½ÃÀ庸°í¼­
»óǰÄÚµå
1604500

¿î¼Û¿ë AI ½ÃÀå : ¿¹Ãø(2024-2029³â)

AI in Transportation Market - Forecasts from 2024 to 2029

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Knowledge Sourcing Intelligence | ÆäÀÌÁö Á¤º¸: ¿µ¹® 149 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¿î¼Û¿ë AI ½ÃÀåÀº 11.80%ÀÇ CAGR·Î ¼ºÀåÇϸç, 2024³â 37¾ï 9,700¸¸ ´Þ·¯¿¡¼­ 2029³â¿¡´Â 61¾ï 9,600¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

AI ±â¼ú°ú ¾Ë°í¸®ÁòÀº È¿À²¼º, ¾ÈÀü¼º, Áö¼Ó°¡´É¼ºÀ» ³ôÀ̱â À§ÇØ ±³Åë ½Ã½ºÅÛÀÇ °¡´ÉÇÑ ¸¹Àº ºÐ¾ß¿¡ ÅëÇյǰí ÀÖ½À´Ï´Ù. ÀÚÀ²ÁÖÇàÂ÷ °³¹ß ¹× ¹èÄ¡ÀÇ ÇÙ½ÉÀº ÄÄÇ»ÅÍ ºñÀü, ¼¾¼­ À¶ÇÕ, ¸Ó½Å·¯´×, º¹ÀâÇÑ ±³ÅëÀ» ½Ç½Ã°£À¸·Î ºÐ¼®ÇÏ´Â µö·¯´×À» »ç¿ëÇÏ¿© AI¸¦ »ç¿ëÇÏ¿© ¾ÈÀüÇÑ È¯°æÀ» °¡·ÎÁö¸£°í ÁÖº¯ »óȲÀ» °¨ÁöÇÏ´Â °ÍÀÔ´Ï´Ù.

±³Åë °ü¸®ÀÇ ´Ù¸¥ AI ¿ëµµ·Î´Â ¼¾¼­, Ä«¸Þ¶ó ¹× ±âŸ ÇüÅÂÀÇ µ¥ÀÌÅ͸¦ ÅëÇØ µµ½Ã ¹× °í¼Óµµ·ÎÀÇ ±³Åë È帧À» ¸ð´ÏÅ͸µÇϰí ÃÖÀûÈ­ÇÏ´Â °Í, »ç°í ¹× ±âŸ º¸¾È °ü·Ã ¹®Á¦¿Í °°Àº À§ÇèÀ» °¨ÁöÇÏ°í °ü¸®ÇÏ¿© ±³Åë ½Ã½ºÅÛ³» ¾ÈÀü°ú º¸¾ÈÀ» º¸ÀåÇÏ´Â °Í µîÀÌ ÀÖ½À´Ï´Ù. ¾ÈÀü°ú º¸¾ÈÀ» º¸ÀåÇÕ´Ï´Ù. ÄÄÇ»ÅÍ ºñÀü ½Ã½ºÅÛÀº ±³Åë°ú °øÇ×À» ºÐ¼®Çϰí, ¸Ó½Å·¯´× ¸ðµ¨Àº Ãß°¡ Àû¿ëÀ» À§ÇØ ºÐ¼®À» Á¤¸®Çϰí, AI ±â¹Ý ÃÖÀûÈ­ ¾Ë°í¸®ÁòÀº ¹èÃâ·®À» ÁÙÀ̰í, ±³Åë üÁõÀ» ¿ÏÈ­Çϰí, ´ëü ¿¬·á ¹× ´ëü ±³Åë ¼ö´ÜÀ» ÃËÁøÇÏ¿© ±³Åë È帧À» ´õ¿í °³¼±ÇÕ´Ï´Ù.

¿î¼Û ºÐ¾ß AI ½ÃÀå Ȱ¼ºÈ­ ¿äÀÎ

  • MaaS(Mobility-as-a-Service)ÀÇ ºÎ»óÀ¸·Î ¿î¼Û¿ë AI ½ÃÀå ¼ºÀå¿¡ ±â¿©ÇÒ °Í

MaaS´Â ÇϳªÀÇ Ç÷§Æû¿¡¼­ ±³Åë ¼­ºñ½º¸¦ Á¦°øÇϱâ À§ÇØ °³¹ßµÈ ÅëÇÕ ¼Ö·ç¼ÇÀ¸·Î, AI µµÀÔÀ» À§ÇÑ ·¹¹ö¸®Áö¸¦ âÃâÇÒ ¼ö ÀÖ´Â ÅëÇÕ ¼Ö·ç¼ÇÀ¸·Î, AI ¾Ë°í¸®ÁòÀÌ Àû¿ëµÇ¾î °æ·Î¸¦ ÃÖÀûÈ­ÇÏ°í ¼ö¿ä¸¦ ¿¹ÃøÇÏ¿© °³ÀÎÈ­µÈ ¿©Çà °æÇèÀ» Á¦°øÇÕ´Ï´Ù. Á¦°øÇÕ´Ï´Ù. ½ÃÀå¿¡´Â ´Ù¾çÇÑ Á¦Ç°ÀÌ ÀÖÁö¸¸, È÷ŸġÀÇ Predictive Maintenance for Fleet Operations powered by Google Cloud´Â IoT µ¥ÀÌÅÍ, RCM ¹æ¹ý·Ð, AI ±â¼úÀ» ÅëÇÕÇÏ¿© Â÷·®ÀÇ À¯Áöº¸¼ö È¿À²¼º°ú ÀÚ»êÀÇ ½Å·Ú¼ºÀ» ÃÖÀûÈ­ÇÕ´Ï´Ù. ÀÌ´Â Áõ°­Çö½Ç, ¸Ó½Å·¯´× ¾Ë°í¸®Áò, ¿ÜºÎ µ¥ÀÌÅ͸¦ ÅëÇØ ÀÌ·ç¾îÁö¸ç, ¹Ì¼Ç Å©¸®Æ¼ÄÃÇÑ Â÷·® ÀÚ»êÀÇ ½Ç½Ã°£ °Ë»ç ¹× ¼ö¸®¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.

ÀüüÀûÀ¸·Î MaaSÀÇ µîÀåÀº ±³Åë¿ë AI ±â¼ú ½ÃÀåÀ» ÃËÁøÇϰí ÃâÅð±Ù°ú ¿©Çà¿¡ ÀÖÀ¸¸ç, º¸´Ù È¿À²ÀûÀÌ°í Æí¸®Çϸç Áö¼Ó°¡´ÉÇÑ ¸ðºô¸®Æ¼ ¼Ö·ç¼ÇÀÇ ¹®À» ¿­°Ô µÉ °ÍÀÔ´Ï´Ù.

¿î¼Û ºÐ¾ß AI ½ÃÀåÀÇ Áö¿ªÀû Àü¸Á

  • ºÏ¹Ì´Â ¿¹Ãø ±â°£ Áß ºñ¾àÀûÀÎ ¼ºÀå¼¼¸¦ º¸ÀÏ °ÍÀÔ´Ï´Ù.

ºÏ¹ÌÀÇ ±³Åë ±â¾÷, Á¤ºÎ ±â°ü ¹× Áö¿ª »çȸ´Â ±³Åë¸ÁÀÇ È¿À²¼º, ¾ÈÀü¼º ¹× Áö¼Ó°¡´É¼ºÀ» Çâ»ó½Ã۱â À§ÇØ AI ±â¼úÀ» ºü¸£°Ô µµÀÔÇß½À´Ï´Ù. ÀÌ·¯ÇÑ Á¶±â µµÀÔÀ¸·Î ºÏ¹Ì´Â ±³Åë »ê¾÷¿¡¼­ AI ¼±µµ Áö¿ªÀ¸·Î ºÎ»óÇß½À´Ï´Ù.

ÀüüÀûÀ¸·Î ºÏ¹ÌÀÇ AI ±â¼ú ¸®´õ½Ê°ú À̸¦ Áö¿øÇÏ´Â »ýŰè, °­·ÂÇÑ »ê¾÷Àû ÀÔÁö, ¿î¼Û ºÐ¾ß AIÀÇ Á¶±â µµÀÔ°ú ÇÔ²² ºÏ¹Ì´Â ¼¼°è ½ÃÀå¿¡¼­ ¼±µµÀûÀÎ ÀÔÁö¸¦ ±¸ÃàÇϰí ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­¸¦ ±¸¸ÅÇØ¾ß ÇÏ´Â ÀÌÀ¯

  • ÀλçÀÌÆ® ºÐ¼® : °í°´ ºÎ¹®, Á¤ºÎ Á¤Ã¥ ¹× »çȸ°æÁ¦Àû ¿äÀÎ, ¼ÒºñÀÚ ¼±È£µµ, »ê¾÷º°, ±âŸ ÇÏÀ§ ºÎ¹®¿¡ ÁßÁ¡À» µÎ°í ÁÖ¿ä Áö¿ª»Ó¸¸ ¾Æ´Ï¶ó ½ÅÈï Áö¿ª±îÁö Æ÷°ýÇÏ´Â »ó¼¼ÇÑ ½ÃÀå ÀλçÀÌÆ®¸¦ ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.
  • °æÀï ȯ°æ: ¼¼°è ÁÖ¿ä ±â¾÷ÀÌ Ã¤ÅÃÇϰí ÀÖ´Â Àü·«Àû Àü·«À» ÀÌÇØÇϰí, ÀûÀýÇÑ Àü·«À» ÅëÇÑ ½ÃÀå ħÅõ °¡´É¼ºÀ» ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù.
  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀΰú ¹Ì·¡ µ¿Çâ : ¿ªµ¿ÀûÀÎ ¿äÀΰú ¸Å¿ì Áß¿äÇÑ ½ÃÀå µ¿Çâ, ±×¸®°í À̵éÀÌ ÇâÈÄ ½ÃÀå ¹ßÀüÀ» ¾î¶»°Ô Çü¼ºÇÒ °ÍÀÎÁö¿¡ ´ëÇØ ¾Ë¾Æº¾´Ï´Ù.
  • Çൿ °¡´ÉÇÑ Á¦¾È: ¿ªµ¿ÀûÀΠȯ°æ ¼Ó¿¡¼­ »õ·Î¿î ºñÁî´Ï½º ½ºÆ®¸²°ú ¸ÅÃâÀ» ¹ß±¼Çϱâ À§ÇÑ Àü·«Àû ÀÇ»ç°áÁ¤¿¡ ÀλçÀÌÆ®À» Ȱ¿ëÇÕ´Ï´Ù.
  • ´Ù¾çÇÑ »ç¿ëÀÚ¿¡ ´ëÀÀ: ½ºÅ¸Æ®¾÷, ¿¬±¸±â°ü, ÄÁ¼³ÅÏÆ®, Áß¼Ò±â¾÷, ´ë±â¾÷¿¡ À¯ÀÍÇÏ°í ºñ¿ë È¿À²ÀûÀÓ.

¾î¶² ¿ëµµ·Î »ç¿ëµÇ´Â°¡?

»ê¾÷ ¹× ½ÃÀå °ËÅä, »ç¾÷ ±âȸ Æò°¡, Á¦Ç° ¼ö¿ä ¿¹Ãø, ½ÃÀå ÁøÃâ Àü·«, Áö¿ªÀû È®Àå, ¼³ºñ ÅõÀÚ °áÁ¤, ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ© ¹× ¿µÇâ, ½ÅÁ¦Ç° °³¹ß, °æÀïÀÇ ¿µÇâ

ºÐ¼® ¹üÀ§

  • °ú°Å µ¥ÀÌÅÍ ¹× ¿¹Ãø(2022-2029³â)
  • ¼ºÀå ±âȸ, °úÁ¦, °ø±Þ¸Á Àü¸Á, ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©, °í°´ Çൿ ¹× µ¿Ç⠺м®
  • °æÀï»ç Æ÷Áö¼Å´×, Àü·« ¹× ½ÃÀå Á¡À¯À² ºÐ¼®
  • ¸ÅÃâ ¼ºÀå·ü ¹× ¿¹Ãø ºÐ¼® : ºÎ¹®º°, Áö¿ªº°(±¹°¡º°)
  • ±â¾÷ ÇÁ·ÎÆÄÀϸµ(Àü·«, Á¦Ç°, À繫Á¤º¸, ÁÖ¿ä µ¿Çâ µî)

¸ñÂ÷

Á¦1Àå ¼­·Ð

  • ½ÃÀå °³¿ä
  • ½ÃÀå Á¤ÀÇ
  • ºÐ¼® ¹üÀ§
  • ½ÃÀå ¼¼ºÐÈ­
  • ÅëÈ­
  • ÀüÁ¦Á¶°Ç
  • ±âÁسâ°ú ¿¹Ãø³â ŸÀÓ¶óÀÎ
  • ÀÌÇØ°ü°èÀÚ¿¡ ´ëÇÑ ÁÖ¿ä ÀÌÁ¡

Á¦2Àå ºÐ¼® ¹æ¹ý

  • ºÐ¼® µðÀÚÀÎ
  • ºÐ¼® ÇÁ·Î¼¼½º

Á¦3Àå °³¿ä

  • ÁÖ¿ä Á¶»ç °á°ú
  • CXOÀÇ ½ÃÁ¡

Á¦4Àå ½ÃÀå ¿ªÇÐ

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
  • Porter's Five Forces ºÐ¼®
  • ¾÷°èÀÇ ¹ë·ùüÀÎ ºÐ¼®
  • ¾Ö³Î¸®½ºÆ®ÀÇ °ßÇØ

Á¦5Àå ¿î¼Û¿ë AI ½ÃÀå : ±â¼úº°

  • ¼­·Ð
  • ½ÉÃþÇнÀ
  • Natural learning process
  • ±â°èÇнÀ
  • ±âŸ

Á¦6Àå ¿î¼Û¿ë AI ½ÃÀå : µµÀÔ ¹æ½Äº°

  • ¼­·Ð
  • Ŭ¶ó¿ìµå
  • ¿ÂÇÁ·¹¹Ì½º

Á¦7Àå ¿î¼Û¿ë AI ½ÃÀå : ¿ëµµº°

  • ¼­·Ð
  • ·çÆ® ÃÖÀûÈ­
  • ÃâÇÏ·® ¿¹Ãø
  • ¿¹ÃøÀû Â÷·® Á¤ºñ
  • ½Ç½Ã°£ Â÷·® ÃßÀû
  • ±âŸ

Á¦8Àå ¿î¼Û¿ë AI ½ÃÀå : Áö¿ªº°

  • ¼­·Ð
  • ºÏ¹Ì
    • ±â¼úº°
    • µµÀÔ ¹æ½Äº°
    • ¿ëµµº°
    • ±¹°¡º°
  • ³²¹Ì
    • ±â¼úº°
    • µµÀÔ ¹æ½Äº°
    • ¿ëµµº°
    • ±¹°¡º°
  • À¯·´
    • ±â¼úº°
    • µµÀÔ ¹æ½Äº°
    • ¿ëµµº°
    • ±¹°¡º°
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • ±â¼úº°
    • µµÀÔ ¹æ½Äº°
    • ¿ëµµº°
    • ±¹°¡º°
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ±â¼úº°
    • µµÀÔ ¹æ½Äº°
    • ¿ëµµº°
    • ±¹°¡º°

Á¦9Àå °æÀï ȯ°æ°ú ºÐ¼®

  • ÁÖ¿ä ±â¾÷°ú Àü·« ºÐ¼®
  • ½ÃÀå Á¡À¯À² ºÐ¼®
  • ±â¾÷ÀμöÇÕº´(M&A), ÇÕÀÇ, Çù¾÷
  • °æÀï ´ë½Ãº¸µå

Á¦10Àå ±â¾÷ °³¿ä

  • Hitachi
  • Wialon(Gurtam)
  • AltexSoft
  • Planung Transport Verkehr GmbH
  • Integrated Roadways
  • Maticz
  • FlowSpace
  • Axestrack
KSA 24.12.16

The AI in transportation market is expected to grow at a CAGR of 11.80%, reaching a market size of US$6.196 billion in 2029 from US$3.797 billion in 2024.

AI technology and algorithms are being integrated into as many areas of transportation systems as possible in a bid to increase efficiency, safety, and sustainability. The key to developing and deploying the autonomous car is using AI to traverse safe environments and detect surroundings using computer vision, sensor fusion, machine learning, and deep learning to analyze complicated traffic in real-time.

Other AI application areas in traffic management include sensors, cameras, and other forms of data monitoring and optimizing traffic flow in cities and highways. AI technologies have ensured safety and security within transportation systems by detecting and managing risks such as accidents and other security-related issues. Computer vision systems analyze traffic and airports, and machine learning models compile the analysis for further application. AI-based optimization algorithms further improve traffic flow by decreasing emissions, reducing congestion, and promoting alternative fuels and modes.

AI in transportation market drivers

  • Rising Mobility-as-a-Service (MaaS) is contributing to AI in the transportation market growth

MaaS was developed to provide transport services in one platform and a unified solution that can create leverage for AI adoption. In MaaS systems, AI algorithms are applied to optimize routes, predict demand, and thus provide individual travel experiences. Of the various products in the market, the Hitachi Predictive Maintenance for Fleet Operations powered by Google Cloud brings together IoT data, RCM methodologies, and AI technology that optimize fleet maintenance efficiency and asset dependability. This is done through augmented reality, machine learning algorithms, and external data, allowing for real-time inspections and repairs of mission-critical fleet assets.

Overall, the advent of Mobility-as-a-Service is what boosts AI technologies in the transportation market, opening doors for commuting and travel to more efficient, convenient, and sustainable mobility solutions.

AI in transportation market geographical outlook

  • North America is witnessing exponential growth during the forecast period

North American transportation firms, government organizations, and communities were among the first to employ AI technology to improve transportation networks' efficiency, safety, and sustainability. This early adoption has driven the area to the top of AI in the transportation industry.

Overall, North America's leadership in AI technology, together with its supporting ecosystem, strong industrial presence, and early adoption of AI in transportation, establishes it as a prominent participant in the worldwide market.

Reasons for buying this report:-

  • Insightful Analysis: Gain detailed market insights covering major as well as emerging geographical regions, focusing on customer segments, government policies and socio-economic factors, consumer preferences, industry verticals, other sub- segments.
  • Competitive Landscape: Understand the strategic maneuvers employed by key players globally to understand possible market penetration with the correct strategy.
  • Market Drivers & Future Trends: Explore the dynamic factors and pivotal market trends and how they will shape up future market developments.
  • Actionable Recommendations: Utilize the insights to exercise strategic decision to uncover new business streams and revenues in a dynamic environment.
  • Caters to a Wide Audience: Beneficial and cost-effective for startups, research institutions, consultants, SMEs, and large enterprises.

What do businesses use our reports for?

Industry and Market Insights, Opportunity Assessment, Product Demand Forecasting, Market Entry Strategy, Geographical Expansion, Capital Investment Decisions, Regulatory Framework & Implications, New Product Development, Competitive Intelligence

Report Coverage:

  • Historical data & forecasts from 2022 to 2029
  • Growth Opportunities, Challenges, Supply Chain Outlook, Regulatory Framework, Customer Behaviour, and Trend Analysis
  • Competitive Positioning, Strategies, and Market Share Analysis
  • Revenue Growth and Forecast Assessment of segments and regions including countries
  • Company Profiling (Strategies, Products, Financial Information, and Key Developments among others)

The AI in transportation market is segmented and analyzed as follows:

By Technology

  • Deep Learning
  • Natural learning process
  • Machine Learning
  • Others

By Deployment

  • Cloud
  • On-Premise

By Application

  • Route optimization
  • Shipping volume prediction
  • Predictive Fleet Maintenance
  • Real-time Vehicle tracking
  • Others

By Geography

  • North America
  • USA
  • Canada
  • Mexico
  • South America
  • Brazil
  • Argentina
  • Others
  • Europe
  • Germany
  • France
  • UK
  • Spain
  • Others
  • Middle East and Africa
  • Saudi Arabia
  • UAE
  • Israel
  • Others
  • Asia Pacific
  • China
  • Japan
  • India
  • South Korea
  • Indonesia
  • Taiwan
  • Others

TABLE OF CONTENTS

1. INTRODUCTION

  • 1.1. Market Overview
  • 1.2. Market Definition
  • 1.3. Scope of the Study
  • 1.4. Market Segmentation
  • 1.5. Currency
  • 1.6. Assumptions
  • 1.7. Base and Forecast Years Timeline
  • 1.8. Key Benefits to the Stakeholder

2. RESEARCH METHODOLOGY

  • 2.1. Research Design
  • 2.2. Research Processes

3. EXECUTIVE SUMMARY

  • 3.1. Key Findings
  • 3.2. CXO Perspective

4. MARKET DYNAMICS

  • 4.1. Market Drivers
  • 4.2. Market Restraints
  • 4.3. Porter's Five Forces Analysis
    • 4.3.1. Bargaining Power of Suppliers
    • 4.3.2. Bargaining Power of Buyers
    • 4.3.3. Threat of New Entrants
    • 4.3.4. Threat of Substitutes
    • 4.3.5. Competitive Rivalry in the Industry
  • 4.4. Industry Value Chain Analysis
  • 4.5. Analyst View

5. AI IN TRANSPORTATION MARKET BY TECHNOLOGY

  • 5.1. Introduction
  • 5.2. Deep Learning
  • 5.3. Natural learning process
  • 5.4. Machine Learning
  • 5.5. Others

6. AI IN TRANSPORTATION MARKET BY DEPLOYMENT

  • 6.1. Introduction
  • 6.2. Cloud
  • 6.3. On-Premise

7. AI IN TRANSPORTATION MARKET BY APPLICATION

  • 7.1. Introduction
  • 7.2. Route optimization
  • 7.3. Shipping volume prediction
  • 7.4. Predictive Fleet Maintenance
  • 7.5. Real-time Vehicle tracking
  • 7.6. Others

8. AI IN TRANSPORTATION MARKET BY GEOGRAPHY

  • 8.1. Introduction
  • 8.2. North America
    • 8.2.1. By Technology
    • 8.2.2. By Deployment
    • 8.2.3. By Application
    • 8.2.4. By Country
      • 8.2.4.1. USA
      • 8.2.4.2. Canada
      • 8.2.4.3. Mexico
  • 8.3. South America
    • 8.3.1. By Technology
    • 8.3.2. By Deployment
    • 8.3.3. By Application
    • 8.3.4. By Country
      • 8.3.4.1. Brazil
      • 8.3.4.2. Argentina
      • 8.3.4.3. Others
  • 8.4. Europe
    • 8.4.1. By Technology
    • 8.4.2. By Deployment
    • 8.4.3. By Application
    • 8.4.4. By Country
      • 8.4.4.1. Germany
      • 8.4.4.2. France
      • 8.4.4.3. UK
      • 8.4.4.4. Spain
      • 8.4.4.5. Others
  • 8.5. Middle East and Africa
    • 8.5.1. By Technology
    • 8.5.2. By Deployment
    • 8.5.3. By Application
    • 8.5.4. By Country
      • 8.5.4.1. Saudi Arabia
      • 8.5.4.2. UAE
      • 8.5.4.3. Israel
      • 8.5.4.4. Others
  • 8.6. Asia Pacific
    • 8.6.1. By Technology
    • 8.6.2. By Deployment
    • 8.6.3. By Application
    • 8.6.4. By Country
      • 8.6.4.1. China
      • 8.6.4.2. Japan
      • 8.6.4.3. India
      • 8.6.4.4. South Korea
      • 8.6.4.5. Indonesia
      • 8.6.4.6. Taiwan
      • 8.6.4.7. Others

9. COMPETITIVE ENVIRONMENT AND ANALYSIS

  • 9.1. Major Players and Strategy Analysis
  • 9.2. Market Share Analysis
  • 9.3. Mergers, Acquisitions, Agreements, and Collaborations
  • 9.4. Competitive Dashboard

10. COMPANY PROFILES

  • 10.1. Hitachi
  • 10.2. Wialon (Gurtam)
  • 10.3. AltexSoft
  • 10.4. Planung Transport Verkehr GmbH
  • 10.5. Integrated Roadways
  • 10.6. Maticz
  • 10.7. FlowSpace
  • 10.8. Axestrack
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦