½ÃÀ庸°í¼­
»óǰÄÚµå
1574170

¹æ»ç¼± ¿öÅ©Ç÷οì ÃÖÀûÈ­ ºÐ¾ß ÀΰøÁö´É(AI) ½ÃÀå : ¿¹Ãø(2024-2029³â)

Artificial Intelligence (AI) in Radiology Workflow Optimization Market - Forecasts from 2024 to 2029

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Knowledge Sourcing Intelligence | ÆäÀÌÁö Á¤º¸: ¿µ¹® 131 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¹æ»ç¼± ¿öÅ©Ç÷οì ÃÖÀûÈ­ ºÐ¾ß ÀΰøÁö´É(AI) ½ÃÀåÀº ¿¬Æò±Õ 32.56% ¼ºÀåÇÏ¿© 2029³â ½ÃÀå ±Ô¸ð´Â 49¾ï 3,235¸¸ 8,000´Þ·¯, 2024³â¿¡´Â 12¾ï 493¸¸ 5,000´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

AI´Â ¿µ»óÀÇÇаú ¿öÅ©ÇÃ·Î¿ì °­È­ ºÐ¾ß¿¡ Çõ¸íÀ» ÀÏÀ¸Å°¸ç Á¤È®¼º°ú È¿À²¼ºÀÇ »õ·Î¿î ÁöÆòÀ» ¿­°í ÀÖ½À´Ï´Ù. ºü¸£°í Á¤È®ÇÑ Áø´ÜÀ» Á¦°øÇÒ ¼ö ÀÖ´Â ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó AI ±â¹Ý ¼Ö·ç¼ÇÀÌ ÀüȯÁ¡ÀÌ µÇ¾ú°í, AI ÅëÇÕ ¼Ö·ç¼ÇÀº ¿µ»óÀÇÇаú Àǻ翡°Ô ÃæºÐÇÑ Á¤º¸¸¦ Á¦°øÇÏ¿© ¿ÀÁøÀ» ÁÙÀ̰í, ȯÀÚÀÇ Áúº´À» Á¶±â¿¡ Áø´ÜÇÏ¿© ÀûÀýÇÑ ÀÇ·á ¿µ»ó ÇØ¼®À» ÃËÁøÇÕ´Ï´Ù.

µû¶ó¼­ AI´Â ¿µ»óÀÇ Àΰú°ü°è ¹× ¿µ»ó ºÐ·ù¿Í °°Àº ÀÏ»óÀûÀÎ ÀÛ¾÷À» ÁÙ¿© Ãâ·ÂÀ» ÃÖÀûÈ­Çϰí, ¿µ»óÀÇÇаú Àü¹®Àǰ¡ ´õ º¹ÀâÇÏ°í ±î´Ù·Î¿î ÄÉÀ̽º¿¡ ÁýÁßÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. ÇöÀç ¹æ»ç¼±°ú ¿öÅ©Ç÷οì ÃÖÀûÈ­¸¦ À§ÇÑ AI ½ÃÀåÀº ÁÖ¿ä ÀÇ·á ¼­ºñ½º Á¦°ø¾÷ü¿Í ¿µ»óÀÇÇÐ ¼¾ÅͰ¡ ÀÌ·¯ÇÑ ¼Ö·ç¼ÇÀ» ºü¸£°Ô äÅÃÇÒ ¼ö ÀÖ´Â ±àÁ¤ÀûÀÎ ¼ºÀå ´Ü°è¿¡ ÀÖÀ¸¸ç, AI°¡ ¹æ»ç¼±°ú ¾÷¹«¿¡ ÅëÇյǸé ȯÀÚ °á°ú¸¦ °³¼±Çϰí, ºñ¿ëÀ» Àý°¨Çϰí ÇÁ·Î¼¼½º¸¦ °£¼ÒÈ­ÇÔÀ¸·Î½á ÀÇ·á ¼­ºñ½º Á¦°ø¿¡ º¯È­¸¦ °¡Á®¿Ã °ÍÀ¸·Î ±â´ëµË´Ï´Ù.

¹æ»ç¼± ¿öÅ©Ç÷οì ÃÖÀûÈ­ ºÐ¾ß ÀΰøÁö´É(AI) ½ÃÀå ÃËÁø¿äÀÎ:

  • ¹Ýº¹ÀûÀÎ ÀÛ¾÷ÀÇ ÀÚµ¿È­·Î ½ÃÀå ¼ºÀå ±â´ë

¹æ»ç¼± ¿öÅ©Ç÷οì ÃÖÀûÈ­ ºÐ¾ß ÀΰøÁö´É(AI) ½ÃÀåÀº ¹Ýº¹ÀûÀÎ ÇÁ·Î¼¼½ºÀÇ ÀÚµ¿È­°¡ ¿µ»óÀÇÇаú Áø·áÀÇ È¿À²¼ºÀ» º¯È­½ÃŰ´Â µ¥ ÀÖ¾î Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ¸Ó½Å·¯´× ±â¹Ý ¾Ë°í¸®ÁòÀº ¿¢½º·¹ÀÌ, MRI µî ´Ù¾çÇÑ ÀÇ·á ¿µ»ó°ú °ü·ÃµÈ ¹æ´ëÇÑ ¾çÀÇ µ¥ÀÌÅ͸¦ ºü¸£°Ô ¼±º°Çϰí À¯»çÁ¡À̳ª ºÒ±ÔÄ¢¼ºÀ» ã¾Æ³¾ ¼ö ÀÖ½À´Ï´Ù. À̹ÌÁö ºÐÇÒ, ƯÁ¤ Ư¼º ÃßÃâ, °ú°Å À¯»ç »ç·Ê °Ë»ö µîÀÇ ÀÛ¾÷À» ÀÚµ¿È­ÇÒ ¼ö ÀÖ¾î ¹æ»ç¼±°ú ÀÇ»ç´Â ´õ º¹ÀâÇϰí Áß¿äÇÑ »ç·Ê¿¡ ÁýÁßÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÇÁ·Î¼¼½º °£¼ÒÈ­¸¦ ÅëÇØ ¹æ»ç¼± Áø´ÜÀÇ È¿À²¼ºÀÌ Çâ»óµÇ¾î ´õ ºü¸¥ Áø´Ü°ú ȯÀÚ °á°ú¸¦ °³¼±ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÚµ¿È­´Â ÀÎÀû ¿À·ù¸¦ ¾ø¾Ö°í ±ÕÀϼºÀ» ¸¸µé¾î ÀÇ·áÁø°ú ȯÀÚ ¸ðµÎ¿¡°Ô ÀÌÀÍÀÌ µË´Ï´Ù.

¹æ»ç¼± ¿öÅ©Ç÷οì ÃÖÀûÈ­ ºÐ¾ß ÀΰøÁö´É(AI) ½ÃÀåÀÇ Áö¸®Àû Àü¸Á

  • ºÏ¹Ì´Â ¿¹Ãø ±â°£ µ¿¾È ºñ¾àÀûÀÎ ¼ºÀå¼¼¸¦ º¸ÀÏ °ÍÀÔ´Ï´Ù.

ºÏ¹Ì°¡ ¹æ»ç¼± ¿öÅ©Ç÷οì ÃÖÀûÈ­ ºÐ¾ß ÀΰøÁö´É(AI) ½ÃÀåÀÇ ¼±µÎÁÖÀÚ·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ºÏ¹ÌÀÇ °­Á¡Àº źźÇÑ ÀÇ·á ½Ã½ºÅÛ, AI ±â¼úÀÇ ºü¸¥ ÅëÇÕ, R&D¿¡ ´ëÇÑ ³ôÀº ÅõÀÚ¿¡ ±âÀÎÇÕ´Ï´Ù. ¶ÇÇÑ, ÀÌ Áö¿ª¿¡´Â Çõ½ÅÀ» ÁÖµµÇÏ´Â ¿©·¯ À¯¸í AI ¹× ÀÇ·á ±â¼ú ±â¾÷µéÀÌ ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀº Á¤¹ÐÀÇ·á¿Í ȯÀÚ Á᫐ Áø·á¿¡ ÁßÁ¡À» µÎ°í Àֱ⠶§¹®¿¡ AI ±â¹Ý ¹æ»ç¼± ±â¼ú¿¡ ¸¹Àº ÀÚ±ÝÀÌ ÅõÀԵǰí ÀÖÀ¸¸ç, ÀÇ·á ¼­ºñ½º Á¦°øÀÚ¿Í ÀÇ·á ±â°üÀÌ Å« °ü½ÉÀ» º¸À̰í ÀÖ½À´Ï´Ù. ºÏ¹Ì´Â ƯÈ÷ Àα¸ Áõ°¡°¡ ¿¹»óµÇ°í AI¸¦ ¼ö¿ëÇÏ´Â Àα¸°¡ ¸¹±â ¶§¹®¿¡ ÇâÈÄ¿¡µµ ½ÅÈï ±â¼úÀ» ¼±µµÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ÀÌ º¸°í¼­¸¦ ±¸ÀÔÇØ¾ß ÇÏ´Â ÀÌÀ¯

  • ÅëÂû·Â ÀÖ´Â ºÐ¼® : °í°´ ºÎ¹®, Á¤ºÎ Á¤Ã¥ ¹× »çȸ°æÁ¦Àû ¿äÀÎ, ¼ÒºñÀÚ ¼±È£µµ, »ê¾÷ ºÐ¾ß ¹× ±âŸ ÇÏÀ§ ºÎ¹®¿¡ ÃÊÁ¡À» ¸ÂÃç ÁÖ¿ä Áö¿ª°ú ½ÅÈï Áö¿ªÀ» Æ÷°ýÇÏ´Â »ó¼¼ÇÑ ½ÃÀå ÀλçÀÌÆ®¸¦ ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.
  • °æÀï »óȲ : ¼¼°è ÁÖ¿ä ±â¾÷µéÀÌ Ã¤ÅÃÇϰí ÀÖ´Â Àü·«Àû Àü·«À» ÀÌÇØÇϰí, ÀûÀýÇÑ Àü·«À» ÅëÇÑ ½ÃÀå ħÅõ °¡´É¼ºÀ» ÆÄ¾ÇÇÕ´Ï´Ù.
  • ½ÃÀå ÃËÁø¿äÀΰú ÇâÈÄ µ¿Çâ : ¿ªµ¿ÀûÀÎ ¿äÀΰú ¸Å¿ì Áß¿äÇÑ ½ÃÀå µ¿Çâ, ±×¸®°í À̵éÀÌ ÇâÈÄ ½ÃÀå °³Ã´À» ¾î¶»°Ô Çü¼ºÇÒ °ÍÀÎÁö¿¡ ´ëÇØ ¾Ë¾Æº¾´Ï´Ù.
  • ½ÇÇà °¡´ÉÇÑ Á¦¾È : ¿ªµ¿ÀûÀΠȯ°æ ¼Ó¿¡¼­ »õ·Î¿î ºñÁî´Ï½º ½ºÆ®¸²°ú ¼öÀÍÀ» âÃâÇϱâ À§ÇÑ Àü·«Àû ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖµµ·Ï ÀλçÀÌÆ®¸¦ Ȱ¿ëÇÕ´Ï´Ù.
  • ±¤¹üÀ§ÇÑ µ¶ÀÚÃþ : ½ºÅ¸Æ®¾÷, ¿¬±¸±â°ü, ÄÁ¼³ÅÏÆ®, Áß¼Ò±â¾÷, ´ë±â¾÷¿¡ À¯ÀÍÇÏ°í ºñ¿ë È¿À²ÀûÀÔ´Ï´Ù.

±â¾÷Àº ¾î¶² ¸ñÀûÀ¸·Î ¿ì¸® º¸°í¼­¸¦ »ç¿ëÇϴ°¡?

»ê¾÷ ¹× ½ÃÀå ÀλçÀÌÆ®, »ç¾÷ ±âȸ Æò°¡, Á¦Ç° ¼ö¿ä ¿¹Ãø, ½ÃÀå ÁøÀÔ Àü·«, Áö¸®Àû È®Àå, ¼³ºñ ÅõÀÚ °áÁ¤, ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ© ¹× ¿µÇâ, ½ÅÁ¦Ç° °³¹ß, °æÀïÀÇ ¿µÇâ

Á¶»ç ¹üÀ§

  • 2022³âºÎÅÍ 2029³â±îÁöÀÇ °ú°Å µ¥ÀÌÅÍ ¹× Àü¸Á
  • ¼ºÀå ±âȸ, µµÀü °úÁ¦, °ø±Þ¸Á Àü¸Á, ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©, °í°´ Çൿ ¹× Æ®·»µå ºÐ¼®
  • °æÀï»ç Æ÷Áö¼Å´×, Àü·« ¹× ½ÃÀå Á¡À¯À² ºÐ¼®
  • ¼öÀÍ ¼ºÀå ¹× ¿¹Ãø ºÎ¹® ¹× ±¹°¡¸¦ Æ÷ÇÔÇÑ Áö¿ªº° ºÐ¼®
  • ±â¾÷ ÇÁ·ÎÆÄÀϸµ(ƯÈ÷ ÁÖ¿ä ¹ßÀü)

¹æ»ç¼± ¿öÅ©Ç÷οì ÃÖÀûÈ­ ºÐ¾ß ÀΰøÁö´É(AI) ½ÃÀåÀº ´ÙÀ½°ú °°ÀÌ ¼¼ºÐÈ­µÇ¾î ºÐ¼®µÇ°í ÀÖ½À´Ï´Ù:

±â¼úº°

  • ±â°è ÇнÀ
  • µö·¯´×
  • ÀÚ¿¬¾î ó¸®(NLP)
  • ÄÄÇ»ÅÍ ºñÀü
  • ±âŸ

¿ëµµº°

  • À̹ÌÁö ȹµæ ¹× Àüó¸®
  • À̹ÌÁö ºÐ¼® ¹× ÇØ¼®
  • º¸°í¼­ ÀÛ¼º ¹× ¹®¼­È­
  • ǰÁú °ü¸® ¹× º¸Áõ
  • ±âŸ

ÃÖÁ¾»ç¿ëÀÚº°

  • º´¿ø ¹× Ŭ¸®´Ð
  • ¿µ»ó Áø´Ü¼¾ÅÍ
  • ¿¬±¸±â°ü ¹× Çмú¼¾ÅÍ
  • ±âŸ

Áö¿ªº°

  • ºÏ¹Ì
  • ¹Ì±¹
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ³²¹Ì
  • ºê¶óÁú
  • ¾Æ¸£ÇîÆ¼³ª
  • ±âŸ
  • À¯·´
  • ¿µ±¹
  • µ¶ÀÏ
  • ÇÁ¶û½º
  • ÀÌÅ»¸®¾Æ
  • ½ºÆäÀÎ
  • ±âŸ
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • UAE
  • ±âŸ
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ÀϺ»
  • Áß±¹
  • Àεµ
  • Çѱ¹
  • Àεµ³×½Ã¾Æ
  • ´ë¸¸
  • ±âŸ

¸ñÂ÷

Á¦1Àå ¼Ò°³

  • ½ÃÀå °³¿ä
  • ½ÃÀå Á¤ÀÇ
  • Á¶»ç ¹üÀ§
  • ½ÃÀå ¼¼ºÐÈ­
  • ÅëÈ­
  • °¡Á¤
  • ±âÁØ ¿¬µµ¿Í ¿¹Ãø ¿¬µµ ŸÀÓ¶óÀÎ
  • ÀÌÇØ°ü°èÀÚ¿¡ ´ëÇÑ ÁÖ¿ä ÀÌÁ¡

Á¦2Àå Á¶»ç ¹æ¹ý

  • Á¶»ç ¼³°è
  • Á¶»ç °úÁ¤

Á¦3Àå ÁÖ¿ä ¿ä¾à

  • ÁÖ¿ä Á¶»ç °á°ú
  • CXOÀÇ °ßÇØ

Á¦4Àå ½ÃÀå ¿ªÇÐ

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
  • Porter's Five Forces ºÐ¼®
  • ¾÷°è ¹ë·ùüÀÎ ºÐ¼®
  • ¾Ö³Î¸®½ºÆ®ÀÇ °ßÇØ

Á¦5Àå ¹æ»ç¼± ¿öÅ©Ç÷οì ÃÖÀûÈ­ ºÐ¾ß ÀΰøÁö´É(AI) ½ÃÀå : ±â¼úº°

  • ¼Ò°³
  • ¸Ó½Å·¯´×
  • µö·¯´×
  • ÀÚ¿¬¾î ó¸®(NLP)
  • ÄÄÇ»ÅÍ ºñÀü
  • ±âŸ

Á¦6Àå ¹æ»ç¼± ¿öÅ©Ç÷οì ÃÖÀûÈ­ ºÐ¾ß ÀΰøÁö´É(AI) ½ÃÀå : ¿ëµµº°

  • ¼Ò°³
  • ¿µ»ó Ãëµæ°ú Àüó¸®
  • À̹ÌÁö ºÐ¼®°ú ÇØ¼®
  • º¸°í¼­ ÀÛ¼º°ú ¹®¼­È­
  • ǰÁú °ü¸®¿Í º¸Áõ
  • ±âŸ

Á¦7Àå ¹æ»ç¼± ¿öÅ©Ç÷οì ÃÖÀûÈ­ ºÐ¾ß ÀΰøÁö´É(AI) ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • ¼Ò°³
  • º´¿ø¡¤Å¬¸®´Ð
  • ¿µ»ó Áø´Ü ¼¾ÅÍ
  • ¿¬±¸±â°ü¡¤Çмú ¼¾ÅÍ
  • ±âŸ

Á¦8Àå ¹æ»ç¼± ¿öÅ©Ç÷οì ÃÖÀûÈ­ ºÐ¾ß ÀΰøÁö´É(AI) ½ÃÀå : Áö¿ªº°

  • ¼Ò°³
  • ºÏ¹Ì
    • ±â¼úº°
    • ¿ëµµº°
    • ÃÖÁ¾»ç¿ëÀÚº°
    • ±¹°¡º°
  • ³²¹Ì
    • ±â¼úº°
    • ¿ëµµº°
    • ÃÖÁ¾»ç¿ëÀÚº°
    • ±¹°¡º°
  • À¯·´
    • ±â¼úº°
    • ¿ëµµº°
    • ÃÖÁ¾»ç¿ëÀÚº°
    • ±¹°¡º°
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • ±â¼úº°
    • ¿ëµµº°
    • ÃÖÁ¾»ç¿ëÀÚº°
    • ±¹°¡º°
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ±â¼úº°
    • ¿ëµµº°
    • ÃÖÁ¾»ç¿ëÀÚº°
    • ±¹°¡º°

Á¦9Àå °æÀï ȯ°æ°ú ºÐ¼®

  • ÁÖ¿ä ±â¾÷°ú Àü·« ºÐ¼®
  • ½ÃÀå Á¡À¯À² ºÐ¼®
  • ÇÕº´, Àμö, ÇÕÀÇ ¹× Çù¾÷
  • °æÀï ´ë½Ãº¸µå

Á¦10Àå ±â¾÷ °³¿ä

  • Aidoc Medical Ltd.
  • Zebra Medical Vision Ltd.
  • Enlitic, Inc.
  • Butterfly Network, Inc.
  • IBM Watson Health(A Division of IBM Corporation)
  • Siemens Healthineers Ag
  • Ge Healthcare(A Division of General Electric Company)
  • Nvidia Corporation
  • Imagen Technologies, Inc.
  • Koninklijke Philips N.V.
ksm 24.11.19

Artificial Intelligence (AI) in the radiology workflow optimization market is expected to grow at a CAGR of 32.56%, reaching a market size of US$4,932.358 million in 2029 and US$1,204.935 million in 2024.

AI has disrupted the radiology workflow enhancement field, marking a new dawn of precision and efficiency. Due to the growing demand for solutions that can offer speedy and precise diagnosis, AI-powered solutions have been a turning point and have transformed the situation. AI-integrated solutions facilitate appropriate medical imaging interpretation by providing the radiologist with adequate information, mitigating misdiagnosis, and aiding in the speed of the early diagnosis of illness in patients.

Therefore, AI optimizes the output by reducing mundane activities such as image causation and image classification, allowing radiologists to focus more on intricate and challenging cases. The market for AI in radiology workflow optimization is currently in a forward growth phase with the ready adoption of these solutions by major healthcare providers and imaging centers. AI's incorporation into radiology operations promises to alter healthcare delivery by improving patient outcomes, lowering costs, and streamlining processes.

Artificial Intelligence (AI) in Radiology Workflow Optimization Market Drivers:

  • Automation of repetitive tasks is anticipated to increase the market growth

The automation of repetitive processes is critical in altering the efficiency of radiology practices in the AI in the radiology workflow optimization market. The machine learning-powered algorithms can quickly screen through extensive amounts of data related to different medical images, including X-rays and MRIs, to find similarities and irregularities. Tasks such as image splitting, extraction of certain properties, and searching for similar cases in history can be automated so that radiologists can work on more complex and important cases. This simplification of processes improves the efficiency of radiology and enables speedier diagnoses and enhanced patient outcomes. Automation eliminates human error and creates uniformity, which works well for both the medical professional and the patient.

Artificial Intelligence (AI) in Radiology Workflow Optimization Market Geographical Outlook

  • North America is witnessing exponential growth during the forecast period

North America has emerged as the market leader in AI in the radiology workflow optimization market. North America's preponderance can be attributed to its robust healthcare system, quick integration of AI technologies, and high investments in research and development. Furthermore, several prominent AI and health technology companies that foster innovations are found in the region. The region's focus on precision medicine and patient-centered care has led to significant funding for AI-oriented radiology technologies that greatly interest healthcare providers and institutions. It is estimated that North America will continue to lead in emerging technologies, especially due to the population's anticipated growth and acceptance of AI.

Reasons for buying this report:-

  • Insightful Analysis: Gain detailed market insights covering major as well as emerging geographical regions, focusing on customer segments, government policies and socio-economic factors, consumer preferences, industry verticals, other sub- segments.
  • Competitive Landscape: Understand the strategic maneuvers employed by key players globally to understand possible market penetration with the correct strategy.
  • Market Drivers & Future Trends: Explore the dynamic factors and pivotal market trends and how they will shape up future market developments.
  • Actionable Recommendations: Utilize the insights to exercise strategic decision to uncover new business streams and revenues in a dynamic environment.
  • Caters to a Wide Audience: Beneficial and cost-effective for startups, research institutions, consultants, SMEs, and large enterprises.

What do businesses use our reports for?

Industry and Market Insights, Opportunity Assessment, Product Demand Forecasting, Market Entry Strategy, Geographical Expansion, Capital Investment Decisions, Regulatory Framework & Implications, New Product Development, Competitive Intelligence

Report Coverage:

  • Historical data & forecasts from 2022 to 2029
  • Growth Opportunities, Challenges, Supply Chain Outlook, Regulatory Framework, Customer Behaviour, and Trend Analysis
  • Competitive Positioning, Strategies, and Market Share Analysis
  • Revenue Growth and Forecast Assessment of segments and regions including countries
  • Company Profiling (Strategies, Products, Financial Information, and Key Developments among others)

The Artificial Intelligence (AI) in radiology workflow optimization market is segmented and analyzed as follows:

By Technology

  • Machine Learning
  • Deep Learning
  • Natural Language Processing (NLP)
  • Computer Vision
  • Others

By Application

  • Image Acquisition And Preprocessing
  • Image Analysis And Interpretation
  • Reporting And Documentation
  • Quality Control And Assurance
  • Others

By End-User

  • Hospitals And Clinics
  • Diagnostic Imaging Centers
  • Research Institutes And Academic Centers
  • Others

By Geography

  • North America
  • United States
  • Canada
  • Mexico
  • South America
  • Brazil
  • Argentina
  • Others
  • Europe
  • United Kingdom
  • Germany
  • France
  • Italy
  • Spain
  • Others
  • Middle East and Africa
  • Saudi Arabia
  • UAE
  • Others
  • Asia Pacific
  • Japan
  • China
  • India
  • South Korea
  • Indonesia
  • Taiwan
  • Others

TABLE OF CONTENTS

1. INTRODUCTION

  • 1.1. Market Overview
  • 1.2. Market Definition
  • 1.3. Scope of the Study
  • 1.4. Market Segmentation
  • 1.5. Currency
  • 1.6. Assumptions
  • 1.7. Base and Forecast Years Timeline
  • 1.8. Key Benefits to the Stakeholder

2. RESEARCH METHODOLOGY

  • 2.1. Research Design
  • 2.2. Research Processes

3. EXECUTIVE SUMMARY

  • 3.1. Key Findings
  • 3.2. CXO Perspective

4. MARKET DYNAMICS

  • 4.1. Market Drivers
  • 4.2. Market Restraints
  • 4.3. Porter's Five Forces Analysis
    • 4.3.1. Bargaining Power of Suppliers
    • 4.3.2. Bargaining Power of Buyers
    • 4.3.3. Threat of New Entrants
    • 4.3.4. Threat of Substitutes
    • 4.3.5. Competitive Rivalry in the Industry
  • 4.4. Industry Value Chain Analysis
  • 4.5. Analyst View

5. ARTIFICIAL INTELLIGENCE (AI) IN RADIOLOGY WORKFLOW OPTIMIZATION MARKET BY TECHNOLOGY

  • 5.1. Introduction
  • 5.2. Machine Learning
  • 5.3. Deep Learning
  • 5.4. Natural Language Processing (NLP)
  • 5.5. Computer Vision
  • 5.6. Others

6. ARTIFICIAL INTELLIGENCE (AI) IN RADIOLOGY WORKFLOW OPTIMIZATION MARKET BY APPLICATION

  • 6.1. Introduction
  • 6.2. Image Acquisition And Preprocessing
  • 6.3. Image Analysis And Interpretation
  • 6.4. Reporting And Documentation
  • 6.5. Quality Control And Assurance
  • 6.6. Others

7. ARTIFICIAL INTELLIGENCE (AI) IN THE RADIOLOGY WORKFLOW OPTIMIZATION MARKET BY END-USER

  • 7.1. Introduction
  • 7.2. Hospitals And Clinics
  • 7.3. Diagnostic Imaging Centers
  • 7.4. Research Institutes and Academic Centers
  • 7.5. Others

8. ARTIFICIAL INTELLIGENCE (AI) IN RADIOLOGY WORKFLOW OPTIMIZATION MARKET BY GEOGRAPHY

  • 8.1. Introduction
  • 8.2. North America
    • 8.2.1. By Technology
    • 8.2.2. By Application
    • 8.2.3. By End-User
    • 8.2.4. By Country
      • 8.2.4.1. United States
      • 8.2.4.2. Canada
      • 8.2.4.3. Mexico
  • 8.3. South America
    • 8.3.1. By Technology
    • 8.3.2. By Application
    • 8.3.3. By End-User
    • 8.3.4. By Country
      • 8.3.4.1. Brazil
      • 8.3.4.2. Argentina
      • 8.3.4.3. Others
  • 8.4. Europe
    • 8.4.1. By Technology
    • 8.4.2. By Application
    • 8.4.3. By End-User
    • 8.4.4. By Country
      • 8.4.4.1. United Kingdom
      • 8.4.4.2. Germany
      • 8.4.4.3. France
      • 8.4.4.4. Italy
      • 8.4.4.5. Spain
      • 8.4.4.6. Others
  • 8.5. Middle East and Africa
    • 8.5.1. By Technology
    • 8.5.2. By Application
    • 8.5.3. By End-User
    • 8.5.4. By Country
      • 8.5.4.1. Saudi Arabia
      • 8.5.4.2. UAE
      • 8.5.4.3. Others
  • 8.6. Asia Pacific
    • 8.6.1. By Technology
    • 8.6.2. By Application
    • 8.6.3. By End-User
    • 8.6.4. By Country
      • 8.6.4.1. Japan
      • 8.6.4.2. China
      • 8.6.4.3. India
      • 8.6.4.4. South Korea
      • 8.6.4.5. Indonesia
      • 8.6.4.6. Taiwan
      • 8.6.4.7. Others

9. COMPETITIVE ENVIRONMENT AND ANALYSIS

  • 9.1. Major Players and Strategy Analysis
  • 9.2. Market Share Analysis
  • 9.3. Mergers, Acquisitions, Agreements, and Collaborations
  • 9.4. Competitive Dashboard

10. COMPANY PROFILES

  • 10.1. Aidoc Medical Ltd.
  • 10.2. Zebra Medical Vision Ltd.
  • 10.3. Enlitic, Inc.
  • 10.4. Butterfly Network, Inc.
  • 10.5. IBM Watson Health (A Division of IBM Corporation)
  • 10.6. Siemens Healthineers Ag
  • 10.7. Ge Healthcare (A Division of General Electric Company)
  • 10.8. Nvidia Corporation
  • 10.9. Imagen Technologies, Inc.
  • 10.10. Koninklijke Philips N.V.
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦