºñÀÇ Çʿ伺À» ÁÙ¿© ±â»ó ¿¹Ãø ¼­ºñ½º ½ÃÀå¿¡ °¨¼Ò Ãß¼¼¸¦ °¡Á®¿Ã ¼ö ÀÖ½À´Ï´Ù.

±â»ó¿¹º¸ ¼­ºñ½ºÀÇ Áö¿ªÀû Àü¸Á

  • ¾Æ½Ã¾ÆÅÂÆò¾çÀº ¼¼°è ±â»ó¿¹º¸ ¼­ºñ½º ½ÃÀå¿¡¼­ Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¾Æ½Ã¾ÆÅÂÆò¾çÀº ±â»ó ¿¹Ãø ¼­ºñ½º ½ÃÀå¿¡¼­ Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ź¼Ò°ø°³ÇÁ·ÎÁ§Æ®(CDP)¿¡ µû¸£¸é Àεµ, ÆÄÅ°½ºÅº, ¹æ±Û¶óµ¥½Ã, Àεµ³×½Ã¾Æ µî ¾Æ½Ã¾Æ ±¹°¡µéÀº ±Ø½ÉÇÑ ±âÈÄ º¯È­¸¦ Á÷Á¢ÀûÀ¸·Î °æÇèÇÏ°Ô µÉ »óÀ§ ±¹°¡ Áß ÇϳªÀÔ´Ï´Ù. ÀÌ¿¡ µû¶ó ±â»ó ¿¹Ãø ¼­ºñ½º¿¡¼­´Â Áö¿ª ±âÈÄ º¯È­¸¦ ÀÌÇØÇÏ°í ¿¹ÃøÇÏ´Â °ÍÀÌ ½Ã±ÞÇÑ °úÁ¦ÀÔ´Ï´Ù.

±âÈÄ º¯È­¿Í´Â º°°³·Î ÀÎÅÍ³Ý »ç¿ë Áõ°¡¿Í ÈÞ´ëÆù°ú ½º¸¶Æ®ÆùÀÇ º¸±ÞÀº ±â»ó ¿¹Ãø ¼­ºñ½º ½ÃÀåÀ» È®½ÇÈ÷ ²ø¾î¿Ã¸± °ÍÀÔ´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾çÀº Àα¸ ¹Ðµµ°¡ °¡Àå ³ô°í ÀÎÅÍ³Ý º¸±Þ·üÀÌ °¡Àå ³ô½À´Ï´Ù. ¼ÒÇÁÆ®¿þ¾î ¹× ¾Û ±â¹Ý ¿¹Ãø ¼­ºñ½º¸¦ Á¦°øÇÏ´Â ±â¾÷Àº ÀÌ Áö¿ª¿¡¼­ ³ôÀº º¸±Þ ±âȸ¸¦ ¾òÀ» ¼ö ÀÖÀ» °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

±â»ó ¿¹Ãø ¼­ºñ½º ½ÃÀå ±â¾÷ ¹× Á¦Ç°

  • DTN: DTNÀº ³ó¾÷, Ç×°ø, ±¤¾÷, ÇØ¿î µî ¿©·¯ »ê¾÷¿¡ ±â»ó ¿¹Ãø ¼­ºñ½º¸¦ Á¦°øÇÕ´Ï´Ù. ¼Ö·ç¼Ç¿¡´Â Aircraft IceGuard, Flight Route Alerting, EcoField Data µîÀÌ ÀÖ½À´Ï´Ù.

±â»ó¿¹º¸ ¼­ºñ½º ½ÃÀåÀÇ ÁÖ¿ä ¹ßÀü:

  • 2024³â 6¿ù, ¸¶ÀÌÅ©·Î¼ÒÇÁÆ®´Â ³¯¾¾ ¿¹Ãø ±â´ÉÀ» °®Ãá ÃֽŠ¿À·Î¶ó AI ¸ðµ¨À» ¹ßÇ¥Çß½À´Ï´Ù.
  • 2023³â 11¿ù, ±¸±Û, ¼¼°è ³¯¾¾¸¦ Á¤È®ÇÏ°Ô ¿¹ÃøÇÏ´Â ÀΰøÁö´É ¸ðµ¨ GraphCast ¹ßÇ¥, Ÿ»çº¸´Ù ´õ Á¤È®ÇÑ 10ÀÏ°£ ³¯¾¾ ¿¹Ãø Á¦°ø

¸ñÂ÷

Á¦1Àå ¼­·Ð

  • ½ÃÀå °³¿ä
  • ½ÃÀå Á¤ÀÇ
  • Á¶»ç ¹üÀ§
  • ½ÃÀå ¼¼ºÐÈ­
  • ÅëÈ­
  • ÀüÁ¦Á¶°Ç
  • ±âÁسâ°ú ¿¹Ãø³â ŸÀÓ¶óÀÎ
  • ÀÌÇØ°ü°èÀÚÀÇ ÁÖ¿ä ÀÌÁ¡

Á¦2Àå Á¶»ç ¹æ¹ý

  • Á¶»ç µðÀÚÀÎ
  • Á¶»ç ÇÁ·Î¼¼½º

Á¦3Àå °³¿ä

  • ÁÖ¿ä Á¶»ç °á°ú

Á¦4Àå ½ÃÀå ¿ªÇÐ

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
  • Porter's Five Forces ºÐ¼®
  • ¾÷°è ¹ë·ùüÀÎ ºÐ¼®
  • ¾Ö³Î¸®½ºÆ® ºä

Á¦5Àå ±â»ó ¿¹Ãø ¼­ºñ½º ½ÃÀå : À¯Çüº°

  • ¼­·Ð
  • ´Ü°Å¸®
  • Á߰Ÿ®
  • Àå°Å¸®

Á¦6Àå ±â»ó ¿¹Ãø ¼­ºñ½º ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • ¼­·Ð
  • ³ó¾÷
  • Ç×°ø
  • ¿¡³ÊÁö¡¤À¯Æ¿¸®Æ¼
  • ¼®À¯ ¹× °¡½º
  • Çؾç
  • ¼Ò¸Å
  • ¹Ìµð¾î
  • ±âŸ

Á¦7Àå ±â»ó ¿¹Ãø ¼­ºñ½º ½ÃÀå : Áö¿ªº°

  • ¼­·Ð
  • ºÏ¹Ì
    • À¯Çüº°
    • ÃÖÁ¾»ç¿ëÀÚº°
    • ±¹°¡º°
  • ³²¹Ì
    • À¯Çüº°
    • ÃÖÁ¾»ç¿ëÀÚº°
    • ±¹°¡º°
  • À¯·´
    • À¯Çüº°
    • ÃÖÁ¾»ç¿ëÀÚº°
    • ±¹°¡º°
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • À¯Çüº°
    • ÃÖÁ¾»ç¿ëÀÚº°
    • ±¹°¡º°
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • À¯Çüº°
    • ÃÖÁ¾»ç¿ëÀÚº°
    • ±¹°¡º°

Á¦8Àå °æÀï ȯ°æ°ú ºÐ¼®

  • ÁÖ¿ä ±â¾÷°ú Àü·« ºÐ¼®
  • ½ÃÀå Á¡À¯À² ºÐ¼®
  • ÇÕº´¡¤Àμö¡¤ÇùÁ¤¡¤Çù¾÷
  • °æÀï ´ë½Ãº¸µå

Á¦9Àå ±â¾÷ °³¿ä

  • DTN
  • Earth Networks
  • Fugro
  • Spire Global
  • StormGeo
  • IBM
  • Agricultural Weather Information Service, Inc.
  • Maxar Technologies
  • ECMWF
KSA 24.08.05

The weather forecasting services market is estimated to grow from US$2.886 billion in 2024 to US$3.823 billion by 2029, at a CAGR of 5.78%.

A weather forecasting service can be explained as a prediction of the weather, through observing various environmental factors. The prediction of the weather is generally made by observing various atmospheric changes, using scientific and technology to make a close observation, of what the weather will be in a particular place. For the forecasting of the weather, the companies or organizations use mainly six types of tools, that is a doppler radar, satellite data, radiosondes, surface-observing systems, computers, and AWIPS.

Weather forecasting services play an important role in the day-to-day living of everyone, as they help with the possibility of change in the climate in the future and help prepare for natural calamities like cyclones, storms, and many more. The demand for weather forecasting services has witnessed significant growth in recent years, with the development of technologies, like the availability of smartphones and the introduction of AI. Various companies like Microsoft and Google introduced their AI-powered weather forecasting solution, which can predict weather changes more efficiently and accurately.

The high internet usage and availability of smartphones are also anticipated to boost the demand for weather forecasting services. According to the World Bank, about 63% of the global population had access to the Internet in 2021. As the internet is increasingly adopted worldwide, the demand for mobile-app-based weather forecasting services will also increase.

Similarly, another major driver for the growth of weather forecasting services can be the increasing global pollution and its effects on climate change. The globe has witnessed a significant increase in pollution, especially the increase of greenhouse gases. The World Health Organization stated that the air pollutants like methane and carbon contribute to the change in the climate and also have various ill effects on health. Especially in the Asia Pacific, the effect of climate change, with increasing pollution can be witnessed in every part of the region. In 2022, five Asian countries, i.e. Bangladesh, India, Pakistan, Nepal, and Tajikistan, were among the top ten most polluted countries in the world, as stated by IQAir.

The introduction of new and advanced technologies like AI and ML will surely provide more accurate and quicker forecasting results, but it may also slow down the demand for weather forecasting solutions and products in the global market. The developing AI model has attained the capability to forecast the weather based on a few days' data and can output a better and more accurate forecast. The increasing development might negatively affect the weather forecasting services market growth.

WEATHER FORECASTING SERVICES MARKET DRIVERS:

  • An increase in global climate change and its effects on human life will bolster the market growth.

One of the major drivers for the increasing growth of weather forecasting services can be the extreme change in the climate worldwide. The increasing global pollution warms the atmosphere, resulting in extreme changes in the climate. The US Environmental Protection Agency stated that the pollutants in the air and climate change have a strong relation with each other. According to the organization, the general pollutants in the atmosphere majorly include greenhouse gases and dust particles. These gases are also referred to as climate forcers and are one of the major reasons for global warming.

The effects of climate change, caused by the increase in pollution, are especially severe in the Asia Pacific region. IQAir observed that the Asian Pacific countries are among the top pollutants in the globe. According to the Centre for Science and Environment (CSE), India has witnessed a significant climate vulnerability in the past few years. According to the organization, the gap between the least and most vulnerable states in India is small.

  • The increase in the global temperature has stimulated the demand for weather forecast services.

The increasing global temperature is also estimated to push the demand for weather forecasting services forward. In recent years, mainly because of global warming, the average temperature of the globe has witnessed an increase. According to Copernicus, the European Union's Earth Observation Programme, the year 2023 was recorded as the warmest year on Earth, with an average increase of about 1.5°C per industrial level.

The data also states that the global average temperature for 2023 was about 14.98°C, and the estimated rise in January and February of 2024 was about 1.5°C. Similarly, the National Oceanic and Atmospheric Administration of the US (NOAA) stated that in 2022, the average temperature of land and ocean was about 0.86° Celsius.

WEATHER FORECASTING SERVICES MARKET RESTRAINTS:

  • The introduction of new technologies may hinder the sales of weather forecasting solutions.

The introduction of new technologies like Artificial Intelligence and Machine Learning offers quick and accurate forecasting results. Such software uses limited resources, like satellite data and past observations. Various companies, like Google and Microsoft, have introduced their AI-based weather forecasting solutions. These solutions may reduce the need for heavy equipment like radars and others and can create a downward trend in the weather forecasting service market.

WEATHER FORECASTING SERVICES GEOGRAPHICAL OUTLOOK

  • Asia Pacific is anticipated to hold a significant share of the global weather forecasting services market.

The Asia Pacific is poised to gain a massive share in the weather forecasting services market, as the effects of climate change can be mainly observed here. According to the Carbon Disclosure Project (CDP), Asian countries like India, Pakistan, Bangladesh, and Indonesia are among the top countries that will experience extreme climate change first-hand. This creates an urgent need for weather forecasting services to understand and predict the regional climate changes.

Apart from climate change, the increase in internet usage and the availability of mobile phones or smartphones will surely boost the weather forecasting services market. The Asian Pacific region offers the biggest population density, with a high internet penetration. Companies offering software or app-based forecasting services are sure to have a high penetration opportunity in the region.

Weather Forecasting Services Market Players and Products:

  • DTN: DTN provides weather forecasting services for multiple industries, like agriculture, aviation, mining, and shipping, among others. Solutions include Aircraft IceGuard, Flight Route Alerting, and EcoField Data.

Weather Forecasting Services Market Key Developments:

  • In June 2024, Microsoft unveiled its latest Aurora AI model, which has the capability of weather forecasting. This model includes data diversity and model scaling, which improves its weather forecasting.
  • In November 2023, Google launched its GraphCast, an Artificial Intelligence model that can accurately forecast global weather and deliver 10-day weather predictions more accurately than others.

The Weather Forecasting Services Market is segmented and analyzed as:

By Type

  • Short-Range
  • Medium-Range
  • Long-Range

By End-User

  • Agriculture
  • Aviation
  • Energy & Utilities
  • Oil & Gas
  • Marine
  • Retail
  • Media
  • Others

By Geography

  • North America
  • USA
  • Canada
  • Mexico
  • South America
  • Brazil
  • Argentina
  • Others
  • Europe
  • Germany
  • France
  • United Kingdom
  • Spain
  • Others
  • Middle East and Africa
  • Saudi Arabia
  • UAE
  • Israel
  • Others
  • Asia Pacific
  • China
  • Japan
  • India
  • South Korea
  • Indonesia
  • Taiwan
  • Others

TABLE OF CONTENTS

1. INTRODUCTION

  • 1.1. Market Overview
  • 1.2. Market Definition
  • 1.3. Scope of the Study
  • 1.4. Market Segmentation
  • 1.5. Currency
  • 1.6. Assumptions
  • 1.7. Base and Forecast Years Timeline
  • 1.8. Key benefits for the stakeholders

2. RESEARCH METHODOLOGY

  • 2.1. Research Design
  • 2.2. Research Process

3. EXECUTIVE SUMMARY

  • 3.1. Key Findings

4. MARKET DYNAMICS

  • 4.1. Market Drivers
  • 4.2. Market Restraints
  • 4.3. Porter's Five Forces Analysis
    • 4.3.1. Bargaining Power of Suppliers
    • 4.3.2. Bargaining Power of Buyers
    • 4.3.3. The Threat of New Entrants
    • 4.3.4. Threat of Substitutes
    • 4.3.5. Competitive Rivalry in the Industry
  • 4.4. Industry Value Chain Analysis
  • 4.5. Analyst View

5. WEATHER FORECASTING SERVICES MARKET BY TYPE

  • 5.1. Introduction
  • 5.2. Short-Range
  • 5.3. Medium-Range
  • 5.4. Long-Range

6. WEATHER FORECASTING SERVICES MARKET BY END-USER

  • 6.1. Introduction
  • 6.2. Agriculture
  • 6.3. Aviation
  • 6.4. Energy & Utilities
  • 6.5. Oil & Gas
  • 6.6. Marine
  • 6.7. Retail
  • 6.8. Media
  • 6.9. Others

7. WEATHER FORECASTING SERVICES MARKET BY GEOGRAPHY

  • 7.1. Introduction
  • 7.2. North America
    • 7.2.1. By Type
    • 7.2.2. By End-User
    • 7.2.3. By Country
      • 7.2.3.1. United States
      • 7.2.3.2. Canada
      • 7.2.3.3. Mexico
  • 7.3. South America
    • 7.3.1. By Type
    • 7.3.2. By End-User
    • 7.3.3. By Country
      • 7.3.3.1. Brazil
      • 7.3.3.2. Argentina
      • 7.3.3.3. Others
  • 7.4. Europe
    • 7.4.1. By Type
    • 7.4.2. By End-User
    • 7.4.3. By Country
      • 7.4.3.1. Germany
      • 7.4.3.2. France
      • 7.4.3.3. United Kingdom
      • 7.4.3.4. Spain
      • 7.4.3.5. Others
  • 7.5. Middle East and Africa
    • 7.5.1. By Type
    • 7.5.2. By End-User
    • 7.5.3. By Country
      • 7.5.3.1. Saudi Arabia
      • 7.5.3.2. UAE
      • 7.5.3.3. Israel
      • 7.5.3.4. Others
  • 7.6. Asia Pacific
    • 7.6.1. By Type
    • 7.6.2. By End-User
    • 7.6.3. By Country
      • 7.6.3.1. China
      • 7.6.3.2. Japan
      • 7.6.3.3. India
      • 7.6.3.4. South Korea
      • 7.6.3.5. Indonesia
      • 7.6.3.6. Taiwan
      • 7.6.3.7. Others

8. COMPETITIVE ENVIRONMENT AND ANALYSIS

  • 8.1. Major Players and Strategy Analysis
  • 8.2. Market Share Analysis
  • 8.3. Mergers, Acquisitions, Agreements, and Collaborations
  • 8.4. Competitive Dashboard

9. COMPANY PROFILES

  • 9.1. DTN
  • 9.2. Earth Networks
  • 9.3. Fugro
  • 9.4. Spire Global
  • 9.5. StormGeo
  • 9.6. IBM
  • 9.7. Agricultural Weather Information Service, Inc.
  • 9.8. Maxar Technologies
  • 9.9. ECMWF
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óÇ°À» ¼±Åà Áß
»óÇ° ºñ±³Çϱâ
Àüü»èÁ¦