½ÃÀ庸°í¼­
»óǰÄÚµå
1697412

°Ç¼³¾÷¿ë µðÁöÅÐ Æ®À© ½ÃÀå : ¿¹Ãø(2025-2030³â)

Digital Twin in Construction Market - Forecasts from 2025 to 2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Knowledge Sourcing Intelligence | ÆäÀÌÁö Á¤º¸: ¿µ¹® 146 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

°Ç¼³¾÷¿ë µðÁöÅÐ Æ®À© ½ÃÀåÀº ¿¹Ãø ±â°£ µ¿¾È CAGR 17.03%ÀÇ °­·ÂÇÑ ¼ºÀå¼¼¸¦ º¸À̸ç 2025³â 648¾ï 6,500¸¸ ´Þ·¯¿¡¼­ 2030³â 1,550¾ï 1,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

°Ç¼³¾÷¿ë µðÁöÅÐ Æ®À©Àº 3D ·¹ÀÌÀú ½ºÄ³³Ê, µå·Ð, ¼¾¼­, Ä«¸Þ¶ó, ±âŸ IoT ÀåÄ¡ µîÀÇ ±â¼úÀ» Ȱ¿ëÇÏ¿© ½ÇÁ¦ µ¥ÀÌÅ͸¦ ¼öÁýÇϰí ÇÕ¼ºÇÏ¿© »ý¼ºµÇ¸ç, IoT¿Í AI¸¦ ÅëÇØ ±¸ÇöµÈ µðÁöÅÐ Æ®À©Àº ´Ù¾çÇÑ ¼Ò½º¿¡¼­ ÀÚÀ²ÀûÀ¸·Î ÇнÀÇÏ°í ¹°¸®Àû ¼Ó¼º(Çü»ó, À§Ä¡, Á¦½ºÃ³, ¿òÁ÷ÀÓ), »óÈ£ ÀÛ¿ë, ¼öÁ¤ »çÇ×À» ¹Ý¿µÇÏ¿© µ¿ÀûÀ¸·Î ¾÷µ¥ÀÌÆ®ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¸ð¾ç, À§Ä¡, Á¦½ºÃ³, ¿òÁ÷ÀÓ), »óÈ£ÀÛ¿ë, ¼öÁ¤À» ¹Ý¿µÇÏ¿© ½ÇÁ¦ ¼¼°èÀÇ ´ëÀÀ¹°À» ¹Ì·¯¸µÇϵµ·Ï µ¿ÀûÀ¸·Î ¾÷µ¥ÀÌÆ®ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ µ¥ÀÌÅÍ¿¡´Â °´Ã¼ÀÇ Æ¯¼º°ú »óÅ¿¡ ´ëÇÑ Á¤º¸°¡ Æ÷ÇԵ˴ϴÙ. µðÁöÅÐ Æ®À©À» ºôµù Á¤º¸ ¸ðµ¨¸µ(BIM) ÇÁ·Î¼¼½º¿¡ ÅëÇÕÇÔÀ¸·Î½á °è¾àÀÚ ¹× °ÇÃà/¿£Áö´Ï¾î¸µ ȸ»ç´Â ¼º´É ÀúÇÏ, ¼öÀͼº ÀúÇÏ, ¿À·ù ¹× »ç°íÀ² Áõ°¡¿Í °°Àº ¾÷°èÀÇ ½É°¢ÇÑ ¹®Á¦¸¦ ÇØ°áÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, µðÁöÅÐ Æ®À©Àº ÀÔÂûÀÇ Á¤È®¼ºÀ» ³ôÀ̸鼭 °¡»ó ¼³°è ¹× °Ç¼³ ºñ¿ë Àý°¨À» ÃËÁøÇÕ´Ï´Ù. ÇÁ·ÎÁ§Æ® ÆÀÀº ¹°¸®Àû °ÇÃ๰°ú ±¸Á¶¹°, ÀÛ¾÷ ÇöÀå¿¡ º¯°æÀ» °¡Çϱâ Àü¿¡ ¿¹»ó °á°ú¸¦ µðÁöÅзΠÅ×½ºÆ®ÇÏ°í ºÐ¼®ÇÒ ¼ö ÀÖ½À´Ï´Ù.

°Ç¼³¾÷¿ë µðÁöÅÐ Æ®À© ½ÃÀåÀÇ ¼ºÀåÀº ¸î °¡Áö ÁÖ¿ä ¿äÀο¡ ÀÇÇØ ÃËÁøµÇ°í ÀÖ½À´Ï´Ù. ÁÖ¿ä ÃËÁø¿äÀÎÀº Ŭ¶ó¿ìµå ±â¹Ý Ç÷§ÆûÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. Ŭ¶ó¿ìµå ±â¹Ý Ç÷§ÆûÀº ½Ç½Ã°£ µ¥ÀÌÅÍ ¼öÁý ¹× ºÐ¼®À» À§ÇÑ °ß°íÇÑ ±â¹ÝÀ» Á¦°øÇϸç, Á¡Á¡ ´õ º¹ÀâÇØÁö´Â ¹°¸®Àû ÀÚ»êÀÇ µðÁöÅÐ ¸ðµ¨À» ±¸ÃàÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. Ŭ¶ó¿ìµå Ç÷§ÆûÀÇ È®À强°ú Á¢±Ù¼ºÀº µðÁöÅÐ Æ®À© ¼Ö·ç¼ÇÀÇ ±¸ÇöÀ» °£¼ÒÈ­Çϸç, ÁÖ¿ä Ŭ¶ó¿ìµå Á¦°ø¾÷üµéÀº Á¾ÇÕÀûÀÎ µðÁöÅÐ Æ®À© ±â´ÉÀ» µµÀÔÇϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ¸¶ÀÌÅ©·Î¼ÒÇÁÆ®´Â ºôµù °ü¸® ¹× °Ç¼³À» À§ÇÑ µðÁöÅÐ Æ®À© ¿ÂÅç·ÎÁö¸¦ Á¦°øÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀçÁ¤Àû Áö¿ø°ú ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©¸¦ ÅëÇØ °Ç¼³ ºÐ¾ß¿¡¼­ ÷´Ü ±â¼ú äÅÃÀ» Àå·ÁÇÏ´Â Á¤ºÎÀÇ ³ë·ÂÀÌ Àü ¼¼°èÀûÀ¸·Î Áõ°¡Çϰí ÀÖ´Â °Íµµ Å« °è±â°¡ µÇ°í ÀÖ½À´Ï´Ù.

°Ç¼³¾÷¿ë µðÁöÅÐ Æ®À© ½ÃÀåÀº Áö¿ªº°·Î ´Ù¾çÇÑ ¼ºÀå ÆÐÅÏÀ» º¸À̰í ÀÖ½À´Ï´Ù. ºÏ¹Ì ½ÃÀåÀº ÷´Ü ±â¼ú ÅëÇÕ, ¼÷·ÃµÈ ÀηÂ, Áö¿øÀûÀÎ ±ÔÁ¦ ȯ°æÀ¸·Î ÀÎÇØ ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. À¯·´¿¡¼­´Â ºòµ¥ÀÌÅÍ ºÐ¼®, IoT, ÀΰøÁö´É(AI), ¸Ó½Å·¯´×(ML) µî ±â¼úÀÇ ÃâÇö°ú Àδõ½ºÆ®¸® 4.0 ±â¼úÀÌ ¼ºÀåÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾ç ½ÃÀåÀº ±â¼ú ¹ßÀü, »ý»ê·® Áõ°¡, µðÁöÅÐ ³×Æ®¿öÅ©ÀÇ È®´ë°¡ ¼ºÀåÀÇ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¸¶Áö¸·À¸·Î ³²¹Ì, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«´Â ±â¼ú ¹ßÀüÀ» ÃËÁøÇÏ´Â Á¤ºÎ ÀÌ´Ï¼ÅÆ¼ºêÀÇ Áõ°¡¿¡ ÈûÀÔ¾î Å« ÆøÀÇ ¼ºÀåÀÌ ¿¹»óµË´Ï´Ù.

ÀÌ º¸°í¼­¸¦ ±¸¸ÅÇØ¾ß ÇÏ´Â ÀÌÀ¯

  • ÅëÂû·Â ÀÖ´Â ºÐ¼® : °í°´ ºÎ¹®, Á¤ºÎ Á¤Ã¥ ¹× »çȸ°æÁ¦Àû ¿äÀÎ, ¼ÒºñÀÚ ¼±È£µµ, »ê¾÷º°, ±âŸ ÇÏÀ§ ºÎ¹®¿¡ ÃÊÁ¡À» ¸ÂÃß°í ÁÖ¿ä Áö¿ª»Ó¸¸ ¾Æ´Ï¶ó ½ÅÈï Áö¿ª±îÁö Æ÷°ýÇÏ´Â »ó¼¼ÇÑ ½ÃÀå ÀλçÀÌÆ®¸¦ ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.
  • °æÀï »óȲ : ¼¼°è ÁÖ¿ä ±â¾÷µéÀÌ Ã¤ÅÃÇϰí ÀÖ´Â Àü·«Àû Àü·«À» ÀÌÇØÇϰí, ÀûÀýÇÑ Àü·«À» ÅëÇÑ ½ÃÀå ħÅõ °¡´É¼ºÀ» ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù.
  • ½ÃÀå ÃËÁø¿äÀΰú ¹Ì·¡ µ¿Çâ : ¿ªµ¿ÀûÀÎ ¿äÀΰú ¸Å¿ì Áß¿äÇÑ ½ÃÀå µ¿Çâ, ±×¸®°í À̵éÀÌ ÇâÈÄ ½ÃÀå ¹ßÀüÀ» ¾î¶»°Ô Çü¼ºÇÒ °ÍÀÎÁö¿¡ ´ëÇØ ¾Ë¾Æº¾´Ï´Ù.
  • ½ÇÇà °¡´ÉÇÑ Á¦¾È : ¿ªµ¿ÀûÀΠȯ°æ ¼Ó¿¡¼­ »õ·Î¿î ºñÁî´Ï½º ½ºÆ®¸²°ú ¼öÀÍÀ» ¹ß±¼Çϱâ À§ÇÑ Àü·«Àû ÀÇ»ç°áÁ¤¿¡ ÀλçÀÌÆ®¸¦ Ȱ¿ëÇÕ´Ï´Ù.
  • ´Ù¾çÇÑ »ç¿ëÀÚ¿¡ ´ëÀÀ : ½ºÅ¸Æ®¾÷, ¿¬±¸±â°ü, ÄÁ¼³ÅÏÆ®, Áß¼Ò±â¾÷, ´ë±â¾÷¿¡ À¯ÀÍÇÏ°í ºñ¿ë È¿À²ÀûÀÔ´Ï´Ù.

¾î¶² ¿ëµµ·Î »ç¿ëµÇ´Â°¡?

»ê¾÷ ¹× ½ÃÀå ÀλçÀÌÆ®, »ç¾÷ ±âȸ Æò°¡, Á¦Ç° ¼ö¿ä ¿¹Ãø, ½ÃÀå ÁøÀÔ Àü·«, Áö¸®Àû È®Àå, ¼³ºñ ÅõÀÚ °áÁ¤, ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©¿Í ¿µÇâ, ½ÅÁ¦Ç° °³¹ß, °æÀïÀÇ ¿µÇâ

ºÐ¼® ¹üÀ§

  • °ú°Å µ¥ÀÌÅÍ ¹× ¿¹Ãø(2022-2030³â)
  • ¼ºÀå ±âȸ, µµÀü°úÁ¦, °ø±Þ¸Á Àü¸Á, ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©, °í°´ Çൿ, Æ®·»µå ºÐ¼®
  • °æÀï»ç Æ÷Áö¼Å´×, Àü·« ¹× ½ÃÀå Á¡À¯À² ºÐ¼®
  • ¸ÅÃâ ¼ºÀå·ü ¹× ¿¹Ãø ºÐ¼® : ºÎ¹®º°/Áö¿ªº°(±¹°¡º°)
  • ±â¾÷ ÇÁ·ÎÆÄÀϸµ(Àü·«, Á¦Ç°, À繫Á¤º¸, ÁÖ¿ä µ¿Çâ µî)

°Ç¼³¾÷¿ë µðÁöÅÐ Æ®À© ½ÃÀåÀº ´ÙÀ½°ú °°Àº ºÎ¹®º°·Î ºÐ¼®µË´Ï´Ù:

Á¾·ùº°

  • Á¤º¸Çü Æ®À©
  • ÀÚÀ²Çü Æ®À©

±¸¼º¿ä¼Òº°

  • ¼ÒÇÁÆ®¿þ¾î
  • Çϵå¿þ¾î

¿ëµµº°

  • ÀÚ¿ø °ü¸® ¹× ¹°·ù
  • ¾ÈÀü ¸ð´ÏÅ͸µ
  • Á¦Ç° ¼³°è ¹× ÃÖÀûÈ­
  • ǰÁú °ü¸®
  • ¿¹Áöº¸Àü
  • ±âŸ

Áö¿ªº°

  • ºÏ¹Ì
  • ¹Ì±¹
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ³²¹Ì
  • ºê¶óÁú
  • ¾Æ¸£ÇîÆ¼³ª
  • ±âŸ
  • À¯·´
  • ¹Ì±¹ ¿µ±¹
  • µ¶ÀÏ
  • ÇÁ¶û½º
  • ½ºÆäÀÎ
  • ±âŸ
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • UAE
  • ±âŸ
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
  • Áß±¹
  • ÀϺ»
  • Àεµ
  • Çѱ¹
  • ´ë¸¸
  • ±âŸ

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ½ÃÀå ÇöȲ

  • ½ÃÀå °³¿ä
  • ½ÃÀå Á¤ÀÇ
  • Á¶»ç ¹üÀ§
  • ½ÃÀå ¼¼ºÐÈ­

Á¦3Àå ºñÁî´Ï½º »óȲ

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ½ÃÀå ±âȸ
  • Porter's Five Forces ºÐ¼®
  • ¾÷°è ¹ë·ùüÀÎ ºÐ¼®
  • Á¤Ã¥°ú ±ÔÁ¦
  • Àü·«Àû Ãßõ»çÇ×

Á¦4Àå ±â¼ú Àü¸Á

Á¦5Àå °Ç¼³¾÷¿ë µðÁöÅÐ Æ®À© ½ÃÀå : Á¾·ùº°

  • ¼Ò°³
  • Á¤º¸Çü Æ®À©
  • ÀÚÀ²Çü Æ®À©

Á¦6Àå °Ç¼³¾÷¿ë µðÁöÅÐ Æ®À© ½ÃÀå : ±¸¼º¿ä¼Òº°

  • ¼Ò°³
  • Çϵå¿þ¾î
  • ¼ÒÇÁÆ®¿þ¾î

Á¦7Àå °Ç¼³¾÷¿ë µðÁöÅÐ Æ®À© ½ÃÀå : ¿ëµµº°

  • ¼Ò°³
  • ÀÚ¿ø °ü¸®¡¤¹°·ù
  • ¾ÈÀü ¸ð´ÏÅ͸µ
  • Á¦Ç° ¼³°è¡¤ÃÖÀûÈ­
  • ǰÁú °ü¸®
  • ¿¹Áöº¸Àü
  • ±âŸ

Á¦8Àå °Ç¼³¾÷¿ë µðÁöÅÐ Æ®À© ½ÃÀå : Áö¿ªº°

  • ¼Ò°³
  • ºÏ¹Ì
    • Á¾·ùº°
    • ±¸¼º¿ä¼Òº°
    • ¿ëµµº°
    • ±¹°¡º°
  • ³²¹Ì
    • Á¾·ùº°
    • ±¸¼º¿ä¼Òº°
    • ¿ëµµº°
    • ±¹°¡º°
  • À¯·´
    • Á¾·ùº°
    • ±¸¼º¿ä¼Òº°
    • ¿ëµµº°
    • ±¹°¡º°
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • Á¾·ùº°
    • ±¸¼º¿ä¼Òº°
    • ¿ëµµº°
    • ±¹°¡º°
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • Á¾·ùº°
    • ±¸¼º¿ä¼Òº°
    • ¿ëµµº°
    • ±¹°¡º°

Á¦9Àå °æÀï ȯ°æ°ú ºÐ¼®

  • ÁÖ¿ä ±â¾÷°ú Àü·« ºÐ¼®
  • ½ÃÀå Á¡À¯À² ºÐ¼®
  • ±â¾÷ ÀμöÇÕº´(M&A), ÇÕÀÇ, »ç¾÷ Çù·Â
  • °æÀï ´ë½Ãº¸µå

Á¦10Àå ±â¾÷ °³¿ä

  • ANSYS
  • GE Vernova
  • IBM
  • Microsoft
  • Siemens
  • Bentley Systems
  • Digital Twin Consortium
  • Cisco
  • Oracle

Á¦11Àå ºÎ·Ï

  • ÅëÈ­
  • °¡Á¤
  • ±âÁØ ¿¬µµ¿Í ¿¹Ãø ¿¬µµ ŸÀÓ¶óÀÎ
  • ÀÌÇØ°ü°èÀÚ¿¡ ´ëÇÑ ÁÖ¿ä ÀÌÁ¡
  • Á¶»ç ¹æ¹ý
  • ¾à¾î
ksm 25.04.17

The Digital Twin in Construction market is set to witness robust growth at a CAGR of 17.03% during the forecast period, reaching a value of US$155.010 billion in 2030 from US$64.865 billion in 2025.

Digital twins in construction are created through the aggregation and synthesis of real-world data, leveraging technologies such as 3D laser scanners, drones, sensors, cameras, and other IoT devices. Enabled by IoT and AI, a digital twin can autonomously learn from disparate sources and dynamically update to mirror its real-world counterpart, reflecting physical attributes (shape, position, gesture, motion), interactions, and modifications. This data encompasses information on the properties and states of an object. By integrating digital twins into Building Information Modeling (BIM) processes, contractors and architecture/engineering firms can address critical industry challenges, including underperformance, low profitability, and elevated error and accident rates. Furthermore, digital twins facilitate the reduction of virtual design and construction costs while enhancing bidding accuracy. Project teams can digitally test and analyze anticipated outcomes before implementing changes to the physical construction, structure, or worksite.

The growth of the digital twin market in construction is fueled by several key factors. A primary driver is the increasing adoption of cloud-based platforms, which provide a robust foundation for real-time data collection and analysis, essential for establishing increasingly intricate digital models of physical assets. The scalability and accessibility of cloud platforms streamline the implementation of digital twin solutions, and major cloud providers have introduced comprehensive digital twin capabilities. For example, Microsoft offers its digital twin ontology for building management and construction. Another significant catalyst is the rise in government initiatives worldwide that incentivize the adoption of advanced technologies in construction through financial support and regulatory frameworks.

Geographically, the digital twin market in construction exhibits varying growth patterns. The North American market is expanding due to the integration of advanced technologies, a skilled workforce, and a supportive regulatory environment. In Europe, growth is propelled by the emergence of technologies such as big data analytics, IoT, artificial intelligence (AI), and machine learning (ML), coupled with Industry 4.0 technologies. The Asia-Pacific market is experiencing growth driven by technological advancements, increasing manufacturing output, and expanding digital networks. Finally, the South American, Middle Eastern, and African regions are anticipated to witness substantial growth, supported by increasing government initiatives that promote technological advancements.

Reasons for buying this report:-

  • Insightful Analysis: Gain detailed market insights covering major as well as emerging geographical regions, focusing on customer segments, government policies and socio-economic factors, consumer preferences, industry verticals, other sub- segments.
  • Competitive Landscape: Understand the strategic maneuvers employed by key players globally to understand possible market penetration with the correct strategy.
  • Market Drivers & Future Trends: Explore the dynamic factors and pivotal market trends and how they will shape up future market developments.
  • Actionable Recommendations: Utilize the insights to exercise strategic decision to uncover new business streams and revenues in a dynamic environment.
  • Caters to a Wide Audience: Beneficial and cost-effective for startups, research institutions, consultants, SMEs, and large enterprises.

What do businesses use our reports for?

Industry and Market Insights, Opportunity Assessment, Product Demand Forecasting, Market Entry Strategy, Geographical Expansion, Capital Investment Decisions, Regulatory Framework & Implications, New Product Development, Competitive Intelligence

Report Coverage:

  • Historical data & forecasts from 2022 to 2030
  • Growth Opportunities, Challenges, Supply Chain Outlook, Regulatory Framework, Customer Behaviour, and Trend Analysis
  • Competitive Positioning, Strategies, and Market Share Analysis
  • Revenue Growth and Forecast Assessment of segments and regions including countries
  • Company Profiling (Strategies, Products, Financial Information, and Key Developments among others)

Digital Twin in Construction Market is analyzed into the following segments:

By Type

  • Informative Twin
  • Autonomous Twin

By Component

  • Software
  • Hardware

By Application

  • Resource Management and Logistics
  • Safety Monitoring
  • Product Design & Optimization
  • Quality Management
  • Predictive Maintenance
  • Others

By Geography

  • North America
  • United States
  • Canada
  • Mexico
  • South America
  • Brazil
  • Argentina
  • Others
  • Europe
  • United Kingdom
  • Germany
  • France
  • Spain
  • Others
  • Middle East and Africa
  • Saudi Arabia
  • UAE
  • Others
  • Asia Pacific
  • China
  • Japan
  • India
  • South Korea
  • Taiwan
  • Others

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

2. MARKET SNAPSHOT

  • 2.1. Market Overview
  • 2.2. Market Definition
  • 2.3. Scope of the Study
  • 2.4. Market Segmentation

3. BUSINESS LANDSCAPE

  • 3.1. Market Drivers
  • 3.2. Market Restraints
  • 3.3. Market Opportunities
  • 3.4. Porter's Five Forces Analysis
  • 3.5. Industry Value Chain Analysis
  • 3.6. Policies and Regulations
  • 3.7. Strategic Recommendations

4. TECHNOLOGICAL OUTLOOK

5. DIGITAL TWIN IN CONSTRUCTIONS MARKET BY TYPE

  • 5.1. Introduction
  • 5.2. Informative Twin
  • 5.3. Autonomous Twin

6. DIGITAL TWIN IN CONSTRUCTIONS MARKET BY COMPONENT

  • 6.1. Introduction
  • 6.2. Hardware
  • 6.3. Software

7. DIGITAL TWIN IN CONSTRUCTIONS MARKET BY APPLICATION

  • 7.1. Introduction
  • 7.2. Resource Management and Logistics
  • 7.3. Safety Monitoring
  • 7.4. Product Design & Optimization
  • 7.5. Quality Management
  • 7.6. Predictive Maintenance
  • 7.7. Others

8. DIGITAL TWIN IN CONSTRUCTIONS MARKET BY GEOGRAPHY

  • 8.1. Introduction
  • 8.2. North America
    • 8.2.1. By Type
    • 8.2.2. By Component
    • 8.2.3. By Application
    • 8.2.4. By Country
      • 8.2.4.1. USA
      • 8.2.4.2. Canada
      • 8.2.4.3. Mexico
  • 8.3. South America
    • 8.3.1. By Type
    • 8.3.2. By Component
    • 8.3.3. By Application
    • 8.3.4. By Country
      • 8.3.4.1. Brazil
      • 8.3.4.2. Argentina
      • 8.3.4.3. Others
  • 8.4. Europe
    • 8.4.1. By Type
    • 8.4.2. By Component
    • 8.4.3. By Application
    • 8.4.4. By Country
      • 8.4.4.1. United Kingdom
      • 8.4.4.2. Germany
      • 8.4.4.3. France
      • 8.4.4.4. Spain
      • 8.4.4.5. Others
  • 8.5. Middle East and Africa
    • 8.5.1. By Type
    • 8.5.2. By Component
    • 8.5.3. By Application
    • 8.5.4. By Country
      • 8.5.4.1. Saudi Arabia
      • 8.5.4.2. UAE
      • 8.5.4.3. Others
  • 8.6. Asia Pacific
    • 8.6.1. By Type
    • 8.6.2. By Component
    • 8.6.3. By Application
    • 8.6.4. By Country
      • 8.6.4.1. China
      • 8.6.4.2. Japan
      • 8.6.4.3. India
      • 8.6.4.4. South Korea
      • 8.6.4.5. Taiwan
      • 8.6.4.6. Others

9. COMPETITIVE ENVIRONMENT AND ANALYSIS

  • 9.1. Major Players and Strategy Analysis
  • 9.2. Market Share Analysis
  • 9.3. Mergers, Acquisitions, Agreements, and Collaborations
  • 9.4. Competitive Dashboard

10. COMPANY PROFILES

  • 10.1. ANSYS
  • 10.2. GE Vernova
  • 10.3. IBM
  • 10.4. Microsoft
  • 10.5. Siemens
  • 10.6. Bentley Systems
  • 10.7. Digital Twin Consortium
  • 10.8. Cisco
  • 10.9. Oracle

11. APPENDIX

  • 11.1. Currency
  • 11.2. Assumptions
  • 11.3. Base and Forecast Years Timeline
  • 11.4. Key benefits for the stakeholders
  • 11.5. Research Methodology
  • 11.6. Abbreviations
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦