½ÃÀ庸°í¼­
»óǰÄÚµå
1574144

¼¼°èÀÇ ¹æ»ç¼±ÇÐ ºÐ¾ß ÀΰøÁö´É(AI) ½ÃÀå : ¿¹Ãø(2024-2029³â)

Artificial Intelligence (AI) in Radiology Market - Forecasts from 2024 to 2029

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Knowledge Sourcing Intelligence | ÆäÀÌÁö Á¤º¸: ¿µ¹® 145 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¿µ»óÀÇÇÐ ºÐ¾ß AI ½ÃÀåÀº ¿¹Ãø ±â°£ µ¿¾È CAGR 30.45%·Î ¼ºÀåÇÏ¿© 2024³â 22¾ï 7,561¸¸ ´Þ·¯ ±Ô¸ð¿¡¼­ 2029³â¿¡´Â 85¾ï 9,680¸¸ 2,000¸¸´ú¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÀΰøÁö´É(AI)ÀÇ µö·¯´× ¾Ë°í¸®ÁòÀº ½Ã°¢ ±â¹Ý ¿ëµµÀ¸·Î ¿Ï¼ºµÇ°í ÀÖ½À´Ï´Ù. ÀÇ·á ¿µ»ó ºÐ¼® ¿µ¿ªÀº º¯ºÐ ÀÚµ¿ ÀÎÄÚ´õ¿Í ÄÁº¼·ç¼Ç ½Å°æ¸Á ±â¼úÀÇ ½ÇÇöÀ¸·Î ºü¸£°Ô È®ÀåµÇ°í ÀÖÀ¸¸ç, X¼± »çÁøÀÇ Ç°Áú¿¡ ´ëÇÑ ±âÁ¸ÀÇ Á¤¼ºÀû Æò°¡´Â ÃøÁ¤ÀÌ ¿ëÀÌÇϱ⠶§¹®¿¡ ´Þ¶óÁö°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, AI ±â¼úÀº ¿µ»ó Á¤º¸¿¡ Æ÷ÇÔµÈ ±â°èÀûÀ¸·Î ¾î·Á¿î Á¤º¸ ÆÐÅÏÀ» ºÐ¼®ÇÏ´Â µ¥ ÀÖ¾î ´õ¿í ¹ßÀüÇϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ¹æ»ç¼±Çп¡¼­ AI ¾Ë°í¸®ÁòÀº Á¾¾çÀÇ 3D ¸ð¾ç, °¢ Çȼ¿ÀÇ Áú°¨, Á¾¾ç ³» Çȼ¿ °­µµ¿Í °°Àº ƯÁ¤ ¹æ»ç¼± ÃÔ¿µ Ư¼ºÀ» ÃøÁ¤Çϵµ·Ï ¼³°èÇÒ ¼ö ÀÖ½À´Ï´Ù.

X¼± ÃÔ¿µÀº ¸éÇ㸦 °¡Áø Àǻ簡 ÀÓ»ó »çÁøÀ» ¿¬±¸Çϰí, ¼º¸í¼­¸¦ ŰƮȭÇϰí, Àå¾Ö¸¦ °¨Áö, ½Äº° ¹× ¸ð´ÏÅ͸µ ÇÒ ¼ö ÀÖµµ·Ï Áúº´À» ½Äº°ÇÏ°í ´ÜÀÏÈ­ÇÏ´Â °ÍÀÔ´Ï´Ù. ±× Æò°¡¿¡´Â ¸¹Àº Àü¹® Áö½Ä°ú °æÇèÀÌ ÇÊ¿äÇÏ°í ¶§·Î´Â Àǰ߿¡ ¿µÇâÀ» ¹Þ±â ½±½À´Ï´Ù. ÀÌ·¯ÇÑ Á¤¼ºÀûÀ̰í ÁÖ°üÀûÀÎ Æò°¡¿Í ´Þ¸® AI´Â À̹ÌÁö µ¥ÀÌÅÍÀÇ ¹Ì¹¦ÇÑ ÆÐÅÏÀ» ½Äº°ÇÏ°í °´°üÀûÀÎ ¼öÄ¡ ºÐ¼®À» ÀÚµ¿À¸·Î ¼öÇàÇÏ´Â µ¥ ¸Å¿ì ¶Ù¾î³³´Ï´Ù. AI¸¦ µµÀÔÇØ À¯¹æÃÔ¿µ ÀÇ»çÀÇ µµ¿òÀ» ¹ÞÀ¸¸é º¸´Ù Á¤È®Çϰí ÀçÇö¼º ³ôÀº ¹æ»ç¼±ÇÐÀû Æò°¡°¡ °¡´ÉÇØÁú °ÍÀÔ´Ï´Ù. ÀÌ ¿ëµµ´Â ¸î³âÈÄ, ¸î ½Ê³âÈÄ ¿µ»óÀÇÇÐ ½ÃÀå¿¡¼­ AI°¡ ´õ¿í ¹ßÀüÇÒ ¼ö ÀÖ´Â ±æÀ» ¿­¾îÁÖ°í ÀÖ½À´Ï´Ù.

¹æ»ç¼±ÇÐ ºÐ¾ß AI ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ:

  • ½Å°æÇÐ Ä¡·á ºÐ¾ß ¼ö¿ä Áõ°¡´Â ¿µ»óÀÇÇÐ ºÐ¾ß AI ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

üÀû Á¾¾ç ¼¼ºÐÈ­¿¡ ±â¹ÝÇÑ AI´Â ¸ðµç ³úÁ¾¾ç ¹× ±âŸ ½Å°æ°è ¾ÏÀÇ ½Äº° ¹× °ËÃâÀ» °³¼±ÇÒ ¼ö ÀÖÀ¸¸ç, Á¤È®µµ¿Í Àϰü¼ºÀÌ ¶Ù¾î³³´Ï´Ù. ÀÌ ½Ã½ºÅÛÀº ¶ÇÇÑ MRI ½ºÄµ¿¡¼­ ³úÁ¾¾çÀ» ÀÚµ¿À¸·Î ½Äº°ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Àü·«Àº Á¤È®ÇÑ Áø´ÜÀ» Á¦°øÇϰí ÀçÇö °¡´ÉÇÏ°í Æí°ß ¾ø´Â ¹æ½ÄÀ¸·Î Ä¡·á¿¡ ´ëÇÑ Á¾¾çÀÇ ¹ÝÀÀÀ» Æò°¡ÇÏ´Â µ¥ ¸Å¿ì À¯¿ëÇÕ´Ï´Ù. ½Å°æÇÐÀû Ä¡·áÀÇ ¶Ç ´Ù¸¥ ÀÌ¿ë »ç·Ê´Â AI¸¦ ÀÌ¿ëÇÑ Ä¡·á °á°ú ¿¹ÃøÀ» ÅëÇØ ÃÖÀûÀÇ Àü·«À» Ȱ¿ëÇÒ ¼ö ÀÖµµ·Ï µ½´Â °ÍÀÔ´Ï´Ù. ¹è°æ ¸Ó½Å·¯´×Àº MR À̹ÌÁöÀÇ Ç÷¾×·® ºÐÆ÷ µ¥ÀÌÅ͸¦ ±â¹ÝÀ¸·Î ȯÀÚÀÇ »ýÁ¸À» ¿¹ÃøÇÏ´Â µ¥ »ç¿ëµÇ¾î ¿Ô½À´Ï´Ù.

¿¹¸¦ µé¾î, 2023³â 2¿ù, ¹æ»ç¼± °ËÁø AI Ç÷§ÆûÀÎ Avicenna´Â ½Ã¸®Áî A º¥Ã³¿¡¼­ 700¸¸ À¯·ÎÀÇ ÅõÀÚ¸¦ À¯Ä¡ÇÏ¿© ÀÚº»±ÝÀ» 1,000¸¸ À¯·Î·Î ´Ã·È½À´Ï´Ù. ÀÌ ´Ü°è¿¡¼­ Avicenna.AI´Â ¹æ»ç¼±°ú ¿¬±¸½Ã¼³¿¡¼­ »ý¸íÀ» À§ÇùÇÏ´Â Áúº´À» ÀνÄÇÏ°í Æò°¡Çϱâ À§ÇØ À̹ÌÁö·Î ÇнÀµÈ µö·¯´×À» »ç¿ëÇÏ¿© CT ½ºÄµ À̹ÌÁö¸¦ »ç¿ëÇÏ¿© Áø´Ü Àü¿¡ Áõ»óÀÌ Àִ ȯÀÚÀÇ ¿ì¼± ¼øÀ§¸¦ Á¤Çϰí, Avicenna.AI´Â µÎ °¡Áö º¯ÇüÀ» Á¦°øÇÕ´Ï´Ù. ¹ßÀÛÀÇ ÀûÀÀÁõ°ú °¡´É¼º, ´Ù¸¥ Çϳª´Â ³ú ¼Õ»ó°ú ³úÁ¹Áß °¡´É¼ºÀÔ´Ï´Ù. ÀÌ Ç÷§ÆûÀº ¿µ»óÀÇÇаú Àü¹®Àǰ¡ ȯÀÚÀÇ »ý¸íÀÌ À§Çù¹Þ°í ÀÖ´ÂÁö ¿©ºÎ¸¦ ÆÇ´ÜÇÏ´Â µ¥ µµ¿òÀ» ÁÝ´Ï´Ù.

¹æ»ç¼±ÇÐ ºÐ¾ß AI ½ÃÀåÀÇ Áö¸®Àû Àü¸Á:

  • ¾ÆÅÂÁö¿ªÀº ¹æ»ç¼± ºÐ¾ß AI ½ÃÀå Á¡À¯À²ÀÇ »ó´ç ºÎºÐÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¾Æ½Ã¾ÆÅÂÆò¾çÀº ÀÇ·á ¹× »ý¸í°øÇÐ »ê¾÷ÀÇ ¿¬±¸ºñ ÁöÃâ ¹× °³¹ß Áõ°¡·Î ÀÎÇØ ¹æ»ç¼±ÇÐ ºÐ¾ß AI ½ÃÀå¿¡¼­ »ó´çÇÑ Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶ÇÇÑ, ÀÌ Áö¿ªÀÇ ³ôÀº ȯÀÚ ¼ö´Â ´õ ³ªÀº ¾Ï Ä¡·á ÀÎÇÁ¶ó¿¡ ´ëÇÑ ¼ö¿ä¸¦ Áõ°¡½ÃÄÑ ÇコÄÉ¾î ºÎ¹®ÀÇ ¼ºÀåÀ» °¡¼ÓÇϰí Áö¿ª Â÷¿ø ½ÃÀå °³Ã´À» ÃËÁøÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾ç¿¡¼­µµ ƯÈ÷ ½ÅÈï °æÁ¦±Ç¿¡¼­ »õ·Î¿î ±â¼úÀ» ¹ßÀü½Ã۱â À§ÇØ ÇコÄÉ¾î ºÐ¾ß¿¡ ´ëÇÑ ÅõÀÚ°¡ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù.

ÀÌ Áö¿ªÀÇ °æÁ¦´Â ȯÀÚÀÇ Á¶±â Áø´Ü°ú Á¶±â Ä¡·á¸¦ À§ÇÑ °Ç°­ÇÑ ÀÇ·á ½Ã½ºÅÛ ±¸Ãà¿¡ Á¡Á¡ ´õ ¸¹Àº ³ë·ÂÀ» ±â¿ïÀ̰í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ´Ù¾çÇÑ ÁÖ¿ä ±â¾÷µéÀÌ ¾Æ½Ã¾ÆÅÂÆò¾ç ±¹°¡¿¡ ÁøÃâÇϱâ À§ÇØ ½Ã¼³ °Ç¼³¿¡ ÁÖ·ÂÇϰí ÀÖ¾î ÇâÈÄ ¸î ³âµ¿¾È ÀÌ Áö¿ª ½ÃÀåÀÌ ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¿¹¸¦ µé¾î, 2023³â 5¿ù ÀÌ ºÐ¾ßÀÇ ¼¼°è ¸®´õÀÎ AI ±â¹Ý ¹æ»ç¼± ÀÇÇÐ ±â¾÷ Analise.ai´Â Àεµ þ³ªÀÌ¿¡ Àεµ ÃÖÃÊÀÇ ¼¾Å͸¦ ¼³¸³Çß½À´Ï´Ù. ÀÌ·¯ÇÑ Àü·«Àû ¿òÁ÷ÀÓÀ¸·Î Analise´Â ¾Æ½Ã¾Æ¿Í °°Àº ±âÁ¸ ½ÃÀå°ú ½ÅÈï ½ÃÀå¿¡¼­ Á¸Àç°¨À» µå·¯³»¸ç ¼¼°è ¹«´ë·ÎÀÇ ÁøÃâÀ» °è¼ÓÇϰí ÀÖ½À´Ï´Ù. ÀÌ ¼¾Åʹ ÷´Ü ¿µ»ó µ¥ÀÌÅÍ¿Í ÄÄÇ»ÅÍ °úÇÐÀ» °áÇÕÇÑ ½ÅÁ¦Ç°À» ¿¬±¸ÇÏ°í »ó¿ëÈ­ÇÏ´Â µ¥ ƯȭµÇ¾î ÀÖÀ¸¸ç, ÀÓ»ó ÀÇ»ç °áÁ¤À» Áö¿øÇÏ´Â ¿Ïº®ÇÑ AI ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù.

ÀÌ º¸°í¼­¸¦ ±¸ÀÔÇØ¾ß ÇÏ´Â ÀÌÀ¯

  • ÅëÂû·Â ÀÖ´Â ºÐ¼® : °í°´ ºÎ¹®, Á¤ºÎ Á¤Ã¥ ¹× »çȸ°æÁ¦Àû ¿äÀÎ, ¼ÒºñÀÚ ¼±È£µµ, »ê¾÷ ¹× ±âŸ ÇÏÀ§ ºÎ¹®¿¡ ÃÊÁ¡À» ¸ÂÃß°í ÁÖ¿ä Áö¿ª°ú ½ÅÈï Áö¿ª±îÁö Æ÷°ýÇÏ´Â »ó¼¼ÇÑ ½ÃÀå ÀλçÀÌÆ®À» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.
  • °æÀï ȯ°æ: ¼¼°è ÁÖ¿ä ±â¾÷µéÀÌ Ã¤ÅÃÇϰí ÀÖ´Â Àü·«Àû Àü·«À» ÀÌÇØÇϰí, ÀûÀýÇÑ Àü·«À» ÅëÇÑ ½ÃÀå ħÅõ °¡´É¼ºÀ» ÆÄ¾ÇÇÕ´Ï´Ù.
  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀΰú ÇâÈÄ µ¿Çâ : ¿ªµ¿ÀûÀÎ ¿äÀΰú ¸Å¿ì Áß¿äÇÑ ½ÃÀå µ¿Çâ, ±×¸®°í À̵éÀÌ ÇâÈÄ ½ÃÀå °³Ã´À» ¾î¶»°Ô Çü¼ºÇÒ °ÍÀÎÁö¿¡ ´ëÇØ ¾Ë¾Æº¾´Ï´Ù.
  • ½ÇÇà °¡´ÉÇÑ Á¦¾È: ¿ªµ¿ÀûÀΠȯ°æ ¼Ó¿¡¼­ »õ·Î¿î ºñÁî´Ï½º ½ºÆ®¸²°ú ¼öÀÍÀ» âÃâÇϱâ À§ÇÑ Àü·«Àû ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖµµ·Ï ÅëÂû·ÂÀ» Ȱ¿ëÇÕ´Ï´Ù.
  • ±¤¹üÀ§ÇÑ µ¶ÀÚÃþ: ½ºÅ¸Æ®¾÷, ¿¬±¸±â°ü, ÄÁ¼³ÅÏÆ®, Áß¼Ò±â¾÷, ´ë±â¾÷¿¡ À¯ÀÍÇÏ°í ºñ¿ë È¿À²ÀûÀÓ.

±â¾÷Àº ¾î¶² ¸ñÀûÀ¸·Î ¿ì¸®ÀÇ º¸°í¼­¸¦ »ç¿ëÇϳª¿ä?

»ê¾÷ ¹× ½ÃÀå ÀλçÀÌÆ®, »ç¾÷ ±âȸ Æò°¡, Á¦Ç° ¼ö¿ä ¿¹Ãø, ½ÃÀå ÁøÃâ Àü·«, Áö¸®Àû È®Àå, ¼³ºñ ÅõÀÚ °áÁ¤, ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ© ¹× ¿µÇâ, ½ÅÁ¦Ç° °³¹ß, °æÀïÀÇ ¿µÇâ

Á¶»ç ¹üÀ§

  • °ú°Å µ¥ÀÌÅÍ ¹× ¿¹Ãø, 2022-2029³â
  • ¼ºÀå ±âȸ, °úÁ¦, °ø±Þ¸Á Àü¸Á, ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©, °í°´ Çൿ, Æ®·»µå ºÐ¼®
  • °æÀï»ç ½ÃÀå »óȲ, Àü·« ¹× ½ÃÀå Á¡À¯À² ºÐ¼®
  • °¢ ±¹°¡¸¦ Æ÷ÇÔÇÑ ºÎ¹® ¹× Áö¿ªº° ¼öÀÍ ¼ºÀå ¹× ¿¹Ãø Æò°¡
  • ±â¾÷ ÇÁ·ÎÆÄÀÏ(Àü·«, Á¦Ç°, À繫 Á¤º¸, ÁÖ¿ä °³¹ß µî)

¸ñÂ÷

Á¦1Àå ¼­·Ð

  • ½ÃÀå °³¿ä
  • ½ÃÀå Á¤ÀÇ
  • Á¶»ç ¹üÀ§
  • ½ÃÀå ¼¼ºÐÈ­
  • ÅëÈ­
  • ÀüÁ¦Á¶°Ç
  • ±âÁسâ°ú ¿¹Ãø³â ŸÀÓ¶óÀÎ
  • ÀÌÇØ°ü°èÀÚ¿¡°Ô À־ÀÇ ÁÖ¿ä ÀÌÁ¡

Á¦2Àå Á¶»ç ¹æ¹ý

  • Á¶»ç µðÀÚÀÎ
  • Á¶»ç °úÁ¤

Á¦3Àå ÁÖ¿ä ¿ä¾à

  • ÁÖ¿ä Á¶»ç °á°ú

Á¦4Àå ½ÃÀå ¿ªÇÐ

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
  • PorterÀÇ Five Forces ºÐ¼®
  • ¾÷°è ¹ë·ùüÀÎ ºÐ¼®
  • ¾Ö³Î¸®½ºÆ®ÀÇ °ßÇØ

Á¦5Àå ¹æ»ç¼±ÇÐ ºÐ¾ß AI ½ÃÀå : ±â¼úº°

  • ¼­·Ð
  • ÄÄÇ»ÅÍ Áö¿ø ŽÁö
  • Àå±â ÀÚµ¿ ¼¼ºÐÈ­
  • ÀÚ¿¬¾ð¾îó¸®
  • ÄÁ¼³ÆÃ
  • Quantification ¹× Kinetics
  • ±âŸ

Á¦6Àå ¹æ»ç¼±ÇÐ ºÐ¾ß AI ½ÃÀå : ¿ëµµº°

  • ¼­·Ð
  • ¸¾¸ð±×·¡ÇÇ
  • ÈäºÎ¿µ»ó
  • ½Å°æÇÐ
  • ½ÉÀåÇ÷°ü
  • ±âŸ

Á¦7Àå ¹æ»ç¼±ÇÐ ºÐ¾ß AI ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • ¼­·Ð
  • º´¿ø
  • ¿µ»óÁø´Ü¼¾ÅÍ
  • ±âŸ

Á¦8Àå ¹æ»ç¼±ÇÐ ºÐ¾ß AI ½ÃÀå : Áö¿ªº°

  • ¼­·Ð
  • ºÏ¹Ì
    • ±â¼úº°
    • ¿ëµµº°
    • ÃÖÁ¾»ç¿ëÀÚº°
    • ±¹°¡º°
  • ³²¹Ì
    • ±â¼úº°
    • ¿ëµµº°
    • ÃÖÁ¾»ç¿ëÀÚº°
    • ±¹°¡º°
  • À¯·´
    • ±â¼úº°
    • ¿ëµµº°
    • ÃÖÁ¾»ç¿ëÀÚº°
    • ±¹°¡º°
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • ±â¼úº°
    • ¿ëµµº°
    • ÃÖÁ¾»ç¿ëÀÚº°
    • ±¹°¡º°
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ±â¼úº°
    • ¿ëµµº°
    • ÃÖÁ¾»ç¿ëÀÚº°
    • ±¹°¡º°

Á¦9Àå °æÀï ȯ°æ°ú ºÐ¼®

  • ÁÖ¿ä ±â¾÷°ú Àü·« ºÐ¼®
  • ½ÃÀå Á¡À¯À² ºÐ¼®
  • ÇÕº´, Àμö, ÇÕÀÇ, Çù¾÷
  • °æÀï ´ë½Ãº¸µå

Á¦10Àå ±â¾÷ °³¿ä

  • Microsoft Corporation
  • Amazon Web Services Inc.
  • IBM Corporation
  • Rad AI
  • Behold.ai
  • IMAGEN
  • Aidoc
  • Koninklijke Philips N.V.
  • GE Healthcare
  • Siemens Healthcare GmbH
LSH 24.11.07

The AI in radiology market is projected to grow at a CAGR of 30.45% during the forecast period, reaching a total market size of US$8,596.802 million by 2029, up from US$2,275.610 million in 2024.

Deep learning algorithms in artificial intelligence (AI) have been perfected in vision-based applications. The medical image analysis domain is expanding rapidly with the realization of variational autoencoders and convolutional neural network techniques. Traditional qualitative assessments for radiographic qualities differ since the measure is easy to perform. Moreover, AI techniques are more advanced at analyzing mechanically difficult information patterns in imaging information. For instance, in radiology, AI algorithms could be designed to measure specific radiographic characteristics, such as the 3D shape of a tumor, every pixel's texture, and pixel intensity within the tumor.

X-ray radiography is when licensed medical doctors study clinical photos and kit a statement or identify and single out diseases that allow disorders to be detected, identified, and monitored. That assessment requires a lot of expertise and experience, which is sometimes susceptible to opinion. In contrast to this qualitative, subjective evaluation, AI is extremely good at identifying subtle patterns in imaging data while automatically providing an objective numerical analysis. Implementing AI to support and assist mammogram physicians can result in more precise and reproducible radiological assessments. This application is opening the door to further development into AI in the radiology market in years or decades to come.

AI IN RADIOLOGY MARKET DRIVERS:

  • The increasing requirement from the neurological treatment sector is anticipated to drive AI in the radiology market growth.

Working off of volumetric tumor segmentation, AI can improve identification and detection across all brain tumors and other neurological cancers with superior accuracy and consistency. The system will also automatically identify brain tumors on MRI scans. These strategies can be extremely valuable in providing precise diagnoses and assessing the tumor response to treatment in a reproducible and unbiased manner. Another use case in this neurological treatment is the prediction of outcomes using AI, which can assist in utilizing the best strategy. Background Machine learning has been used to predict survival among patients based on blood volume distribution data from MR imaging.

For instance, in February 2023, Avicenna, an AI platform for radiology screening, raised €7 million in a series A venture, bringing its capital base to €10 million. The stage employs image-trained profound learning to recognize and evaluate life-threatening ailments in radiology research facilities. It uses CT scan imaging to prioritize patients with symptoms before diagnosis. Avicenna.AI offers two variations: one for heart attack indications and chance and another for brain damage and stroke chance. The platform assists radiologists in deciding if a patient's life is threatened.

AI In Radiology Market Geographical Outlook:

  • The Asia Pacific region is expected to hold a substantial AI in radiology market share.

Asia Pacific is projected to hold substantial shares of AI in the radiology market owing to a rise in research spending and development in the medical and biotech industries. Moreover, the expected large number of patients in these areas will increase the demand for better cancer treatment infrastructure, propelling healthcare sector growth and aiding market development at a regional level. Asia Pacific has also seen investment in the healthcare sector, especially in emerging economies, to advance newer technologies.

The region's economies are increasingly focusing on creating a sound healthcare system for early patient diagnosis and treatment. In addition, various key companies are focusing on advancing their reach to Asia Pacific countries by building their facilities, leading to the regional market's growth in the coming years. For instance, in May 2023, Annalise. ai, an AI-based radiology company that is a global leader in the field, established its first Indian center in Chennai. Through this strategic move, Annalise continues penetrating the world arena with its presence in established and emerging markets like Asia. This translates into a center that specializes in the research and commercialization of new products containing advanced imaging data coupled with computer science that together results in complete AI solutions to support clinical decision-making.

Reasons for buying this report:-

  • Insightful Analysis: Gain detailed market insights covering major as well as emerging geographical regions, focusing on customer segments, government policies and socio-economic factors, consumer preferences, industry verticals, other sub- segments.
  • Competitive Landscape: Understand the strategic maneuvers employed by key players globally to understand possible market penetration with the correct strategy.
  • Market Drivers & Future Trends: Explore the dynamic factors and pivotal market trends and how they will shape up future market developments.
  • Actionable Recommendations: Utilize the insights to exercise strategic decision to uncover new business streams and revenues in a dynamic environment.
  • Caters to a Wide Audience: Beneficial and cost-effective for startups, research institutions, consultants, SMEs, and large enterprises.

What do businesses use our reports for?

Industry and Market Insights, Opportunity Assessment, Product Demand Forecasting, Market Entry Strategy, Geographical Expansion, Capital Investment Decisions, Regulatory Framework & Implications, New Product Development, Competitive Intelligence

Report Coverage:

  • Historical data & forecasts from 2022 to 2029
  • Growth Opportunities, Challenges, Supply Chain Outlook, Regulatory Framework, Customer Behaviour, and Trend Analysis
  • Competitive Positioning, Strategies, and Market Share Analysis
  • Revenue Growth and Forecast Assessment of segments and regions including countries
  • Company Profiling (Strategies, Products, Financial Information, and Key Developments among others)

Market Segmentation:

The AI In Radiology Market is segmented and analyzed as below:

By Technology

  • Computer-aided Detection
  • Auto-segmentation of Organs
  • Natural Language Processing
  • Consultation
  • Quantification and Kinetics
  • Others

By Application

  • Mammography
  • Chest Imaging
  • Neurology
  • Cardiovascular
  • Others

By End-User

  • Hospitals
  • Diagnostic Imaging Centers
  • Others

By Geography

  • North America
  • USA
  • Canada
  • Mexico
  • South America
  • Brazil
  • Argentina
  • Others
  • Europe
  • Germany
  • France
  • United Kingdom
  • Spain
  • Others
  • Middle East and Africa
  • Saudi Arabia
  • UAE
  • Israel
  • Others
  • Asia Pacific
  • China
  • Japan
  • India
  • South Korea
  • Indonesia
  • Taiwan
  • Others

TABLE OF CONTENTS

1. INTRODUCTION

  • 1.1. Market Overview
  • 1.2. Market Definition
  • 1.3. Scope of the Study
  • 1.4. Market Segmentation
  • 1.5. Currency
  • 1.6. Assumptions
  • 1.7. Base and Forecast Years Timeline
  • 1.8. Key benefits for the stakeholders

2. RESEARCH METHODOLOGY

  • 2.1. Research Design
  • 2.2. Research Process

3. EXECUTIVE SUMMARY

  • 3.1. Key Findings

4. MARKET DYNAMICS

  • 4.1. Market Drivers
  • 4.2. Market Restraints
  • 4.3. Porter's Five Forces Analysis
    • 4.3.1. Bargaining Power of Suppliers
    • 4.3.2. Bargaining Power of Buyers
    • 4.3.3. Threat of New Entrants
    • 4.3.4. Threat of Substitutes
    • 4.3.5. Competitive Rivalry in the Industry
  • 4.4. Industry Value Chain Analysis
  • 4.5. Analyst View

5. AI IN RADIOLOGY MARKET BY TECHNOLOGY

  • 5.1. Introduction
  • 5.2. Computer-aided Detection
  • 5.3. Auto-segmentation of Organs
  • 5.4. Natural Language Processing
  • 5.5. Consultation
  • 5.6. Quantification and Kinetics
  • 5.7. Others

6. AI IN RADIOLOGY MARKET BY APPLICATION

  • 6.1. Introduction
  • 6.2. Mammography
  • 6.3. Chest Imaging
  • 6.4. Neurology
  • 6.5. Cardiovascular
  • 6.6. Others

7. AI IN RADIOLOGY MARKET BY END-USER

  • 7.1. Introduction
  • 7.2. Hospitals
  • 7.3. Diagnostic Imaging Centers
  • 7.4. Others

8. AI IN RADIOLOGY MARKET BY GEOGRAPHY

  • 8.1. Introduction
  • 8.2. North America
    • 8.2.1. By Technology
    • 8.2.2. By Application
    • 8.2.3. By End-User
    • 8.2.4. By Country
      • 8.2.4.1. USA
      • 8.2.4.2. Canada
      • 8.2.4.3. Mexico
  • 8.3. South America
    • 8.3.1. By Technology
    • 8.3.2. By Application
    • 8.3.3. By End-User
    • 8.3.4. By Country
      • 8.3.4.1. Brazil
      • 8.3.4.2. Argentina
      • 8.3.4.3. Others
  • 8.4. Europe
    • 8.4.1. By Technology
    • 8.4.2. By Application
    • 8.4.3. By End-User
    • 8.4.4. By Country
      • 8.4.4.1. Germany
      • 8.4.4.2. France
      • 8.4.4.3. United Kingdom
      • 8.4.4.4. Spain
      • 8.4.4.5. Others
  • 8.5. Middle East and Africa
    • 8.5.1. By Technology
    • 8.5.2. By Application
    • 8.5.3. By End-User
    • 8.5.4. By Country
      • 8.5.4.1. Saudi Arabia
      • 8.5.4.2. UAE
      • 8.5.4.3. Israel
      • 8.5.4.4. Others
  • 8.6. Asia Pacific
    • 8.6.1. By Technology
    • 8.6.2. By Application
    • 8.6.3. By End-User
    • 8.6.4. By Country
      • 8.6.4.1. China
      • 8.6.4.2. Japan
      • 8.6.4.3. India
      • 8.6.4.4. South Korea
      • 8.6.4.5. Taiwan
      • 8.6.4.6. Indonesia
      • 8.6.4.7. Others

9. COMPETITIVE ENVIRONMENT AND ANALYSIS

  • 9.1. Major Players and Strategy Analysis
  • 9.2. Market Share Analysis
  • 9.3. Mergers, Acquisitions, Agreements, and Collaborations
  • 9.4. Competitive Dashboard

10. COMPANY PROFILES

  • 10.1. Microsoft Corporation
  • 10.2. Amazon Web Services Inc.
  • 10.3. IBM Corporation
  • 10.4. Rad AI
  • 10.5. Behold.ai
  • 10.6. IMAGEN
  • 10.7. Aidoc
  • 10.8. Koninklijke Philips N.V.
  • 10.9. GE Healthcare
  • 10.10. Siemens Healthcare GmbH
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦