½ÃÀ庸°í¼­
»óǰÄÚµå
1775341

±¤À§»ó¹è¿­ LiDAR ½ÃÀå : ¿¹Ãø(2025-2030³â)

Optical-Phased Array LiDAR Market - Forecasts from 2025 to 2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Knowledge Sourcing Intelligence | ÆäÀÌÁö Á¤º¸: ¿µ¹® 141 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

±¤À§»ó¹è¿­ LiDAR ½ÃÀåÀº 2025³â 4¾ï 4,951¸¸ 9,000´Þ·¯¿¡¼­ 2030³â¿¡´Â 13¾ï 1,071¸¸ 7,000´Þ·¯·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, CAGR 23.87%¸¦ ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

±¤À§»ó¹è¿­ LiDAR ±â¼úÀº ±âÁ¸ LiDAR ½Ã½ºÅÛÀÇ °íµµÀÇ ÁøÈ­¸¦ ³ªÅ¸³»¸ç, Á¾ÇÕÀûÀΠȯ°æ ÀνÄÀ» À¯ÁöÇϸ鼭 ´õ ¹Ì¼¼ÇÑ °¨Áö ±â´ÉÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ ±â¼úÀº º¸´Ù ±¤¹üÀ§ÇÑ ¸Æ¶ô¿¡¼­ Á¤È®ÇÑ ¹°Ã¼ À§Ä¡ ÆÄ¾ÇÀÌ °¡´ÉÇϱ⠶§¹®¿¡ ³ôÀº Á¤È®µµ¿Í ÅëÇÕ¼ºÀÌ ¿ä±¸µÇ´Â ¾ÖÇø®ÄÉÀ̼ǿ¡ ¸Å¿ì ÀûÇÕÇÕ´Ï´Ù. ±¤À§»ó¹è¿­ LiDAR ½ÃÀåÀº ÀÚµ¿Â÷ ºÐ¾ß¸¦ Áß½ÉÀ¸·Î ´Ù¾çÇÑ »ê¾÷¿¡¼­ ÀÚµ¿È­°¡ ÁøÇàµÇ°í ÀÖ´Â °ÍÀ» ¹è°æÀ¸·Î Å©°Ô ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ºñ¿ë È¿À²¼º, ´ë·® »ý»ê °¡´É¼º, Â÷·® ¼³°è¿ÍÀÇ ¿Ïº®ÇÑ ÅëÇÕ µîÀÇ ÁÖ¿ä Æ¯¼ºÀÌ ±× ¸Å·ÂÀ» ´õÇϰí ÀÖ½À´Ï´Ù. ±×·¯³ª ÀÌ ±â¼úÀÇ ´É·Â¿¡ ´ëÇÑ ¿ÀÇØ°¡ ¹®Á¦°¡ µÇ¾î ´ëü ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼±È£µµ¸¦ ¶³¾î¶ß¸®°í ½ÃÀå ħÅõ¸¦ Á¦ÇÑÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ º¸°í¼­´Â ½ÃÀå ¼¼ºÐÈ­, Áö¸®Àû Àü¸Á, ¼ºÀå ¿äÀο¡ ÁßÁ¡À» µÎ°í ¾÷°è Àü¹®°¡¸¦ ´ë»óÀ¸·Î ÀÛ¼ºµÇ¾ú½À´Ï´Ù.

½ÃÀå ¼¼ºÐÈ­ ºÐ¼®

±¸¼º¿ä¼Òº°

¼¼°è ±¤À§»ó¹è¿­ LiDAR ½ÃÀåÀº ¼Û½Å±â¿Í ¼ö½Å±â·Î ±¸ºÐµË´Ï´Ù. ÀÌ·¯ÇÑ ±¸¼º¿ä¼ÒµéÀº ½Ã³ÊÁö È¿°ú¸¦ ¹ßÈÖÇÏ¿© LiDARÀÇ ±â´ÉÀ» ÃÖÀûÈ­Çϰí Á¤È®ÇÑ Å½Áö ¹× ȯ°æ ¸ÅÇÎÀ» º¸ÀåÇÕ´Ï´Ù. LiDARÀÇ °íÇØ»óµµ ±â´ÉÀ» ±¸ÇöÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϱ⠶§¹®¿¡ ½ÃÀå Á¡À¯À²ÀÌ Å©°Ô Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ºÎǰ ¼³°è ¹× Á¦Á¶ÀÇ ¹ßÀüÀº ±× È¿À²À» ´õ¿í Çâ»ó½ÃÄÑ Àüü ¾ÖÇø®ÄÉÀ̼ǿ¡ Æø³Ð°Ô Àû¿ëµÉ ¼ö ÀÖµµ·Ï Áö¿øÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

¿ëµµº°

±¤À§»ó¹è¿­ LiDAR ±â¼úÀº ÀÚÀ²ÁÖÇàÂ÷, Á¤¹Ð ·Îº¿, ÀÚÀ¯°ø°£ ±¤Åë½Å¿¡ Àû¿ëµÇ°í ÀÖ½À´Ï´Ù. ±× Áß¿¡¼­µµ Á¤¹Ð ·Îº¿Àº ÀÚµ¿È­ÀÇ ±Þ°ÝÇÑ Áõ°¡¿Í Á¦Á¶, ¹°·ù, ÇコÄÉ¾î µîÀÇ »ê¾÷¿¡¼­ ·Îº¿ ½Ã½ºÅÛÀÇ ÅëÇÕÀÌ ÁøÇàµÇ¸é¼­ ½ÃÀå Á¡À¯À²À» µ¶½ÄÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÚÀ²ÁÖÇàÂ÷ ºÎ¹®Àº ÀÚÀ²ÁÖÇà ±â¼úÀÇ Áö¼ÓÀûÀÎ Çõ½ÅÀ¸·Î °­·ÂÇÑ ¼ºÀåÀÌ ±â´ëµÇ´Â ºÐ¾ßÀÔ´Ï´Ù. ÇÁ¸®½ºÆäÀ̽º ±¤Åë½ÅÀº ÀÛÀº ºÎ¹®ÀÌÁö¸¸, °íÁ¤¹Ð µ¥ÀÌÅÍ Àü¼ÛÀ» Á¦°øÇÏ´Â ±â¼úÀÇ ´É·ÂÀ¸·Î ÀÎÇØ Åë½Å ¹× Ç×°ø¿ìÁÖ ºÐ¾ßÀÇ »õ·Î¿î »ç¿ë »ç·Ê¸¦ µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.

Áö¸®Àû Àü¸Á

±¤À§»ó¹è¿­ LiDAR ½ÃÀåÀº Áö¸®ÀûÀ¸·Î ºÏ¹Ì, ³²¹Ì, À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«, ¾Æ½Ã¾ÆÅÂÆò¾çÀ¸·Î ±¸ºÐµË´Ï´Ù. ºÏ¹Ì´Â ÀÚµ¿È­ ¹× ÀÚµ¿Â÷ »ê¾÷ÀÇ ´«ºÎ½Å ¹ßÀüÀ¸·Î ÀÎÇØ ¼¼°è ½ÃÀåÀ» ÁÖµµÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ Áö¿ªÀº ¿¬±¸°³¹ß¿¡ ÁýÁßÇϰí ÀÖÀ¸¸ç, ÀÚÀ²ÁÖÇàÂ÷ ±â¼ú¿¡ ´ëÇÑ ¸·´ëÇÑ ÅõÀÚ¿Í ÇÔ²² ±¤À§»ó¹è¿­ LiDAR äÅÃÀÇ °ÅÁ¡À¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾ç ¿ª½Ã Áß±¹, ÀϺ» µî ±¹°¡ÀÇ ±Þ¼ÓÇÑ »ê¾÷È­¿Í ÀÚµ¿È­ ¹ßÀü¿¡ ÈûÀÔ¾î °ý¸ñÇÒ ¸¸ÇÑ ¼ºÀåÀÌ ¿¹»óµË´Ï´Ù. À¯·´Àº ÀÚµ¿Â÷ »ê¾÷ÀÌ È®¸³µÇ¾î ÀÖ°í, ±â¼ú Çõ½Å¿¡ ÁßÁ¡À» µÎ°í Àֱ⠶§¹®¿¡ ±× µÚ¸¦ ÀÕ½À´Ï´Ù. Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«¿Í ³²¹Ì´Â ½ÅÈï ½ÃÀåÀ¸·Î, ÀÚµ¿È­ ±â¼úÀÌ È®»êµÊ¿¡ µû¶ó äÅÃÀÌ ²ÙÁØÈ÷ È®´ëµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

½ÃÀå ¼ºÀå¿äÀÎ

±¤À§»ó¹è¿­ LiDAR ½ÃÀåÀÇ ÁÖ¿ä ÃËÁø¿äÀÎÀº ÀÚµ¿Â÷ »ê¾÷, ƯÈ÷ ÀÚÀ²ÁÖÇàÂ÷ °³¹ß¿¡ ´ëÇÑ ÅõÀÚ¿Í ±â¼ú Çõ½ÅÀÇ Áõ°¡ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ÀÚµ¿Â÷´Â ¾ÈÀüÇÑ Ç×¹ý ¹× Àå¾Ö¹° °¨Áö¸¦ À§ÇØ LiDAR ±â¼ú¿¡ Å©°Ô ÀÇÁ¸Çϰí ÀÖÀ¸¸ç, ÀÌ´Â ±¤À§»ó¹è¿­ LiDAR¿Í °°Àº ÷´Ü ¼Ö·ç¼Ç¿¡ ´ëÇÑ °­·ÂÇÑ ¼ö¿ä¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù. ÀÌ ±â¼úÀº Àúºñ¿ëÀ¸·Î °íÇØ»óµµ ½ºÄ³´×À» Á¦°øÇÒ ¼ö ÀÖ°í, È®Àå °¡´ÉÇÑ »ý»êÀÌ °¡´ÉÇϱ⠶§¹®¿¡ Á¦Á¶¾÷ü¿¡°Ô ƯÈ÷ ¸Å·ÂÀûÀÎ ±â¼úÀÔ´Ï´Ù. °¢ »ê¾÷ ºÐ¾ß¿¡¼­ ÀÚµ¿È­°¡ Áö¼ÓÀûÀ¸·Î È®´ëµÇ°í ÀÖ´Â °¡¿îµ¥, ±¤À§»ó¹è¿­ LiDAR¸¦ žÀçÇÑ Á¤¹Ð ·Îº¿¿¡ ´ëÇÑ ¼ö¿äµµ Áõ°¡ÇÏ¿© ½ÃÀå ¼ºÀåÀ» ´õ¿í ÃËÁøÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶ÇÇÑ, ÇöÀç ÁøÇà ÁßÀÎ ±â¼ú ¹ßÀüÀ¸·Î LiDAR ½Ã½ºÅÛÀÇ ¼º´É°ú ½Å·Ú¼ºÀÌ Çâ»óµÇ°í ÀÖ¾î Â÷¼¼´ë Â÷·® ¹× ·Îº¿ ½Ã½ºÅÛ¿¡ žÀçÇÏ´Â °ÍÀÌ ´õ¿í ¸Å·ÂÀûÀ¸·Î ´Ù°¡¿À°í ÀÖ½À´Ï´Ù.

°úÁ¦

±¤À§»ó¹è¿­ LiDAR ½ÃÀåÀº ±× ÀáÀçÀû °¡´É¼º¿¡µµ ºÒ±¸Çϰí, ±× ±â´É¿¡ ´ëÇÑ ¿ÀÇØ·Î ÀÎÇØ ¾î·Á¿ò¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. ¾÷°è ÀÌÇØ°ü°èÀÚµé Áß ÀϺδ ±¤Àü¸é ¾î·¹ÀÌ LiDARÀÇ ÀåÁ¡¿¡ ´ëÇÑ ÀÎ½Ä ºÎÁ·°ú ÇѰè·Î ÀÎÇØ ·¹´õ³ª Ä«¸Þ¶ó º£À̽º ½Ã½ºÅÛ°ú °°Àº ´ëü ¼¾½Ì ±â¼úÀ» ¼±È£Çϱ⵵ ÇÕ´Ï´Ù. ±¤Àü¸é ¾î·¹ÀÌ LiDARÀÇ ¿ì¼öÇÑ Å½Áö ´É·Â¿¡ ´ëÇÑ ±³À° ¹× ½Ã¿¬À» ÅëÇØ ÀÌ·¯ÇÑ ¿ÀÇØ¸¦ ÇØ¼ÒÇÏ´Â °ÍÀº ±¤Àü¸é ¾î·¹ÀÌ LiDARÀÇ ½ÃÀå ÀáÀç·ÂÀ» ±Ø´ëÈ­ÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÕ´Ï´Ù.

°á·Ð

±¤À§»ó¹è¿­ LiDAR ½ÃÀåÀº ÀÚµ¿È­, ƯÈ÷ ÀÚÀ²ÁÖÇàÂ÷ ¹× Á¤¹Ð ·Îº¿ °øÇÐÀÇ ¹ßÀü¿¡ ÈûÀÔ¾î °­·ÂÇÑ ¼ºÀåÀÌ ¿¹»óµË´Ï´Ù. ºÏ¹Ì°¡ ½ÃÀåÀ» ÁÖµµÇÏ°í ¾Æ½Ã¾ÆÅÂÆò¾ç°ú À¯·´ÀÌ Å©°Ô ±â¿©ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ ±â¼úÀº ºñ¿ë È¿À²¼º, È®À强, ÅëÇÕ °¡´É¼ºÀ¸·Î ÀÎÇØ Â÷¼¼´ë ¾ÖÇø®ÄÉÀ̼ÇÀ» ±¸ÇöÇÏ´Â Áß¿äÇÑ ±â¼ú·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù. ±×·¯³ª ½ÃÀå µµÀÔÀÇ ±Ø´ëÈ­¸¦ À§Çؼ­´Â ¿ÀÇØÀÇ ±Øº¹ÀÌ ÇʼöÀûÀÔ´Ï´Ù. ¾÷°è ÀÌÇØ°ü°èÀÚµéÀº ÀÌ Ã·´Ü LiDAR ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ´ëÀÀÇϱâ À§ÇØ ÇöÀç ÁøÇà ÁßÀÎ ±â¼ú Çõ½Å°ú Àü·«Àû ÅõÀÚ¸¦ Ȱ¿ëÇÏ´Â µ¥ ÁýÁßÇØ¾ß ÇÕ´Ï´Ù.

º» º¸°í¼­ÀÇ ÁÖ¿ä ÀåÁ¡

  • ÅëÂû·Â ÀÖ´Â ºÐ¼® : °í°´ ºÎ¹®, Á¤ºÎ Á¤Ã¥ ¹× »çȸ°æÁ¦Àû ¿äÀÎ, ¼ÒºñÀÚ ¼±È£µµ, »ê¾÷º°, ±âŸ ÇÏÀ§ ºÎ¹®¿¡ ÃÊÁ¡À» ¸ÂÃá ÁÖ¿ä Áö¿ª ¹× ½ÅÈï Áö¿ªÀ» Æ÷°ýÇÏ´Â »ó¼¼ÇÑ ½ÃÀå ºÐ¼®À» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.
  • °æÀï »óȲ : ¼¼°è ÁÖ¿ä ±â¾÷µéÀÌ Ã¤ÅÃÇϰí ÀÖ´Â Àü·«Àû Àü·«À» ÀÌÇØÇϰí, ÀûÀýÇÑ Àü·«À» ÅëÇÑ ½ÃÀå ħÅõ °¡´É¼ºÀ» ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.
  • ½ÃÀå µ¿Çâ°ú ÃËÁø¿äÀÎ : ¿ªµ¿ÀûÀÎ ¿äÀΰú ¸Å¿ì Áß¿äÇÑ ½ÃÀå µ¿Çâ, ±×¸®°í À̵éÀÌ ÇâÈÄ ½ÃÀå °³Ã´À» ¾î¶»°Ô Çü¼ºÇÒ °ÍÀÎÁö¿¡ ´ëÇØ ¾Ë¾Æº¾´Ï´Ù.
  • ½ÇÇà °¡´ÉÇÑ Á¦¾È : ÀλçÀÌÆ®¸¦ Àü·«Àû ÀÇ»ç°áÁ¤¿¡ Ȱ¿ëÇϰí, ¿ªµ¿ÀûÀΠȯ°æ ¼Ó¿¡¼­ »õ·Î¿î ºñÁî´Ï½º ½ºÆ®¸²°ú ¼öÀÍÀ» ¹ß±¼ÇÕ´Ï´Ù.
  • ´Ù¾çÇÑ »ç¿ëÀÚ¿¡ ´ëÀÀ : ½ºÅ¸Æ®¾÷, ¿¬±¸±â°ü, ÄÁ¼³ÅÏÆ®, Áß¼Ò±â¾÷, ´ë±â¾÷¿¡ À¯ÀÍÇÏ°í ºñ¿ë È¿À²ÀûÀÔ´Ï´Ù.

¾î¶² ¿ëµµ·Î »ç¿ëµÇ´Â°¡?

»ê¾÷ ¹× ½ÃÀå ÀλçÀÌÆ®, »ç¾÷ ±âȸ Æò°¡, Á¦Ç° ¼ö¿ä ¿¹Ãø, ½ÃÀå ÁøÀÔ Àü·«, Áö¸®Àû È®Àå, ¼³ºñ ÅõÀÚ °áÁ¤, ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ© ¹× ¿µÇâ, ½ÅÁ¦Ç° °³¹ß, °æÀïÀÇ ¿µÇâ

Á¶»ç ¹üÀ§

  • 2022³âºÎÅÍ 2024³â±îÁöÀÇ °ú°Å µ¥ÀÌÅÍ¿Í 2025³âºÎÅÍ 2030³â±îÁöÀÇ ¿¹Ãø µ¥ÀÌÅÍ
  • ¼ºÀå ±âȸ, µµÀü°úÁ¦, °ø±Þ¸Á Àü¸Á, ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ© ¹× µ¿Ç⠺м®
  • °æÀï»ç Æ÷Áö¼Å´×, Àü·« ¹× ½ÃÀå Á¡À¯À² ºÐ¼®
  • ¸ÅÃâ ¼ºÀå ¹× ¿¹Ãø ±¹°¡¸¦ Æ÷ÇÔÇÑ ºÎ¹® ¹× Áö¿ªº° ºÐ¼®

±â¾÷ ¼Ò°³

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ½ÃÀå ÇöȲ

  • ½ÃÀå °³¿ä
  • ½ÃÀå Á¤ÀÇ
  • Á¶»ç ¹üÀ§
  • ½ÃÀå ¼¼ºÐÈ­

Á¦3Àå ºñÁî´Ï½º »óȲ

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ½ÃÀå ±âȸ
  • Porter's Five Forces ºÐ¼®
  • ¾÷°è ¹ë·ùüÀÎ ºÐ¼®
  • Á¤Ã¥°ú ±ÔÁ¦
  • Àü·«Àû Á¦¾È

Á¦4Àå ±â¼ú Àü¸Á

Á¦5Àå ±¤À§»ó¹è¿­ LiDAR ½ÃÀå : ±¸¼º¿ä¼Òº°

  • ¼Ò°³
  • ¼Û½Å±â
  • ¼ö½Å±â

Á¦6Àå ±¤À§»ó¹è¿­ LiDAR ½ÃÀå : ¿ëµµº°

  • ¼Ò°³
  • ÀÚÀ²ÁÖÇàÂ÷
  • Á¤¹Ð ·Îº¿
  • ÀÚÀ¯°ø°£ ±¤Åë½Å

Á¦7Àå ±¤À§»ó¹è¿­ LiDAR ½ÃÀå : Áö¿ªº°

  • ¼Ò°³
  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • ³²¹Ì
    • ºê¶óÁú
    • ¾Æ¸£ÇîÆ¼³ª
    • ±âŸ
  • À¯·´
    • µ¶ÀÏ
    • ÇÁ¶û½º
    • ¿µ±¹
    • ½ºÆäÀÎ
    • ±âŸ
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®
    • ±âŸ
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • Áß±¹
    • Àεµ
    • ÀϺ»
    • Çѱ¹
    • Àεµ³×½Ã¾Æ
    • ű¹
    • ±âŸ

Á¦8Àå °æÀï ȯ°æ°ú ºÐ¼®

  • ÁÖ¿ä ±â¾÷°ú Àü·« ºÐ¼®
  • ½ÃÀå Á¡À¯À² ºÐ¼®
  • ÇÕº´, Àμö, ÇÕÀÇ ¹× Çù¾÷
  • °æÀï ´ë½Ãº¸µå

Á¦9Àå ±â¾÷ °³¿ä

  • AEye Inc.
  • Neptec Technologies Corp.
  • Quanergy
  • Xenomatix
  • Analog Photonics
  • VanJee Technology Co Ltd
  • Litratech
  • Luminwave

Á¦10Àå ºÎ·Ï

  • ÅëÈ­
  • °¡Á¤
  • ±âÁØ ¿¬µµ¿Í ¿¹Ãø ¿¬µµ ŸÀÓ¶óÀÎ
  • ÀÌÇØ°ü°èÀÚ¿¡ ´ëÇÑ ÁÖ¿ä ÀÌÁ¡
  • Á¶»ç ¹æ¹ý
  • ¾à¾î
ksm

The optical-phased array LiDAR market is expected to grow from USD 449.519 million in 2025 to USD 1,310.717 million in 2030, at a CAGR of 23.87%

Optical-phased array LiDAR technology represents an advanced evolution of traditional LiDAR systems, offering finer detection capabilities while maintaining comprehensive environmental awareness. This technology enables precise object localization within a broader contextual view, making it highly suitable for applications requiring high accuracy and integration. The market for optical-phased array LiDAR is poised for significant growth, driven by increasing automation across various industries, particularly in the automotive sector. Key attributes such as cost-effectiveness, high-volume production potential, and seamless integration with vehicle designs enhance its appeal. However, misconceptions about the technology's capabilities pose challenges, potentially diverting preference toward alternative solutions and limiting market penetration. This summary, tailored for industry experts, focuses on market segmentation, geographical outlook, and growth factors, excluding data prior to 2024 as per the provided directive.

Market Segmentation Analysis

By Component

The global optical-phased array LiDAR market is segmented into transmitters and receivers. These components work synergistically to optimize LiDAR functionality, ensuring precise detection and environmental mapping. Together, they are expected to capture a significant market share due to their critical role in enabling the technology's high-resolution capabilities. Advancements in component design and manufacturing are likely to further enhance their efficiency, supporting broader adoption across applications.

By Application

Optical-phased array LiDAR technology finds applications in autonomous vehicles, precision robots, and free-space optical communication. Among these, precision robots are anticipated to dominate the market share, fueled by the surge in automation and the increasing integration of robotic systems across industries such as manufacturing, logistics, and healthcare. The autonomous vehicle segment is expected to experience robust growth, driven by ongoing innovations in self-driving technology. Free-space optical communication, while a smaller segment, benefits from the technology's ability to provide high-precision data transmission, supporting emerging use cases in telecommunications and aerospace.

Geographical Outlook

The optical-phased array LiDAR market is segmented geographically into North America, South America, Europe, the Middle East and Africa, and the Asia Pacific. North America is projected to lead the global market, driven by significant advancements in automation and the automotive industry. The region's strong focus on research and development, coupled with substantial investments in autonomous vehicle technology, positions it as a hub for optical-phased array LiDAR adoption. The Asia Pacific region is also expected to witness notable growth, supported by rapid industrialization and increasing automation in countries like China and Japan. Europe follows closely, with its established automotive sector and emphasis on technological innovation. The Middle East and Africa, along with South America, are emerging markets where adoption is expected to grow steadily as automation technologies gain traction.

Market Growth Factors

The primary driver of the optical-phased array LiDAR market is the rising investment and innovation in the automotive industry, particularly in the development of self-driving cars. These vehicles rely heavily on LiDAR technology for safe navigation and obstacle detection, creating a strong demand for advanced solutions like optical-phased array LiDAR. The technology's ability to offer high-resolution scanning at a lower cost and with scalable production makes it particularly attractive for manufacturers. As automation continues to expand across industries, the demand for precision robots equipped with optical-phased array LiDAR is also expected to rise, further supporting market growth. Additionally, ongoing technological advancements are improving the performance and reliability of LiDAR systems, making them more appealing for integration into next-generation vehicles and robotic systems.

Challenges

Despite its potential, the optical-phased array LiDAR market faces challenges due to misconceptions about its capabilities. Some industry stakeholders may favor alternative sensing technologies, such as radar or camera-based systems, due to perceived limitations or lack of awareness about optical-phased array LiDAR's advantages. Addressing these misconceptions through education and demonstration of the technology's superior detection capabilities will be critical to unlocking its full market potential.

Conclusion

The optical-phased array LiDAR market is set for robust growth, driven by advancements in automation, particularly in autonomous vehicles and precision robotics. North America is expected to lead the market, with significant contributions from the Asia Pacific and Europe. The technology's cost-effectiveness, scalability, and integration potential position it as a key enabler of next-generation applications. However, overcoming misconceptions will be essential to maximizing market adoption. Industry stakeholders should focus on leveraging ongoing innovations and strategic investments to capitalize on the growing demand for this advanced LiDAR technology.

Key Benefits of this Report:

  • Insightful Analysis: Gain detailed market insights covering major as well as emerging geographical regions, focusing on customer segments, government policies and socio-economic factors, consumer preferences, industry verticals, and other sub-segments.
  • Competitive Landscape: Understand the strategic maneuvers employed by key players globally to understand possible market penetration with the correct strategy.
  • Market Drivers & Future Trends: Explore the dynamic factors and pivotal market trends and how they will shape future market developments.
  • Actionable Recommendations: Utilize the insights to exercise strategic decisions to uncover new business streams and revenues in a dynamic environment.
  • Caters to a Wide Audience: Beneficial and cost-effective for startups, research institutions, consultants, SMEs, and large enterprises.

What do businesses use our reports for?

Industry and Market Insights, Opportunity Assessment, Product Demand Forecasting, Market Entry Strategy, Geographical Expansion, Capital Investment Decisions, Regulatory Framework & Implications, New Product Development, Competitive Intelligence

Report Coverage:

  • Historical data from 2022 to 2024 & forecast data from 2025 to 2030
  • Growth Opportunities, Challenges, Supply Chain Outlook, Regulatory Framework, and Trend Analysis
  • Competitive Positioning, Strategies, and Market Share Analysis
  • Revenue Growth and Forecast Assessment of segments and regions including countries

Company Profiling (Strategies, Products, Financial Information, and Key Developments among others.

Key Market Segments

By Component

  • Transmitter
  • Receiver

By Application

  • Autonomous Vehicle
  • Precision Robots
  • Free-Space Optical Communications

By Geography

  • North America
  • USA
  • Canada
  • Mexico
  • South America
  • Brazil
  • Argentina
  • Others
  • Europe
  • Germany
  • France
  • United Kingdom
  • Spain
  • Others
  • Middle East and Africa
  • Saudi Arabia
  • UAE
  • Others
  • Asia Pacific
  • China
  • India
  • Japan
  • South Korea
  • Indonesia
  • Thailand
  • Others

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

2. MARKET SNAPSHOT

  • 2.1. Market Overview
  • 2.2. Market Definition
  • 2.3. Scope of the Study
  • 2.4. Market Segmentation

3. BUSINESS LANDSCAPE

  • 3.1. Market Drivers
  • 3.2. Market Restraints
  • 3.3. Market Opportunities
  • 3.4. Porter's Five Forces Analysis
  • 3.5. Industry Value Chain Analysis
  • 3.6. Policies and Regulations
  • 3.7. Strategic Recommendations

4. TECHNOLOGICAL OUTLOOK

5. OPTICAL-PHASED ARRAY LIDAR MARKET BY COMPONENT

  • 5.1. Introduction
  • 5.2. Transmitter
  • 5.3. Receiver

6. OPTICAL-PHASED ARRAY LIDAR MARKET BY APPLICATION

  • 6.1. Introduction
  • 6.2. Autonomous Vehicle
  • 6.3. Precision Robots
  • 6.4. Free-Space Optical Communications

7. OPTICAL-PHASED ARRAY LIDAR MARKET BY GEOGRAPHY

  • 7.1. Introduction
  • 7.2. North America
    • 7.2.1. USA
    • 7.2.2. Canada
    • 7.2.3. Mexico
  • 7.3. South America
    • 7.3.1. Brazil
    • 7.3.2. Argentina
    • 7.3.3. Others
  • 7.4. Europe
    • 7.4.1. Germany
    • 7.4.2. France
    • 7.4.3. United Kingdom
    • 7.4.4. Spain
    • 7.4.5. Others
  • 7.5. Middle East and Africa
    • 7.5.1. Saudi Arabia
    • 7.5.2. UAE
    • 7.5.3. Others
  • 7.6. Asia Pacific
    • 7.6.1. China
    • 7.6.2. India
    • 7.6.3. Japan
    • 7.6.4. South Korea
    • 7.6.5. Indonesia
    • 7.6.6. Thailand
    • 7.6.7. Others

8. COMPETITIVE ENVIRONMENT AND ANALYSIS

  • 8.1. Major Players and Strategy Analysis
  • 8.2. Market Share Analysis
  • 8.3. Mergers, Acquisitions, Agreements, and Collaborations
  • 8.4. Competitive Dashboard

9. COMPANY PROFILES

  • 9.1. AEye Inc.
  • 9.2. Neptec Technologies Corp.
  • 9.3. Quanergy
  • 9.4. Xenomatix
  • 9.5. Analog Photonics
  • 9.6. VanJee Technology Co Ltd
  • 9.7. Litratech
  • 9.8. Luminwave

10. APPENDIX

  • 10.1. Currency
  • 10.2. Assumptions
  • 10.3. Base and Forecast Years Timeline
  • 10.4. Key benefits for the stakeholders
  • 10.5. Research Methodology
  • 10.6. Abbreviations
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦