½ÃÀ庸°í¼­
»óǰÄÚµå
1521086

¼¼°èÀÇ ¹ÙÀÌ¿À ±â¹Ý Æú¸®¿°È­ºñ´Ò ½ÃÀå : ¿¹Ãø(2024-2029³â)

Bio-based Polyvinyl Chloride Market - Forecasts from 2024 to 2029

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Knowledge Sourcing Intelligence | ÆäÀÌÁö Á¤º¸: ¿µ¹® 147 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¼¼°è ¹ÙÀÌ¿À ±â¹Ý Æú¸®¿°È­ºñ´Ò ½ÃÀå ±Ô¸ð´Â 2024³âºÎÅÍ 2029³â±îÁö ¿¬Æò±Õ 4.8%ÀÇ CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¹ÙÀÌ¿À ±â¹Ý Æú¸®¿°È­ºñ´ÒÀº Àç»ý °¡´ÉÇÑ »ý¹° ÀÚ¿ø¿¡¼­ ÃßÃâÇÑ ¹ÙÀÌ¿À ±â¹Ý ÇÃ¶ó½ºÆ½ÀÇ ÀÏÁ¾ÀÔ´Ï´Ù. Æú¸®¿°È­ºñ´Ò(PVC)Àº ¼¼°è¿¡¼­ °¡Àå ÀϹÝÀûÀÎ Æú¸®¸Ó Áß ÇϳªÀÌ¸ç ¼ö¸¹Àº »ê¾÷ ºÐ¾ß¿¡¼­ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. °ÇÃà ¹× °Ç¼³¿¡¼­ PVC ¹è°ü ½Ã½ºÅÛÀº ³ôÀº ¸µ °­¼º, ¿ì¼öÇÑ ³»½Ä¼º ¹× ³» È­Çмº, ±ä ¼­ºñ½º ¼ö¸íÀ» Á¦°øÇϸç PVC ÆÄÀÌÇÁÀÇ ºñ ÇÃ¶ó½ºÆ½ ´ëüǰÀº Á¦Ç° ¼³°è, ¿î¼Û ¹× Á¦Á¶¿¡ ÃÖÀûÈ­µÇ¾î ÀÖ½À´Ï´Ù.

¹ÙÀÌ¿À ±â¹Ý Æú¸®¿°È­ºñ´ÒÀÇ ¿ëµµ´Â ½ºÆ÷Ã÷ ¹× ½Å¹ß¿¡¼­ ÀÚµ¿Â÷, Æ÷Àå, ³ó¾÷, ºÎÁ÷Æ÷, ¼¶À¯ ºÐ¾ß·Î È®´ëµÇ°í ÀÖ½À´Ï´Ù. ÇÃ¶ó½ºÆ½ »ç¿ë ¼ö¿ä´Â 2019³â 4¾ï 5,974¸¸ 5,900Åæ¿¡¼­ 2060³â 12¾ï 3,062¸¸ 7,000ÅæÀ¸·Î ¾à 3¹è Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Àü ¼¼°è ÇÃ¶ó½ºÆ½ Æó±â¹°Àº 2019³â 3Á¶ 5,329¾ï 1,100¸¸ Åæ¿¡¼­ 2060³â 10Á¶ 1,414¾ï 4,400¸¸ ÅæÀ¸·Î Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ ³¶ºñ´Â ȯ°æ À§±âÀÇ Å« ¹®Á¦¸¦ ¾ß±âÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÇÃ¶ó½ºÆ½ÀÇ ¹«Áú¼­ÇÑ ¼Òºñ´Â Æó±â¹° °ü¸® ½Ã½ºÅÛÀÇ °úÁ¦·Î À̾îÁö°í ÀÖ½À´Ï´Ù.

ÀüüÀûÀ¸·Î Àç·áÀÇ ÀÌ»êȭź¼Ò ¹èÃâ·®Àº Á¶´ÞÀ» ÅëÇØ ÁÙÀÏ ¼ö ÀÖÀ¸¸ç, PVC Á¦Ç°Àº Àç»ý °¡´ÉÇÑ ½Ä¹° À¯·¡ À¯µµÃ¼¿¡¼­ Á¶´ÞµÇ¸ç, PVC Á¦Á¶¿¡ »ç¿ëµÇ´Â ºñ½Ä·® À¯·¡ ¹ÙÀÌ¿À¸Å½º °ø±Þ¿øÀ¸·Î´Â »çÅÁ¼ö¼ö, ¸ñÀç ÆÞÇÁ, »ç¿ë µÈ ½Ä¿ëÀ¯ µîÀÌ ÀÖ½À´Ï´Ù.

OECD¿¡ µû¸£¸é ÇÃ¶ó½ºÆ½ Æó±â¹°ÀÇ 9%¸¸ ÀçȰ¿ëµÇ°í ÀÖ½À´Ï´Ù. ±×·¯³ª 15 %´Â ÀçȰ¿ëÀ» À§ÇØ È¸¼öµÇÁö¸¸ ¾à 6%´Â ÀÜ·ù ¹°·Î Æó±âµË´Ï´Ù. ¾à 50%´Â ¸Å¸³µÇ¾î Åä¾ç ¿À¿°°ú Åä¾ç ǰÁú ÀúÇϸ¦ À¯¹ßÇÕ´Ï´Ù.

¹ÙÀÌ¿À ±â¹Ý ¿¬Áú PVC ÄÄÆÄ¿îµå´Â Àç»ý °¡´ÉÇÑ ¿ø·á·Î ¸¸µç ½Ä¹°¼º °¡¼ÒÁ¦¸¦ »ç¿ëÇÏ¿© ºÐÇØµÇÁö ¾Ê´Â ±âÁ¸ÀÇ ¼®À¯ ±â¹Ý °¡¼ÒÁ¦°¡ ¾Æ´Ñ Åä¾ç¿¡ ½±°Ô µé¾î°¥ ¼ö ÀÖ´Â Áö¼Ó°¡´ÉÇÑ ¿ø·á¸¦ »ý»êÇÕ´Ï´Ù.

¹ÙÀÌ¿À ±â¹Ý Æú¸®¿°È­ºñ´Ò ½ÃÀåÀÇ ÃËÁø¿äÀÎ

  • À¯¸®ÇÑ ±ÔÁ¦ Á¶Ä¡

¼¼°è °¢±¹ Á¤ºÎ´Â ÀÏȸ¿ë ÇÃ¶ó½ºÆ½À» ´Ü°èÀûÀ¸·Î ÆóÁöÇϰí ÀçȰ¿ë °¡´ÉÇÑ Àç·á·Î ´ëüÇϰí ÀÖ½À´Ï´Ù. ´ºÁú·£µå Á¤ºÎ´Â À½·á¼ö ±³¹Ý±â, ÇÃ¶ó½ºÆ½ Áٱ⠸éºÀ, ÇÃ¶ó½ºÆ½ °úÀÏ ºÀÁö, ÇÃ¶ó½ºÆ½ Á¢½Ã, ±×¸©, ¼öÀú, ÇÃ¶ó½ºÆ½ »¡´ë¸¦ ÅðºñÈ­ °¡´ÉÇÑ ÇÃ¶ó½ºÆ½ ¹× ¹ÙÀÌ¿À ±â¹Ý ÇÃ¶ó½ºÆ½À¸·Î ´Ü°èÀûÀ¸·Î ÀüȯÇÏ´Â °ÍÀ» ÃßÁøÇϰí ÀÖ½À´Ï´Ù. À¯·´ÀÇȸ´Â EUÀÇ Æ÷Àå ¹× ¿ë±â Æ÷Àå Æó±â¹° ±ÔÁ¤(PPWR)À» äÅÃÇÏ¿© ÇÃ¶ó½ºÆ½ ¹× ±âŸ Æ÷ÀåÀç °¨ÃàÀ» Àǹ«È­Çß½À´Ï´Ù. ÀÌ ±ÔÁ¤Àº °¡°øµÇÁö ¾ÊÀº ½Å¼±ÇÑ °úÀϰú ä¼Ò, Ä«Æä¿Í ·¹½ºÅä¶û¿¡¼­ ¼ÒºñµÇ´Â À½½Ä°ú À½·áÀÇ ÀÏȸ¿ë ÇÃ¶ó½ºÆ½ Æ÷ÀåÀ» ±ÝÁöÇÏ´Â °ÍÀ» Àǹ«È­Çß½À´Ï´Ù. ÀÌ ±ÔÁ¤Àº 2030³â 1¿ù 1ÀϺÎÅÍ ½ÃÇàµË´Ï´Ù.

Á¤ºÎ¿Í »ê¾÷°è´Â ³ÝÁ¦·Î¿Í ¼øÈ¯°æÁ¦¿¡ ´ëÇÑ ³ë·ÂÀ» ÃßÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ´Â ¿¡³ÊÁö ¾Èº¸, ÀÏÀÚ¸® âÃâ, »çȸ °æÁ¦ ¹ßÀüÀÇ ÁÖ¿ä ¹ßÀüÀÔ´Ï´Ù. ÇöÀç Àü ¼¼°è Àα¸ÀÇ °ÅÀÇ Àý¹ÝÀÌ µµ½Ã¿¡ °ÅÁÖÇϰí ÀÖÀ¸¸ç, 2070³â¿¡´Â 70%¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ ¸¹Àº Àα¸¸¦ À¯ÁöÇÏ·Á¸é ÀÎÇÁ¶ó¿Í ÀÛ¾÷ °ø°£ÀÌ ÇÊ¿äÇÕ´Ï´Ù. ¹ÙÀÌ¿À ±â¹Ý Àç·á´Â »çÅÁ¼ö¼ö µî¿¡¼­ ¾òÀº ¹ÙÀÌ¿À ±â¹Ý Æú¸®¿°È­ºñ´ÒÀ» Æ÷ÇÔÇÑ »ý¹° À¯·¡ Àç·áÀÔ´Ï´Ù.

¹ÙÀÌ¿À ±â¹Ý °ÇÃàÀº Á¡Á¡ ´õ ¸¹Àº ±â¾÷µéÀÌ ÀÏÂïÀÌ Ã¤ÅÃÇϰí ÀÖ½À´Ï´Ù. ½º¿þµ§ ¼öµµ ³²ºÎÀÇ ½ÃÅ©¶ó¿¡ À§Ä¡ÇÑ ½ºÅåȦ¸§ ¿ìµå ½ÃƼ(Stockholm Wood City)´Â 25¸¸ Æò¹æ¹ÌÅÍ ºÎÁö¿¡ 2,000äÀÇ ÁÖÅðú 7,000°³ÀÇ »ç¹«½Ç, ·¹½ºÅä¶û, »óÁ¡À» °Ç¼³ÇÏ´Â ÇÁ·ÎÁ§Æ®·Î 2025³â¿¡ Âø°øÇÒ ¿¹Á¤ÀÔ´Ï´Ù. ÀÌ µµ½Ã´Â ³ì»ö ÁöºØ µî ÀÚ¿¬ ¿ä¼Ò¸¦ µðÀÚÀο¡ ¹Ý¿µÇϰí ÀÖ½À´Ï´Ù.

  • ³ô¾ÆÁö´Â °Ç¼³ ¹× °ÇÃà »ê¾÷ ¼ö¿ä

°ÇÃà ¹× °Ç¼³ »ê¾÷ÀÇ ¼ºÀåÀº °Ç¼³ ÀÚÀç¿¡ ´ëÇÑ °ü·Ã ¼ö¿ä¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù. ¹Ì±¹ÀÇ ÃÑ °Ç¼³ ÁöÃâÀº 2022³â 1¿ù 1Á¶ 7,964¾ï 6,000¸¸ ´Þ·¯¿¡¼­ 2023³â 1¿ù¿¡´Â 1Á¶ 8,821¾ï 9,900¸¸ ´Þ·¯·Î ±ÞÁõÇß½À´Ï´Ù. ÀÌ·¯ÇÑ °Ç¼³ »ê¾÷ÀÇ ¼ºÀåÀº Áö¼Ó°¡´ÉÇÑ ÀÚÀç Á¶´ÞÀÌ ÇÊ¿äÇÑ Àü ¼¼°èÀûÀÎ °úÁ¦¿Í ÇÔ²² ÇÕ´Ï´Ù. ¿¹¸¦ µé¾î, Ä«±æÀº ¹ÙÀÌ¿À À¯·¡ ¿ø·á·Î °¡¼ÒÁ¦¸¦ »ý»êÇÏ¿© ¹Ù´ÚÀç ¼ººÐÀ¸·Î »ç¿ëÇϰí ÀÖ½À´Ï´Ù. ÀÌ´Â ÇÁÅ»·¹ÀÌÆ® ¹× È­¼® ¿¬·á¿¡ ÀÇÁ¸ÇÏ´Â Á¦Ç°¿¡ ´ëÇÑ ´ë¾ÈÀ» Á¦°øÇϱâ À§ÇÑ °ÍÀÔ´Ï´Ù.

À̳׿À½ºÀÇ Inovyn°ú °°Àº Çõ½ÅÀûÀÎ ¼Ö·ç¼ÇÀº ÆÄ¸®¿¡ º»»ç¸¦ µÐ ¹Ù´ÚÀç Á¦Á¶¾÷üÀÎ TarkettÀÇ »õ·Î¿î ¹Ù´ÚÀç Ä÷º¼Ç¿¡ äÅõǾú½À´Ï´Ù. ¶ÇÇÑ, Biovyn Inovyn(Ineos)Àº ÆÄÀÌÇÁ ¹× âƲÀÇ °ÇÃà ¹× °Ç¼³°ú °°Àº ¸¹Àº »ê¾÷¿¡¼­ ºÎ°¡°¡Ä¡°¡ ³ôÀº ¿ëµµ¸¦ °¡Áú ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÚµ¿Â÷ ¹× ÀÇ·á ºÐ¾ß¿¡µµ Àû¿ëµÇ°í ÀÖ½À´Ï´Ù. ¹ÙÀÌ¿ÀºóÀº Áö¼Ó°¡´ÉÇÑ ¹ÙÀÌ¿À¼ÒÀç¿¡ °üÇÑ ¿øÅ¹È¸ÀÇ(RSB)ÀÇ ÀÎÁõÀ» ¹ÞÀº ¹Ù ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ ¹ÙÀÌ¿À ±â¹Ý Æú¸®¿°È­ºñ´Ò ½ÃÀåÀ» µ¶Á¡ÇÒ °ÍÀ¸·Î ¿¹»ó

Áß±¹, ÀϺ», Àεµ, Çѱ¹ µî ÁÖ¿ä °æÁ¦±¹µéÀÌ ¾Æ½Ã¾ÆÅÂÆò¾çÀ» Áö¹èÇϰí ÀÖ½À´Ï´Ù. ºü¸£°Ô ¼ºÀåÇÏ´Â ½ÅÈï±¹ Áß ÀϺδ ¾Æ¼¼¾È ±¹°¡ µî ÀÌ Áö¿ªÀÇ ±¹°¡µéÀÔ´Ï´Ù. Àεµ¿Í Áß±¹Àº ¼¼°è Àα¸ÀÇ ¾à 35.5%¸¦ Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. ÀÌ¿Í °ü·ÃÇÏ¿©, ÀÎÇÁ¶ó ±¸Ãà¿¡ ÁßÁ¡À» µÐ °Ç¼³ ¹× ºÎµ¿»ê »ê¾÷ÀÇ ±Þ¼ÓÇÑ ¼ºÀåÀº º¸´Ù Áö¼Ó°¡´ÉÇÑ ¿É¼ÇÀ» Æ÷ÇÔÇÑ ´Ù¾çÇÑ Àç·á¿¡ ´ëÇÑ ¼ö¿ä¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù.

Áß±¹Àº Àü ¼¼°è °Ç¼³ ¹× °³¹ß ºÐ¾ß¿¡¼­ ¼±µÎ¸¦ ´Þ¸®°í ÀÖ´Â ±¹°¡ Áß ÇϳªÀ̸ç, 2022-2023³â ¸î Â÷·ÊÀÇ ºÒȲÀ» °ÞÀº ÈÄ Á¤ºÎÀÇ ±ÔÁ¦¿Í Á¤Ã¥À» °³¼±ÇÏ´Â ¹æÇâÀ¸·Î ³ª¾Æ°¡°í ÀÖ½À´Ï´Ù. Á¤ºÎÀÇ Áö¿ø°ú ÅõÀÚ·Î ÀÎÇØ ģȯ°æ °ÇÃà °³³äÀÌ ½ÃÀå¿¡¼­ È®´ëµÇ°í ÀÖ½À´Ï´Ù. Â÷À̳ª ºñÁî´Ï½º ¸®ºä(China Business Review)¿¡ µû¸£¸é, »õ·Î¿î ±ÔÁ¦·Î ÀÎÇØ µµ½Ã ³» ½ÅÃà °Ç¹°ÀÇ ¾à 70%°¡ ³ì»ö °Ç¹° ÀÎÁõÀ» ¹Þ¾Æ¾ß ÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. ¿©±â¿¡´Â Çб³, º´¿ø, °ø°ø½Ã¼³µµ Æ÷ÇԵ˴ϴÙ. ÀÌ °Ç¹°µéÀº Àúź¼Ò °ÇÃà, Àç»ý¿¡³ÊÁö, ¹° Àý¾à, Áö¼Ó°¡´ÉÇÑ Àç·á µîÀ» »ç¿ëÇØ¾ß ÇÕ´Ï´Ù.

¹ÙÀÌ¿À ±â¹Ý Æú¸®¿°È­ºñ´Ò ½ÃÀåÀÇ °úÁ¦:

  • ¹ÙÀÌ¿À ±â¹Ý Æú¸®¿°È­ºñ´ÒÀ» ±â¹ÝÀ¸·Î ÇÑ Àç·áÀÇ ´ë±Ô¸ð Á¶´Þ°ú ÀÀ¿ëÀº ±âÁ¸ ÇÃ¶ó½ºÆ½À» ´ëüÇÒ ¼ö ÀÖ´Â µµÀüÀÌ µÇ°í ÀÖ½À´Ï´Ù. ±âÁ¸ ÇÃ¶ó½ºÆ½Àº ¹ÙÀÌ¿À ±â¹Ý Æú¸®¿°È­ºñ´Ò¿¡ ºñÇØ »ý»êÀÌ ¿ëÀÌÇϰí ÀÀ¿ë ºÐ¾ß¿¡ ½±°Ô äÅÃÇÒ ¼ö ÀÖ½À´Ï´Ù. Áö¼ÓÀûÀÎ ½ÃÀå ÀûÀÀ°ú ºñ¿ëÀº Æú¸®¿°È­ºñ´ÒÀÇ °úÁ¦ÀÔ´Ï´Ù.

¹ÙÀÌ¿À ±â¹Ý Æú¸®¿°È­ºñ´Ò ½ÃÀåÀÇ ÁÖ¿ä ¹ßÀü:

  • 2024³â 3¿ù, Baerlocher USA´Â Innoleics¿Í »õ·Î¿î ÆÄÆ®³Ê½Ê °è¾àÀ» ¹ßÇ¥Çß½À´Ï´Ù. ÀÌ °è¾à¿¡ µû¶ó Baerlocher USA´Â ¹ÙÀÌ¿À ±â¹Ý °¡¼ÒÁ¦ÀÎ ¿¬Áú Æú¸®¿°È­ºñ´Ò(PVC) ¿ëµµÀÇ Innoleics Á¦Ç°À» ¹Ì±¹ ½ÃÀå¿¡¼­ ÆÇ¸ÅÇÒ ¼ö ÀÖ°Ô µÆ½À´Ï´Ù. ÀÌ È¸»ç´Â ¸ÂÃãÇü ¹ÙÀÌ¿À °¡¼ÒÁ¦/¾×ü È¥ÇÕ ±Ý¼Ó ¿øÆÑ ¼Ö·ç¼ÇÀ» »ý»êÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ Àü·«Àû ÆÄÆ®³Ê½ÊÀº Baerlocher USA°¡ ÇÃ¶ó½ºÆ½ »ê¾÷¿¡¼­ Àú¸íÇÑ °ø±Þ¾÷ü·Î ÀÚ¸®¸Å±èÇÏ´Â µ¥ µµ¿òÀÌ µÉ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. ÀÌ Á¦Ç°Àº Àü¼± ¹× ÄÉÀ̺í, ÇÕ¼º ÇÇÇõ, ½Å¹ß, ¹Ù´ÚÀç µîÀÇ ºÐ¾ß¿¡ Àû¿ëµÉ ¼ö ÀÖÀ¸¸ç, InnoleicsÀÇ Àúź¼Ò¹ßÀÚ±¹ ¼ÒÀç¿Í BaerlocherÀÇ ±â¼ú Àü¹® Áö½ÄÀº ¾î·Á¿î Áö¼Ó°¡´É¼º ¸ñÇ¥¸¦ ´Þ¼ºÇÏ´Â µ¥ µµ¿òÀÌ µÉ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.
  • 2023³â 6¿ù, KommerlingÀÇ Bio-attributed PVC´Â ´õ ¸¹Àº Áö¼Ó°¡´É¼ºÀ» ÇâÇÑ ÇÁ·ÎÁ§Æ®ÀÔ´Ï´Ù. ÀÌ ÇÁ·ÎÁ§Æ®´Â StenwijkÀÇ Royal BAM Group¿¡ ÀÇÇØ ½ÃÀ۵Ǿî 19 °³ÀÇ »çȸ ÀÓ´ë ¾ÆÆÄÆ®¸¦ Áö¼Ó°¡´ÉÇÑ ¼Ö·ç¼ÇÀ¸·Î Çö´ëÈ­ ÇÒ °ÍÀÔ´Ï´Ù. È­¼® ¿ø·á¸¦ 100% Àç»ý °¡´ÉÇÑ ´ëü Àç·á·Î ´ëüÇÏ´Â ÀÌ ÇÁ·ÎÁ§Æ®´Â ¿¡Æ¿·» »ý»ê¿¡ ¼®À¯ ´ë½Å ¼Ò³ª¹« ±â¸§À» ±â¹ÝÀ¸·Î ÇÑ ¿ø·á¸¦ »ç¿ëÇÏ¿© CO2 ¹èÃâ·®À» ÁÙÀÔ´Ï´Ù. À̹ø ³×´ú¶õµå ÇÁ·ÎÁ§Æ®¿¡¼­´Â ¾à 6,000kgÀÇ CO2¸¦ °¨ÃàÇÑ Áö¼Ó°¡´ÉÇÑ °ÇÃàÀÚÀ縦 »ý»êÇß½À´Ï´Ù.
  • 2022³â 12¿ù, ¿Íºó ¿Ãºñ¾ÆÀÇ °ÇÃà ¹× ÀÎÇÁ¶ó »ç¾÷ºÎ´Â »ó¼öµµ »ç¾÷ ¹× ÀÎÇÁ¶ó¸¦ À§ÇÑ ¹ÙÀÌ¿À ±â¹Ý ½Ä¼ö ¼Ö·ç¼Ç Æ÷Æ®Æú¸®¿À¸¦ ¹ßÇ¥Çß½À´Ï´Ù. ÀÌ´Â Áö¼Ó°¡´ÉÇÑ Á¦Ç°ÀÇ »õ·Ó°í Çõ½ÅÀûÀÎ Á¦Ç°±ºÀÔ´Ï´Ù. ÀÌ ¹ÙÀÌ¿À ¼øÈ¯ ¿ø·á´Â ź¼Ò¹ßÀÚ±¹À» 75%±îÁö ÁÙÀÏ ¼ö ÀÖÀ¸¸ç, KIWA ÀÎÁõ Á¦Ç°Àº ±âÁ¸ Á¦Ç° Æ÷Æ®Æú¸®¿À¿Í µ¿ÀÏÇÑ ±â¼úÀû Ư¼º°ú ¼º´ÉÀ» º¸ÀåÇÕ´Ï´Ù. ¶ÇÇÑ, ±¹Á¦ Áö¼Ó°¡´É¼º ¹× ź¼Ò ÀÎÁõ(ISCC)Àº Á¶´Þ °üÇà, À±¸®, »ý¹° ´Ù¾ç¼º, ÅäÁö ÀÌ¿ë, µ¿¹° ¸ÔÀÌ »ç½½¿¡ ´ëÇÑ Åõ¸í¼ºÀ» ÀÎÁõÇß½À´Ï´Ù.
  • 2022³â 8¿ù, ÄÜÆ¼³ÙÅ»Àº Ç¥ÇÇÀç »ý»ê¿¡ ¹ÙÀÌ¿À PVC BIOVYNÀ» äÅÃÇß½À´Ï´Ù. ÀÌ È¸»ç´Â ÀÚµ¿Â÷ÀÇ ±â¼ú ¹× Àå½Ä¿ë Ç¥¸é ¼ÒÀç¿¡ À̳ëºóÀÇ ¹ÙÀÌ¿À À¯·¡ PVC ÀÎ BIOVYNÀ» »ç¿ëÇÒ ¿¹Á¤À̸ç, BIOVYNÀº Áö¼Ó°¡´ÉÇÑ »ý¹°ÇÐÀû Àç·á¿¡ °üÇÑ ¿øÅ¹ ȸÀÇ(RSB)ÀÇ ÀÎÁõÀ»¹ÞÀº PVC µî±ÞÀ¸·Î 100 % Àç»ý °¡´ÉÇÑ ¿ø·áÀÔ´Ï´Ù. ÀÌ Çõ½ÅÀûÀÎ Á¦Ç°À¸·Î ¿Â½Ç°¡½ºÀÇ 70%¸¦ ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ´õ ¸¹Àº ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀÌ ÀÌ»êȭź¼Ò ¹èÃâ·®À» ÁÙÀ̱â À§ÇØ Áö¼Ó°¡´ÉÇÑ ¿ø·á¸¦ ã°í ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼Ò°³

  • ½ÃÀå °³¿ä
  • ½ÃÀå Á¤ÀÇ
  • Á¶»ç ¹üÀ§
  • ½ÃÀå ¼¼ºÐÈ­
  • ÅëÈ­
  • °¡Á¤
  • ±âÁØ ¿¬µµ¿Í ¿¹Ãø ¿¬µµ ŸÀÓ¶óÀÎ
  • ÀÌÇØ°ü°èÀÚ¿¡ ´ëÇÑ ÁÖ¿ä ÀÌÁ¡

Á¦2Àå Á¶»ç ¹æ¹ý

  • Á¶»ç µðÀÚÀÎ
  • Á¶»ç °úÁ¤

Á¦3Àå ÁÖ¿ä ¿ä¾à

  • ÁÖ¿ä Á¶»ç °á°ú
  • ¾Ö³Î¸®½ºÆ®ÀÇ °ßÇØ

Á¦4Àå ½ÃÀå ¿ªÇÐ

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • À¯¸®ÇÑ ±ÔÁ¦ Á¶Ä¡
    • °Ç¼³ ¾÷°èÀÇ ¼ö¿ä »ó½Â
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ±âÁ¸ Àç·á¿¡¼­ ÀûÀÀ°ú °æÀï·Â ÀÖ´Â ºñ¿ë
  • Porter's Five Forces ºÐ¼®
  • ¾÷°è ¹ë·ùüÀÎ ºÐ¼®

Á¦5Àå ¹ÙÀÌ¿À ±â¹Ý Æú¸®¿°È­ºñ´Ò ½ÃÀå : ¿ëµµº°

  • ¼Ò°³
  • ÆÄÀÌÇÁ
  • ¿ÍÀ̾î¿Í ÄÉÀ̺í
  • ºÀÅõ, ºó, º¸Æ²
  • ³ó¾÷¿ë Çʸ§
  • Àü±â¡¤ÀüÀÚ
  • ±âŸ ¿ëµµ

Á¦6Àå ¹ÙÀÌ¿À ±â¹Ý Æú¸®¿°È­ºñ´Ò ½ÃÀå : À¯Çüº°

  • ¼Ò°³
  • °æÁú
  • ¿¬Áú

Á¦7Àå ¹ÙÀÌ¿À ±â¹Ý Æú¸®¿°È­ºñ´Ò ½ÃÀå : ÃÖÁ¾ ÀÌ¿ë »ê¾÷º°

  • ¼Ò°³
  • °ÇÃࡤ°Ç¼³
  • ÀÚµ¿Â÷
  • ÇコÄɾî
  • ³ó¾÷
  • Æ÷Àå
  • ±âŸ ÃÖÁ¾ ÀÌ¿ë »ê¾÷

Á¦8Àå ¹ÙÀÌ¿À ±â¹Ý Æú¸®¿°È­ºñ´Ò ½ÃÀå : Áö¿ªº°

  • ¼¼°èÀÇ °³¿ä
  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • ³²¹Ì
    • ºê¶óÁú
    • ¾Æ¸£ÇîÆ¼³ª
    • ±âŸ ³²¹Ì
  • À¯·´
    • ¿µ±¹
    • µ¶ÀÏ
    • ÇÁ¶û½º
    • ÀÌÅ»¸®¾Æ
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • Áß±¹
    • Àεµ
    • ÀϺ»
    • Çѱ¹
    • ´ë¸¸
    • ű¹
    • Àεµ³×½Ã¾Æ
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç

Á¦9Àå °æÀï ȯ°æ°ú ºÐ¼®

  • ÁÖ¿ä ±â¾÷°ú Àü·« ºÐ¼®
  • ½ÃÀå Á¡À¯À² ºÐ¼®
  • ÇÕº´¡¤Àμö¡¤ÇùÁ¤¡¤Çù¾÷
  • °æÀï ´ë½Ãº¸µå

Á¦10Àå ±â¾÷ °³¿ä

  • Vynova Group
  • Cargill
  • Tarkett
  • Teknor Apex
  • Avient Corporation
  • Orbia
  • ENSO Plastics
  • RENOLIT SE
  • Westlake Vinnolit GmbH & Co. KG
  • Inovyn
ksm 24.08.12

The bio-based polyvinyl chloride market is anticipated to register a compound annual growth rate (CAGR) of 4.8% between 2024 and 2029.

Bio-based polyvinyl chloride comes from renewable biological resources, it is a type of bio-based plastic. Polyvinyl chloride (PVC) is one of the most common polymers in the world, used in numerous industries. In building and construction, PVC piping systems offer high ring stiffness, excellent corrosion and chemical resistance, and a long service life. The non-plastic alternatives of PVC pipes are optimized for product design, transportation, and manufacturing.

The applications for bio-based polyvinyl chloride have been increasing from sports and footwear to automotive, packaging, agriculture, non-wovens, and fiber applications. The demand for plastics use is projected to reach 1230.627 million tonnes (Mt) by 2060 from 459.7459 million tonnes (Mt) in 2019, nearly a three times growth. Global plastic waste is expected to rise from 353.2911 Mt in 2019 to 1014.144 Mt in 2060. This wastage has been creating a huge problem for the environmental crisis. This uncontrolled consumption of plastic has led to a challenge for waste management systems.

Overall, the carbon footprint of the material can be brought down by sourcing. PVC products are sourced from renewable plant-based derivatives. Such as non-food-based biomass sources used in PVC production are sugar cane, wood pulp, or used cooking oil.

According to the OECD, only 9% of the plastic waste is recycled. But 15% was collected for recycling, but about 6% was disposed of as residues. About 50% end up in landfills, creating soil pollution and deterioration of soil quality.

Bio-based flexible PVC compounds use plant-based plasticizers made from renewable feedstock which creates a sustainable raw material that easily gets into the soil rather than traditional petroleum-based plasticizers, which remains unresolved.

BIO-BASED POLYVINYL CHLORIDE MARKET DRIVERS:

  • Favorable regulatory measures

Governments around the world are phasing out single-use plastics and replacing them with recyclable materials. The New Zealand government has been promoting the phasing out of drink stirrers, plastic-stemmed cotton buds, plastic produce bags, plastic plates, bowls, and cutlery, and plastic straws with compostable and bio-based plastics. In April 2024, the European Parliament adopted the EU's Packaging and Packaging Waste Regulation (PPWR) which required reductions in plastics and other packaging. The rules required a ban on single-use plastic packaging for unprocessed fresh fruit and vegetables and foods and beverages consumed in cafes and restaurants. The rule is starting from 1 January 2030.

Governments and industry are taking steps for a net zero and circular economy. It is the key to energy security, job creation, and socio-economic development. Today almost half the global population lives in cities and by 2070 this is expected to reach 70%. Infrastructure and working space are needed the sustain such a large population. Bio-based materials are derived from living organisms, including bio-based polyvinyl chloride, which can be derived from sugarcane, etc.

Bio-based construction is growing among early adopters. One such project is Stockholm Wood City in Sickla, an area in the south of the Swedish capital. The construction would be on the 250,000-square-metre site and begin in 2025, along with 2,000 homes and 7,000 offices, restaurants, and shops. This city is incorporated with natural elements, such as green roofs, in its design.

  • The growing demand from the construction and building industry

The growth of the building and construction industry has created a related demand for construction materials, the total construction spending in the United States was 1,796,460 million dollars in January 2022, which jumped to 1,882,199 million dollars in January 2023. This growth in the construction industry remains with the challenges in the world where the sourcing of sustainable materials is needed. Several products and innovations are serving to make construction materials and components more sustainable. for instance, Cargill offers plasticizers from bio-based feedstocks that are used as components for flooring. This is to provide an alternative to phthalate and fossil fuel-dependent products.

Innovating solutions like Inovyn by Ineos worked with flooring Paris-based firm Tarkett for its new flooring collection. Further, Biovyn Inovyn (Ineos) could have numerous value-added applications in many industries in building and construction for pipe, and window frames. They are moving towards automotive and medical applications too. Biovyn is also Roundtable on Sustainable Biomaterials (RSB) certified.

Asia Pacific region to dominate the bio-based polyvinyl chloride market during the forecast period.

The major economies like China, Japan, India, and South Korea dominate the Asia-Pacific region. Some of the fastest-growing emerging economies are from this region such as ASEAN countries. India and China have about 35.5% of the world's population. In this regard, the rapid growth of the construction and real estate industry with a growing focus on infrastructural development has created the demand for various materials including more sustainable choices.

China is one of the sought-after countries for construction and development around the world. After, a few downturns in 2022-2023, the country is moving towards better government regulations and policies. The concept of green building is growing in the market, with government backing and investments. According to the China Business Review, new regulations could require about 70% of new urban buildings to be certified green buildings. This also includes schools, hospitals, and public buildings. These buildings require low-carbon construction, renewable energy, water conservation, sustainable materials, etc.

Bio-based polyvinyl chloride market challenges:

  • The large-scale sourcing and application of the bio-based polyvinyl chloride-based material has been a challenge in replacing traditional plastics. Traditional plastics are easy to manufacture and adopt in the application compared to bio-based polyvinyl chloride. The continuous market adaptation and cost are challenges for polyvinyl chloride.

Bio-based polyvinyl chloride market Key Developments:

  • In March 2024, Baerlocher USA announced a new partnership agreement with Innoleics. The deal would lead to the distribution of Innoleics' by Baerlocher USA for the bio-based plasticizers flexible polyvinyl chloride (PVC) applications in the U.S. market. The company could produce customizable bio-plasticizer/liquid mixed metal one-pack solutions. This strategic partnership would help Baerlocher USA to establish itself as a prominent supplier for the plastics industry. The product could be applied in segments such as wire and cable, synthetic leather, footwear, and flooring. Low carbon footprint materials by Innoleics, with the baerlocher's technical expertise, will help in reaching challenging sustainability goals.
  • In June 2023, Bio-attributed PVC by Kommerling is a project moving towards more sustainability. The project was launched by the Royal BAM Group in Steenwijk, in which 19 social rental apartments are being modernized into sustainable solutions. The project in which fossil materials are 100 percent replaced by a renewable alternative, is based on the pine oil-based raw material instead of petroleum in the production of ethylene, leading to the reduction of CO2 production. In the current project in the Netherlands, they produced sustainable building materials saving about 6,000 kilograms of CO2. The project was an assurance of innovative future products for sustainability.
  • In December 2022, Wavin Orbia's Building and Infrastructure business launched a bio-based drinking water solutions portfolio for water utilities and infrastructure. This is a new innovative range of sustainable products. This bio-circular feedstock could reduce the carbon footprint by 75%. KIWA-certified product guarantees the same technical properties and performance as its existing product portfolios. Additionally, International Sustainability and Carbon Certification (ISCC) certified transparency on sourcing practices, ethics, biodiversity, land use, and animal food chain. They are reusing raw material streams, and reducing dependence on fossil-based raw materials.
  • In August 2022, Continental selected bio-attributed PVC BIOVYN for the production of surface materials. The company would use BIOVYN, bio-attributed PVC, from INOVYN for the technical and decorative surface materials for automobiles. BIOVYN is a PVC grade that is certified by the Roundtable on Sustainable Biomaterials (RSB). It is a 100% renewable raw material. 70% of greenhouse gas savings would be saved from this innovative product. As more automotive manufacturers are demanding sustainable raw materials for reducing carbon footprint.

The bio-based polyvinyl chloride market is segmented and analyzed as follows:

By Application

  • Pipes
  • Wires And Cables
  • Bags, Bins, And Bottles
  • Agricultural Films
  • Electrical And Electronics
  • Other Applications

By Type

  • Rigid
  • Flexible

By End-user Industry

  • Building and Construction
  • Automotive
  • Healthcare
  • Agriculture
  • Packaging
  • Other End-user Industries

By Geography

  • North America
  • United States
  • Canada
  • Mexico
  • South America
  • Brazil
  • Argentina
  • Rest of South America
  • Europe
  • United Kingdom
  • Germany
  • France
  • Italy
  • Spain
  • Rest of Europe
  • Middle East and Africa
  • Saudi Arabia
  • United Arab Emirates
  • Rest of Middle East and Africa
  • Asia-Pacific
  • China
  • India
  • Japan
  • South Korea
  • Taiwan
  • Thailand
  • Indonesia
  • Rest of Asia-Pacific

TABLE OF CONTENTS

1. INTRODUCTION

  • 1.1. Market Overview
  • 1.2. Market Definition
  • 1.3. Scope of the Study
  • 1.4. Market Segmentation
  • 1.5. Currency
  • 1.6. Assumptions
  • 1.7. Base and Forecast Years Timeline
  • 1.8. Key benefits for the stakeholders

2. RESEARCH METHODOLOGY

  • 2.1. Research Design
  • 2.2. Research Process

3. EXECUTIVE SUMMARY

  • 3.1. Key Findings
  • 3.2. Analyst View

4. MARKET DYNAMICS

  • 4.1. Market Drivers
    • 4.1.1. Favorable regulatory measures
    • 4.1.2. The growing demand from the construction and building industry
  • 4.2. Market Restraints
    • 4.2.1. Adaptation and competitive cost from traditional materials
  • 4.3. Porter's Five Forces Analysis
    • 4.3.1. Bargaining Power of Suppliers
    • 4.3.2. Bargaining Power of Buyers
    • 4.3.3. The Threat of New Entrants
    • 4.3.4. Threat of Substitutes
    • 4.3.5. Competitive Rivalry in the Industry
  • 4.4. Industry Value Chain Analysis

5. BIO-BASED POLYVINYL CHLORIDE MARKET BY APPLICATION

  • 5.1. Introduction
  • 5.2. Pipes
  • 5.3. Wires And Cables
  • 5.4. Bags, Bins, And Bottles
  • 5.5. Agricultural Films
  • 5.6. Electrical And Electronics
  • 5.7. Other Applications

6. BIO-BASED POLYVINYL CHLORIDE MARKET BY TYPE

  • 6.1. Introduction
  • 6.2. Rigid
  • 6.3. Flexible

7. BIO-BASED POLYVINYL CHLORIDE MARKET BY END-USER INDUSTRY

  • 7.1. Introduction
  • 7.2. Building and Construction
  • 7.3. Automotive
  • 7.4. Healthcare
  • 7.5. Agriculture
  • 7.6. Packaging
  • 7.7. Other End-user Industries

8. BIO-BASED POLYVINYL CHLORIDE MARKET BY GEOGRAPHY

  • 8.1. Global Overview
  • 8.2. North America
    • 8.2.1. United States
    • 8.2.2. Canada
    • 8.2.3. Mexico
  • 8.3. South America
    • 8.3.1. Brazil
    • 8.3.2. Argentina
    • 8.3.3. Rest of South America
  • 8.4. Europe
    • 8.4.1. United Kingdom
    • 8.4.2. Germany
    • 8.4.3. France
    • 8.4.4. Italy
    • 8.4.5. Spain
    • 8.4.6. Rest of Europe
  • 8.5. Middle East and Africa
    • 8.5.1. Saudi Arabia
    • 8.5.2. United Arab Emirates
    • 8.5.3. Rest of Middle East and Africa
  • 8.6. Asia-Pacific
    • 8.6.1. China
    • 8.6.2. India
    • 8.6.3. Japan
    • 8.6.4. South Korea
    • 8.6.5. Taiwan
    • 8.6.6. Thailand
    • 8.6.7. Indonesia
    • 8.6.8. Rest of Asia-Pacific

9. COMPETITIVE ENVIRONMENT AND ANALYSIS

  • 9.1. Major Players and Strategy Analysis
  • 9.2. Market Share Analysis
  • 9.3. Mergers, Acquisitions, Agreements, and Collaborations
  • 9.4. Competitive Dashboard

10. COMPANY PROFILES

  • 10.1. Vynova Group
  • 10.2. Cargill
  • 10.3. Tarkett
  • 10.4. Teknor Apex
  • 10.5. Avient Corporation
  • 10.6. Orbia
  • 10.7. ENSO Plastics
  • 10.8. RENOLIT SE
  • 10.9. Westlake Vinnolit GmbH & Co. KG
  • 10.10. Inovyn
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦