½ÃÀ庸°í¼­
»óǰÄÚµå
1560460

¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ¹«¼±(SDR) ½ÃÀå º¸°í¼­ : µ¿Çâ, ¿¹Ãø, °æÀï ºÐ¼®(-2030³â)

Software Defined Radio Market Report: Trends, Forecast and Competitive Analysis to 2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Lucintel | ÆäÀÌÁö Á¤º¸: ¿µ¹® 150 Pages | ¹è¼Û¾È³» : 3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ¹«¼± µ¿Çâ ¹× ¿¹Ãø

¼¼°èÀÇ ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ¹«¼± ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 6.0%·Î Àü¸ÁµÇ¸ç, 2030³â¿¡´Â ÃßÁ¤ 152¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù. ÀÌ ½ÃÀåÀÇ ÁÖ¿ä ÃËÁø¿äÀÎÀº SDRÀÇ ÅÚ·¹Æ÷´Ï¿¡ ´ëÇÑ ¼ö¿ë È®´ë, Â÷¼¼´ë IP ½Ã½ºÅÛ¿¡ ´ëÇÑ °ü½É Áõ°¡, ¹æÀ§ Åë½Å ³×Æ®¿öÅ©ÀÇ Çö´ëÈ­¸¦ ÇâÇÑ ±º»ç ¿¹»ê Áõ°¡ÀÔ´Ï´Ù. ¼¼°è ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ¹«¼± ½ÃÀåÀÇ ¹Ì·¡´Â Ç×°ø¿ìÁÖ ¹× ¹æÀ§, Åë½Å, °ø°ø ¾ÈÀü, »ó¿ë ½ÃÀå¿¡ ±âȸ°¡ ÀÖ¾î À¯¸ÁÇÕ´Ï´Ù.

LucintelÀº ÈÞ´ë¿ë SDRÀÇ º¸±Þ°ú µðÁöÅÐ ±â¼ú°ú ¾Æ³¯·Î±× ±â¼úÀ» ÇϳªÀÇ Ä¨¿¡ ÅëÇÕÇÑ µå¶óÀ̺ê Áõ°¡·Î ÀÎÇØ ¼­ºñ½º°¡ ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº ¼ºÀåÀ» ÀÌ·ê °ÍÀ¸·Î ¿¹ÃøÇß½À´Ï´Ù.

¾Æ½Ã¾ÆÅÂÆò¾çÀº º¸´Ù ÁÁÀº Á¤º¸±³È¯°ú ¾ÈÀüÇÑ Çù¾÷ÀÌ ÀÚ¿¬ÀçÇØ½Ã Åë½Å °­È­¿¡ ´ëÇÑ ¹ý ÁýÇà±â°üÀÇ ¿ä±¸¿¡ ÀÇÇØ °¡´ÉÇØÁö±â ¶§¹®¿¡ ¿¹Ãø±â°£ Áß¿¡ °¡Àå ³ôÀº ¼ºÀåÀÌ ¿¹»óµË´Ï´Ù.

¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ¹«¼± ½ÃÀåÀÇ »õ·Î¿î µ¿Çâ

SDR ½ÃÀåÀÇ ÁÖ¿ä µ¿ÇâÀº SDR ½Ã½ºÅÛÀÇ ¼³°è ¹× µµÀÔ ¹æ¹ýÀ» Çü¼ºÇÏ´Â »õ·Î¿î µ¿Çâ µî ±â¼ú°ú ¾÷°è ¿ä±¸ÀÇ º¯È­·Î ÀÎÇÑ °ÍÀÔ´Ï´Ù.

  • 5G ³×Æ®¿öÅ©¿ÍÀÇ ÅëÇÕ : SDRÀº ¹«¼± Åë½Å¿¡ À¯¿¬¼º°ú È¿À²¼ºÀ» Á¦°øÇÏ´Â 5G ³×Æ®¿öÅ©¿ÍÀÇ ÅëÇÕ¿¡¼­ Á¡Á¡ ´õ ³ôÀº ÁöÀ§¸¦ ¼ö¸³Çϰí ÀÖ½À´Ï´Ù. ÀÌ Æ®·»µå´Â Á֯ļö ¾×¼¼½ºÀÇ µ¿Àû °ü¸®¸¦ °¡´ÉÇÏ°Ô ÇÏ°í ´Ù¾çÇÑ 5G ÀÌ¿ë »ç·ÊÀÇ °¡´É¼ºÀ» ¿±´Ï´Ù. ½ÇÁ¦·Î SDR ±â¼úÀº ÁøÈ­ÇÏ´Â 5G Ç¥Áذú ³×Æ®¿öÅ© ¼º´É ¹®Á¦ ÇØ°á¿¡ Å©°Ô ±â¿©Çϰí ÀÖ½À´Ï´Ù.
  • ½ÅÈ£ 󸮸¦ À§ÇÑ AI¿Í ¸Ó½Å·¯´× : SDR ½Ã½ºÅÛ¿¡¼­ AI¿Í ¸Ó½Å·¯´×ÀÇ È°¿ëÀº ƯÈ÷ ½ÅÈ£ ó¸® ºÐ¾ß¿¡¼­ ±â´ÉÀÌ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀº º¸´Ù È¿À²ÀûÀÎ ½ºÆåÆ®·³ °ü¸®, ½ÅÈ£ ¸íȮȭ, °£¼· ¿ÏÈ­¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. AI ÁÖµµ SDR ½Ã½ºÅÛÀº ¼ö½ÅµÇ´Â ½ÅÈ£ ¿ä±¸»çÇ× ¹× ȯ°æ º¯È­¿¡ ½Ç½Ã°£À¸·Î ÀûÀÀÇÏ°í º¯È­ÇÒ ¼ö ÀÖ½À´Ï´Ù.
  • º¸¾È ±â´É : »ç¿ëÀÌ È®´ëµÊ¿¡ µû¶ó SDR¿¡ °í±Þ º¸¾È ±â´ÉÀ» ÅëÇÕÇÏ´Â µ¥ ÁÖ¸ñÀÌ µì´Ï´Ù. Åë½Å ¾Ïȣȭ ¹× º¸¾È ÇÁ·ÎÅäÄÝÀÇ »õ·Î¿î µ¿ÇâÀº »çÀ̹ö À§ÇùÀ¸·ÎºÎÅÍ ½Ã½ºÅÛÀ» º¸È£Çϱâ À§ÇÑ °ÍÀÔ´Ï´Ù. ¹æÀ§, °ø°ø ¾ÈÀü, Áß¿ä ÀÎÇÁ¶ó¿Í °ü·ÃµÈ ¿ëµµ´Â º¸¾È °­È­°¡ ¿ä±¸µÉ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.
  • IoT ¿ëµµ¿¡¼­ÀÇ »ç¿ë Áõ°¡ : SDR ±â¼úÀÇ ÀûÀÀ¼ºÀÌ IoT ¿ëµµ¸¦ µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. ÀÌ´Â SDRÀÌ IoT¿¡¼­ ¼­·Î ´Ù¸¥ ÇÁ·ÎÅäÄݰú Á֯ļö¸¦ »ç¿ëÇÏ´Â ÀåÄ¡¿Í ¿©·¯ ³×Æ®¿öÅ© °£ÀÇ ¾çÈ£ÇÑ Åë½ÅÀ» º¸ÀåÇϱ⠶§¹®ÀÔ´Ï´Ù. ÀÌ Ãß¼¼´Â ½º¸¶Æ® ½ÃƼ¿Í »ê¾÷¿ë IoT ¼Ö·ç¼Ç¿¡ ´ëÇÑ Çõ½ÅÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
  • ¼ÒÇüÈ­ ¹× ÅëÇÕ : SDR ÄÄÆ÷³ÍÆ®ÀÇ ¼ÒÇüÈ­ ¹× ¼ÒÇü ½Ã½ºÅÛÀ¸·ÎÀÇ ÅëÇÕ µ¿ÇâÀÌ ÀÖ½À´Ï´Ù. ÀÌ °³¹ßÀ» ÅëÇØ ´õ ÄÄÆÑÆ®Çϰí ÈÞ´ë¿ë ÀåÄ¡ ¹× ¿ëµµ¿¡ SDRÀ» ¹èÆ÷ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¼ÒÇüÈ­´Â ¸ð¹ÙÀÏ Åë½Å°ú ¿þ¾î·¯ºí ±â¼úÀÇ ¹ßÀü¿¡ µµ¿òÀÌ µË´Ï´Ù.

SDR¿¡ ³ªÅ¸³ª´Â ÀÌ·¯ÇÑ Ãß¼¼´Â À¯¿¬¼º, º¸¾È ¹× ÀÀ¿ë ¹üÀ§¸¦ ³ôÀÌ´Â Áß¿äÇÑ ¿ä¼Ò·Î °è¼Ó µÉ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. °Ô´Ù°¡ 5G, ¿î¿µ¿¡ À־ÀÇ AI, º¸¾È, IoT¿Í Á¶ÇյǾî SDRÀÇ ¹Ì·¡¸¦ Çü¼ºÇÏ°Ô µÉ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. ÇâÈÄ¿¡µµ ÀÌ·¯ÇÑ µ¿ÇâÀº ´Ù¾çÇÑ ¾÷°è¿¡¼­ SDR ½Ã½ºÅÛÀÇ ±â´É°ú ¿ëµµ¸¦ °è¼Ó È®´ëÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ¹«¼± ½ÃÀåÀÇ ÃÖ±Ù µ¿Çâ

SDR ½ÃÀåÀÇ ÃÖ±Ù µ¿ÇâÀº ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼­ ±â¼úÀÇ ¹ßÀü°ú Ȱ¿ëÀÇ È®´ë¸¦ º¸¿©ÁÝ´Ï´Ù.

  • °í±Þ ½ÅÈ£ ó¸® ¾Ë°í¸®Áò : »õ·Î¿î ½ÅÈ£ ó¸® ¾Ë°í¸®ÁòÀº SDR ½Ã½ºÅÛÀÇ ¼º´ÉÀ» Å©°Ô Çâ»ó½Ãŵ´Ï´Ù. ÀÌ·¯ÇÑ Áøº¸´Â ½ÅÈ£ÀÇ ¸í·áµµ¸¦ Çâ»ó½ÃŰ°í °£¼·À» ÁÙÀÌ°í ½ºÆåÆ®·³ °ü¸®¸¦ Çâ»ó½Ãŵ´Ï´Ù. Çâ»óµÈ ¾Ë°í¸®ÁòÀº ¸ðµç À¯ÇüÀÇ ¿ëµµ¿¡¼­ º¸´Ù ¾ÈÁ¤ÀûÀ̰í È¿À²ÀûÀÎ Åë½ÅÀ» Áö¿øÇÕ´Ï´Ù.
  • Â÷¼¼´ë ³×Æ®¿öÅ© ÅëÇÕ : SDR ½Ã½ºÅÛÀº 5G ÀÌ»óÀÇ Â÷¼¼´ë ³×Æ®¿öÅ©¿Í ÅëÇյ˴ϴÙ. À¯¿¬Çϰí ÀûÀÀ¼ºÀÌ ³ôÀº Åë½Å ¼Ö·ç¼ÇÀ» Áö¿øÇÔÀ¸·Î½á ³×Æ®¿öÅ© ¼º´ÉÀÌ Çâ»óµÊ¿¡ µû¶ó ¹«¼± Á֯ļö ´ë¿ªÀÇ µ¿Àû ÇÒ´çÀÌ °¡´ÉÇÕ´Ï´Ù. Áï, SDR°ú °í±Þ ³×Æ®¿öÅ©ÀÇ ½Ã³ÊÁö È¿°ú°¡ ½ÃÀå ¼ºÀåÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.
  • ¾Æ¸¶Ãß¾î SDR Ç÷§ÆûÀº Àúºñ¿ë°ú °³¹ß ±â¼úÀÇ Ä¿½ºÅ͸¶ÀÌ¡¼ºÀ¸·Î ÀÎÇØ ¸Å¿ì ÀαⰡ ÀÖ½À´Ï´Ù. SDR¿¡ ÀÇÇÑ ÀÌ·¯ÇÑ Çõ½ÅÀÇ ÇÙ½ÉÀº ƯÁ¤ ¿ä±¸¸¦ À§ÇØ SDR ½Ã½ºÅÛÀ» º¯°æÇÏ°í °³¹ßÇÏ´Â ´É·ÂÀÔ´Ï´Ù. ¿ÀǼҽº ÇÁ·ÎÁ§Æ®´Â Çù¾÷À» ÀÚ±ØÇÏ°í ±â¼ú °³¹ß ¼Óµµ¸¦ Çâ»ó½Ãŵ´Ï´Ù.
  • SDposium ½Ã¸®Áî : °£´ÜÇÑ ´ÜÆÄ ¶óµð¿À¿¡¼­ °í±Þ °³ÀÎ Åë½Å ½Ã½ºÅÛ¿¡ À̸£±â±îÁö SDR ¿ëµµ¿¡ ´ëÇÑ »ç¿ëÀÌ ¼ºÀå ¿äÀÎ Áß Çϳª¶ó°í ÇÕ´Ï´Ù. ¾ÕÀ¸·Î ½ÅÈï ½ÃÀåÀ¸·ÎÀÇ ¼ºÀåÀº º¸´Ù Á¤±³ÇÑ Åë½Å ±â¼ú¿¡ ´ëÇÑ ¿ä±¸¸¦ ³ôÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ½ÇÁ¦·Î µ¿³²¾Æ½Ã¾Æ¿Í ¶óƾ¾Æ¸Þ¸®Ä« µî ¹æÀ§, Åë½Å, °ø°ø¾ÈÀü µî ´Ù¾çÇÑ ¸ñÀûÀ¸·Î SDR ½Ã½ºÅÛÀ» ä¿ëÇÏ´Â Áö¿ªÀÌ ´Ã°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ È®ÀåÀº ¼¼°è ½ÃÀå ¼ºÀåÀÇ ÃËÁø¿äÀÎ Áß ÇϳªÀÔ´Ï´Ù.
  • ³ôÀº À̵¿¼º°ú È޴뼺 : SDRÀº ¸Å¿ì ¿ªµ¿ÀûÀΠȯ°æ¿¡¼­ ¿ëµµ¸¦ Áö¿øÇÒ ¼ö ÀÖ½À´Ï´Ù. ¼ÒÇüÈ­ ¹× ÅëÇÕ Çâ»óÀ¸·Î ÈÞ´ë¿ë ¹× ¿þ¾î·¯ºí ÀåÄ¡¿¡¼­ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. °Ô´Ù°¡ ±âµ¿¼ºÀÌ ³ô¾ÆÁö¸é SDRÀÇ ¿ëµµ ¿µ¿ªÀº ±ä±Þ ´ëÀÀÀ̳ª ÇöÀå Åë½Å°ú °°Àº »ó´çÈ÷ Àü¹®ÀûÀÎ ºÐ¾ß·Î È®´ëµË´Ï´Ù.

½ÅÈ£ ó¸® °³¼±, °í±Þ ³×Æ®¿öÅ© ÅëÇÕ, Áö¸®Àû È®´ë¿Í ÇÔ²² ÃÖ±Ù µ¿ÇâÀº SDR ½ÃÀåÀÇ ±¸Á¶¸¦ À籸¼ºÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¿ÀǼҽº Ç÷§ÆûÀÇ ÃÖÀü¼±¿¡µµ Çõ½ÅÀÌ Ä§ÅõÇϰí ÀÖ¾î ½Ã½ºÅÛÀÇ °íµµÀÇ ÈÞ´ë¿ëÈ­¿Í ¸ð¹ÙÀÏÈ­¿¡ ÁÖ¸ñÀ» ¹Þ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿òÁ÷ÀÓÀÌ È°¹ßÇØÁö´Â ÇÑÆí, SDR Å×Å©³î·ÎÁöÀÇ Áøº¸³ª, ºÎ¹®À» ³ÑÀº ¿ëµµ·Îµµ ÁøÇàÇØ ³ª°¥ °ÍÀ̶ó°í »ý°¢µË´Ï´Ù.

¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ¹«¼± ½ÃÀåÀÇ Àü·«Àû ¼ºÀå ±âȸ

´Ù¾çÇÑ ÁÖ¿ä ¿ëµµ°¡ SDR ½ÃÀå¿¡ »õ·Î¿î ¼ºÀå ±âȸ¸¦ Áö¼ÓÀûÀ¸·Î Á¦°øÇÏ´Â ¹Ý¸é, °ü½ÉÀÖ´Â ±â¾÷Àº »õ·Î¿î µ¿Çâ°ú Áö¼ÓÀûÀÎ ¼ö¿ä¿¡ ´ëÀÀÇÏ´Â Æ÷Áö¼Å´×À» ÃëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ¹æÀ§ ¹× ±º»ç ÀÀ¿ë : À¯¿¬¼º°ú ÀûÀÀ¼ºÀÇ °¡´É¼ºÀ¸·Î SDR ±â¼úÀº ¹æÀ§ ¹× ±º»ç ÀÀ¿ë ºÐ¾ß¿¡¼­ Å« ÀáÀç·ÂÀ» ¿­°í ÀÖ½À´Ï´Ù. Åë½Å ±â´É, º¯¼Ó±â ¾ÈÀü¼º ¹× »óÈ£ ¿î¿ë¼º Çâ»óÀ¸·Î SDRÀº Çö´ë ¹æÀ§ ½Ã½ºÅÛ¿¡ ÀÌ»óÀûÀÎ ¼Ö·ç¼ÇÀÌ µÇ¾ú½À´Ï´Ù. ÃֽŠSDR ¼Ö·ç¼Ç¿¡ ´ëÇÑ Áß¿äÇÑ ÅõÀÚ ºÐ¾ß´Â Àü¼ú Åë½Å°ú ÀüÀÚÀüÀÔ´Ï´Ù.
  • °ø°ø ¾ÈÀü ¹× ±ä±Þ ¼­ºñ½º : SDR ½Ã½ºÅÛÀº ÁøÁ¤À¸·Î ½Å·ÚÇÒ ¼ö ÀÖ´Â ´Ù¸ñÀû Åë½ÅÀÌ ÇÊ¿äÇÑ °ø°ø ¾ÈÀü ¹× ±ä±Þ ¼­ºñ½º ºÐ¾ß¿¡¼­ Àû¿ëµË´Ï´Ù. ÀÌ·Î ÀÎÇØ Àç³­ ´ëÀÀ, ºü¸¥ ÀÀ´äÀÚ Á¶Á¤ ¹× ±ä±Þ »óȲ °ü¸®¿¡¼­ SDRÀÇ °¡´É¼ºÀÌ È®´ëµË´Ï´Ù. ½ÅÈ£ÀÇ ¸í·á¼º Çâ»ó°ú ¸ÖƼ¹êµå Åë½Å ±â´ÉÀº È¿°úÀûÀÎ ±ä±Þ Ȱµ¿À» Áö¿øÇÕ´Ï´Ù.
  • Åë½Å ÀÎÇÁ¶ó : SDRÀº ¹«¼± ½ºÆåÆ®·³ÀÇ µ¿Àû °ü¸®¿Í ´ÙÁß Åë½Å Ç¥ÁØÀ» Á¦°øÇÔÀ¸·Î½á Åë½Å ÀÎÇÁ¶ó¿¡ Çõ¸íÀ» °¡Á®¿À°í ÀÖ½À´Ï´Ù. ±âÁ¸ ³×Æ®¿öÅ©¸¦ ¾÷±×·¹À̵åÇϰí 5G ¹× Ãß°¡ ¼¼´ë ¹«¼± ±â¼úÀ» Áö¿øÇÏ´Â SDR ½Ã½ºÅÛÀ» µµÀÔÇÔÀ¸·Î½á ¸¹Àº ±âȸ°¡ »ý±é´Ï´Ù. SDRÀÌ Á¦°øÇÏ´Â À¯¿¬¼ºÀº ³×Æ®¿öÅ© ¼º´É°ú ¿ë·® ÃÖÀûÈ­¿¡ µµ¿òÀÌ µË´Ï´Ù.
  • IoT : IoT ºÐ¾ß´Â ¿©·¯ Åë½Å ÇÁ·ÎÅäÄݰú Á֯ļö¸¦ Áö¿øÇÒ ¼ö ÀÖ´Â SDR¿¡ ¸Å¿ì À¯¸ÁÇÑ ¹Ì·¡¸¦ Á¦°øÇÕ´Ï´Ù. SDRÀº ½º¸¶Æ® ½ÃƼ, »ê¾÷ ÀÚµ¿È­ ¹× ¿¬°á ÀåÄ¡¸¦ À§ÇÑ IoT ÀåÄ¡ ¹× ¿ëµµÀÇ ÀûÀýÇϰí È®Àå °¡´ÉÇÑ ¹æ¹ýÀ» °¡´ÉÇÏ°Ô ÇÏ¿© Çõ½Å°ú ½ÃÀå È®´ë¸¦ ÃËÁøÇÕ´Ï´Ù.
  • »ó¾÷¿ë ¹× ¼ÒºñÀÚ¿ë ÀüÀÚ Á¦Ç° : SDR ±â¼úÀº ½º¸¶Æ®Æù ¹× ¿þ¾î·¯ºí ´Ü¸»±â¿Í °°Àº ¾÷¹«¿ë ¹× °³Àοë ÀüÀÚ ±â±â¿¡ µµÀԵ˴ϴÙ. SDRÀÌ Á¦°øÇÏ´Â »õ·Î¿î °í±Þ ±â´ÉÀ» ÈÞ´ëÆù¿¡ ÅëÇÕÇÔÀ¸·Î½á »õ·Î¿î ¿ëµµÀ» °³Ã´ÇÒ ¼ö ÀÖ´Â ±âȸµµ ¿¹»óµË´Ï´Ù. ¼ÒÇüÈ­¿Í °í±â´ÉÈ­ÀÇ µ¿ÇâÀº ÀÌ ºÎ¹®ÀÇ ¼ºÀåÀ» °¡¼ÓÇÕ´Ï´Ù.

ÀÌ·¯ÇÑ »õ·Î¿î ¼ºÀå ±âȸ°¡ SDR ½ÃÀåÀ» Çü¼ºÇÏ°í ¹æÀ§, °ø°ø ¾ÈÀü, Åë½Å, IoT, ¼ÒºñÀÚ¿ë ÀüÀÚ ±â±â µîÀÇ ¿ëµµ ºÐ¾ß¸¦ È®´ëÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºÐ¾ß¿¡ ÁÖ·ÂÇÏ´Â ±â¾÷Àº SDRÀÇ ´Ù¿ëµµ¼º»Ó¸¸ ¾Æ´Ï¶ó Çõ½ÅÀ» ÃßÁøÇÏ°í »õ·Î¿î ½ÃÀå ºÎ¹®À» ȹµæÇÏ´Â ÀûÀÀ¼ºÀ» ½ÇÇöÇÏ´Â ´Ù¾çÇÑ ±âȸ¸¦ ¾ò°Ô µË´Ï´Ù.

¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ¹«¼± ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ ¹× °úÁ¦

SDRÀº ±â¼ú, °æÁ¦, ±ÔÁ¦ÀÇ °¢ ¿µ¿ª¿¡ °ÉÄ£ ÃËÁø¿äÀΰú °úÁ¦ÀÇ À¶ÇÕÀ¸·ÎºÎÅÍ »ý°Ü³³´Ï´Ù. ±â¼úÀû Áøº¸, °æÁ¦ ÅõÀÚ ¹× ±ÔÁ¦ º¯°æÀº ½ÃÀå ¿ªÇп¡ °­ÇÑ ¿µÇâÀ» ¹ÌĨ´Ï´Ù. À̵éÀº Çö´ë Åë½Å ½Ã½ºÅÛ, ¹æÀ§ ¿ëµµ, ¼ÒºñÀÚ ÀüÀÚ ÀåÄ¡¿¡ ÇʼöÀûÀÎ SDR ±â¼úÀÇ º¹À⼺À» ±Øº¹ÇÏ´Â µ¥ ÇʼöÀûÀÎ ±âº» ¿ä¼ÒÀÔ´Ï´Ù.

¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ¹«¼± ½ÃÀåÀ» °ßÀÎÇÏ´Â ¿äÀÎÀº ´ÙÀ½°ú °°½À´Ï´Ù.

1. ±â¼ú Áøº¸ : µðÁöÅÐ ½ÅÈ£ ó¸® ¹× ¸¶ÀÌÅ©·Î ÀÏ·ºÆ®·Î´Ð½º ±â¼ú ½ÃÀå °³Ã´ÀÌ SDR ½ÃÀåÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. Çϵå¿þ¾î, º¸´Ù ºü¸¥ ÇÁ·Î¼¼¼­, º¸´Ù È¿°úÀûÀÎ ¾Æ³¯·Î±×-µðÁöÅÐ º¯È¯±â °³¹ß·Î SDR ½Ã½ºÅÛÀÇ ¼º´É°ú ¼º´ÉÀÌ Çâ»óµÇ¾ú½À´Ï´Ù. ±×·¯¹Ç·Î ´É·Â Çâ»óÀº ½ÅÈ£ ¼ö½ÅÀÇ ¸í·á¼º Çâ»ó, Á֯ļö ¹Îø¼º Çâ»ó ¶Ç´Â Åë½Å ¼Ö·ç¼ÇÀÇ ´Ù¾çÈ­¿Í °ü·ÃÀÌ ÀÖÀ¸¸ç, ±âŸ ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ SDR ±â¼úÀÇ ¹üÀ§°¡ ³Ð¾îÁý´Ï´Ù.

2. À¯¿¬ÇÑ Åë½Å ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡ : Çö´ë ¿ëµµ ºÐ¾ß¿¡¼­´Â ¸ðµç Åë½Å ÇüÅÂ¿Í Á֯ļö¸¦ ½±°Ô äÅÃÇÒ ¼ö ÀÖ´Â ½Ã½ºÅÛÀ» »ç¿ëÇØ¾ß Çϸç SDR¿¡ ´ëÇÑ ¼ö¿ä´Â ³ô½À´Ï´Ù. SDR ±â¼úÀº Åë½Å ¹× Á֯ļö¿¡ ´ëÇØ ¼­·Î ´Ù¸¥ Ç¥ÁØÀ» °¡´ÉÇÏ°Ô Çϱ⠶§¹®¿¡ ¿ªµ¿¼º°ú È®À强ÀÌ ¿ä±¸µÇ´Â ºÐ¾ß¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. ƯÈ÷ ¹æÀ§, IT ¹× Åë½Å, ±ä±Þ ¼­ºñ½º¿¡ À־´Â ±× À¯¿¬¼ºÀ¸·ÎºÎÅÍ ÃÖ¼ÒÇÑÀÇ ºÒÆíÇÔ°ú ºóµµ·Î À籸¼º °¡´ÉÇÑ SDR ½Ã½ºÅÛÀÌ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù.

3. ¹æÀ§ ¹× º¸¾È¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡ : SDR ½ÃÀåÀ» °ßÀÎÇÏ´Â ¿äÀÎÀ¸·Î´Â ¹æÀ§ ¹× º¸¾È ºÐ¾ß¿¡ ´ëÇÑ ¸·´ëÇÑ ÅõÀÚ°¡ ÀÖ½À´Ï´Ù. ¾ÈÀü¼º, ½Å·Ú¼º ¹× »óÈ£ ¿î¿ë¼ºÀ» °®Ãá °í±Þ Åë½Å ½Ã½ºÅÛÀº ¹æÀ§ ±â°ü°ú Á¤ºÎ·ÎºÎÅÍ ³ôÀº ¼ö¿ä°¡ ÀÖ½À´Ï´Ù. SDR ±â¼úÀº ¶Ù¾î³­ ¼º´É°ú ÅëÇÕ ´É·ÂÀ» Á¦°øÇϱâ À§ÇØ ±º¿ë Åë½Å, ÀüÀÚÀü, øº¸ Ȱµ¿¿¡¼­ ÁÖ¿ä ÀÚ»êÀ¸·Î °£ÁֵǾî ÀÌ ºÐ¾ßÀÇ ¼ºÀåÀ» °ßÀÎÇϰí ÀÖ½À´Ï´Ù.

¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ¹«¼± ½ÃÀåÀÇ °úÁ¦´Â ´ÙÀ½°ú °°½À´Ï´Ù.

1. ³ôÀº °³¹ß ºñ¿ë : Çϵå¿þ¾î¿Í ¼ÒÇÁÆ®¿þ¾î¸¦ °íµµ·Î ÅëÇÕÇϱ⠶§¹®¿¡ SDR °³¹ß ¹× Àü°³ ºñ¿ëÀÌ ³ô½À´Ï´Ù. µû¶ó¼­ SDRÀÇ °³¹ß ¹× Àü°³ ºñ¿ëÀÌ ³ôÀº °ÍÀÌ ¼Ò±Ô¸ð ±â¾÷ÀÇ ÁøÀÔ À庮ÀÌ µÇ¾î SDR ¼Ö·ç¼ÇÀÇ Æø³ÐÀº º¸±ÞÀ» ¹æÇØÇϰí ÀÖ½À´Ï´Ù. °í±Þ ±â´ÉÀ» Á¦°øÇϸ鼭 ÀÌ·¯ÇÑ ºñ¿ëÀ» °ü¸®ÇÏ´Â °ÍÀº ½ÃÀå¿¡¼­ »ó´çÇÑ °úÁ¦ÀÔ´Ï´Ù.

2. À̰ÍÀº ±ÔÁ¦ ¹× ¶óÀ̼±½Ì ¹®Á¦¿Í °¡Àå °ü·ÃÀÌ ÀÖÀ¸¸ç, SDR ½Ã½ºÅÛÀÌ Á¸ÀçÇÏ´Â º¹ÀâÇÑ ±ÔÁ¦ ȯ°æ¿¡¼­ ±¸ºÎ·¯Áø ³×ºñ°ÔÀÌ¼Ç ÇÁ·Î¼¼½ºÀÇ ÀϺÎÀÔ´Ï´Ù. Á֯ļö ´ë¿ªÀÇ »ç¿ë, Åë½Å Ç¥ÁØ, ½ÉÁö¾î ¶óÀ̼±½Ì¿¡ °üÇÑ ±ÔÁ¤Àº À§Ä¡¿¡ µû¶ó »ó´çÈ÷ ´Ù¸¨´Ï´Ù. ÀÌ·¯ÇÑ ±ÔÁ¦ÀÇ ´ëºÎºÐÀº ½ÃÀå ÁøÀÔ, ¿î¿µ À¯¿¬¼º ¹× ¼¼°è¿¡ SDR ½Ã½ºÅÛÀ» ¹èÆ÷ÇÏ´Â ´É·Â¿¡ Å« ¿µÇâÀ» ¹ÌĨ´Ï´Ù.

3. µû¶ó¼­ º¸¾È ¹®Á¦´Â SDR ½Ã½ºÅÛÀÇ º¸¾È°ú °ü·ÃµÈ Áß¿äÇÑ °úÁ¦ Áß ÇϳªÀÔ´Ï´Ù. SDR ±â¼úÀÇ º¸±Þ¿¡ µû¶ó ´Ù¾çÇÑ À¯ÇüÀÇ »çÀ̹ö À§Çù¿¡ ´ëÇÑ ½Äº°µÈ ¾àÁ¡À» ÇØ°áÇϱâ À§ÇØ º¸´Ù Àû±ØÀûÀÎ Á¶Ä¡°¡ ÃëÇØÁ®¾ß ÇÕ´Ï´Ù. ÀÌ¿Í °ü·ÃÇÏ¿© SDRÀ» Æ÷ÇÔÇÑ ¿ëµµÀÇ ½Å·Ú¼º°ú ½Å·Ú¼ºÀ» À¯ÁöÇϱâ À§ÇØ Åë½Å ½Ã½ºÅÛ°ú µ¥ÀÌÅÍ ¹«°á¼ºÀÌ ¼Õ»óµÇÁö ¾Êµµ·Ï ½É°¢ÇÑ º¸¾È Á¶Ä¡°¡ ÃëÇØÁ®¾ß ÇÕ´Ï´Ù.

SDR ½ÃÀåÀÇ ¿øµ¿·ÂÀº ½Å±â¼ú, À¯¿¬ÇÑ Åë½Å ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, ¹æÀ§¿¡ ´ëÇÑ ¾öû³­ ÅõÀÚ, ¹«¼± ³×Æ®¿öÅ© È®´ë, IoT ±â¹Ý ¿ëµµ ¼ºÀå µîÀÔ´Ï´Ù. ±×·¯³ª ÀÌ·¯ÇÑ °³¹ß¿¡´Â ³ôÀº °³¹ß ºñ¿ë, ±ÔÁ¦ º¹À⼺ ¹× º¸¾È ¹®Á¦¿Í °°Àº ¹®Á¦°¡ ¼ö¹ÝµË´Ï´Ù. ½ÃÀå ¼ºÀå ÃËÁø¿äÀΰú °úÁ¦ÀÇ ÀûÀýÇÑ ±ÕÇüÀº SDR ½ÃÀåÀÇ ¼ºÀå°ú Çõ½ÅÀ» Áö¼Ó½ÃŰ´Â ¿­¼èÀ̸ç, ÀÌ ±â¼úÀ» Ç×»ó ÁøÈ­ÇÏ´Â Åë½Å ¿ä±¸¿¡ °è¼Ó ´ëÀÀ½Ãŵ´Ï´Ù.

ºÎ¹®º° ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ¹«¼±

ÀÌ ¼³¹®Á¶»ç¿¡´Â ¼¼°è ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ¹«¼±ÀÇ ÄÄÆ÷³ÍÆ®º°, À¯Çüº°, Á֯ļöº°, ¿ëµµº° ¹× Áö¿ªº° ¿¹ÃøÀÌ Æ÷ÇԵ˴ϴÙ.

¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ¹«¼± ½ÃÀåÀÇ ±¹°¡ Àü¸Á

SDR ½ÃÀåÀº °³¹ß µµ»ó ´Ü°è¿¡ ÀÖÁö¸¸, µðÁöÅÐ ½ÅÈ£ ó¸®ÀÇ Áøº¸, À¯¿¬Çϰí ÇÁ·Î±×·¡¹Ö °¡´ÉÇÑ Åë½Å ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, ¹æÀ§, Åë½Å, °ø°ø ¾ÈÀü°ú °°Àº ¿ëµµÀÇ ¼ºÀåÀ¸·Î ºü¸£°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. SDR ±â¼úÀº ±âÁ¸ Çϵå¿þ¾î°¡ Ãë±ÞÇϰí ÀÖ´ø ¹«¼± ±â´ÉÀ» ¼ÒÇÁÆ®¿þ¾î·Î °ü¸®ÇÔÀ¸·Î½á Åë½Å ¼Ö·ç¼ÇÀÇ ÀûÀÀ¼º°ú È¿À²¼ºÀ» ´ëÆø Çâ»ó½Ãŵ´Ï´Ù.

  • ¹Ì±¹ : ¹Ì±¹Àº SDR ±â¼ú °³¹ßÀÇ ¼±±¸ÀÚ Áß ÇϳªÀÌ¸ç ±º»ç¿Í »ó¾÷ ºÐ¾ß¿¡¼­ ¸·´ëÇÑ ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. Ãֽа³¹ß¿¡´Â ½ÅÈ£ ó¸® °³¼±°ú ´õ ³ªÀº ½ºÆåÆ®·³ °ü¸®¸¦ À§ÇÑ AI ÅëÇÕÀÌ Æ÷ÇԵ˴ϴÙ. ¹Ì±¹ ±¹¹æºÎ´Â SDRÀÌ Á¦°øÇÏ´Â ÀÌÁ¡À» Ȱ¿ëÇÏ¿© Åë½Å ½Ã½ºÅÛÀÇ ¹ü¿ë¼ºÀ» ³ôÀÌ´Â ¹Ý¸é, ºñ°ø°³ ȸ»ç´Â SDR Á¦Ç°ÀÇ »ó¾÷ ¼öÁØ¿¡¼­ Çõ½ÅÀ» ÃßÁøÇϰí ÀÖ½À´Ï´Ù.
  • Áß±¹ : Áß±¹¿¡¼­´Â Åë½Å ÀÎÇÁ¶ó¿Í ±ºÀÇ ¹ßÀü°ú ÇÔ²² SDR ½ÃÀåÀÌ ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ÃÖ±ÙÀÇ µ¿ÇâÀ¸·Î´Â 5G SDR ½Ã½ºÅÛÀÇ ¼³°è°¡ ÁøÇà ÁßÀ̸ç, SDR ÄÄÆ÷³ÍÆ®´Â ÇØ¿Ü ÀÇÁ¸¼ºÀ» ÁÙÀ̱â À§ÇØ ±¹³» »ý»êÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. Áß±¹Àº ¹æÀ§ ¹× Åë½Å ¼ö¿ä Áõ°¡·Î SDR °ü·Ã ¿¬±¸¿¡ ´ëÇÑ ÅõÀÚ°¡ Ȱ¹ßÇÕ´Ï´Ù.
  • µ¶ÀÏ : µ¶ÀÏÀÇ SDR ½ÃÀåÀº ¹æÀ§¿Í »ó¾÷ ºÐ¾ß¿¡¼­ °³¼±µÇ°í ÀÖ½À´Ï´Ù. µ¶ÀÏ¿¡¼­ ÁøÇàµÇ´Â °³¹ß¿¡´Â °ø°ø ¾ÈÀü Åë½Å¿¡ ´ëÇÑ SDR ÅëÇÕ°ú ´Ù¸¥ Åë½Å ½Ã½ºÅÛ¿¡¼­ÀÇ »óÈ£ ¿î¿ë¼º Çâ»óÀÌ Æ÷ÇԵ˴ϴÙ. µ¶ÀÏÀº ½º¸¶Æ® ±×¸®µå ¿ëµµ ¹× »ê¾÷ ÀÚµ¿È­¸¦ À§ÇÑ SDR ¼Ö·ç¼Ç¿¡µµ ÁÖ·ÂÇϰí ÀÖ½À´Ï´Ù.
  • Àεµ : Àεµ¿¡¼­´Â ¹æÀ§ ºÎ¹®ÀÇ Çö´ëÈ­¿Í Åë½ÅÀÇ ±Þ¼ÓÇÑ ¹ßÀüÀ¸·Î SDRÀÇ µµÀÔÀÌ ±Þ¼ÓÈ÷ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. ¿©±â¿¡´Â ±º¿ë Åë½ÅÀ» À§ÇÑ SDR ½Ã½ºÅÛÀÇ ¹èÆ÷¿Í ¸ð¹ÙÀÏ ³×Æ®¿öÅ©¿¡ ´ëÇÑ SDR ±â¼úÀÇ ÅëÇÕÀÌ Æ÷ÇԵ˴ϴÙ. Àεµ Á¤ºÎ´Â ÇöÀç ±¹°¡ ´É·ÂÀ» ±¸ÃàÇϱâ À§ÇØ SDR ±¸¼º ¿ä¼ÒÀÇ ±¹»êÈ­¿Í Á¦Á¶¸¦ Áß½ÃÇϰí ÀÖ½À´Ï´Ù.
  • ÀϺ» : ÀϺ»ÀÇ SDR ½ÃÀå Æ¯Â¡Àº °íÁÖÆÄ SDR ½Ã½ºÅÛÀÇ °³Ã´°ú »ó¿ë¿¡¼­ ¹æÀ§ ºÐ¾ß±îÁö Æø³ÐÀº ¿ëµµÀÔ´Ï´Ù. ÃÖ±Ù¿¡´Â ÀçÇØ ´ëÀÀÀÇ »êÇÏ¿¡ ÀÖ´Â ½ÅÈ£ 󸮳ª, ½º¸¶Æ® ½ÃƼ ±¸»ó¿¡ À־ÀÇ SDR ±â¼úÀÇ ÅëÇÕÇÏ¿¡ °³¹ßÀÌ ÇàÇØÁö°í ÀÖ½À´Ï´Ù. ÀϺ»µµ Â÷¼¼´ë ¹«¼±Åë½Å ½Ã½ºÅÛ¿¡ SDR ¼Ö·ç¼ÇÀ» äÅÃÇϰí ÀÖ½À´Ï´Ù.

ÀÚÁÖ ¹¯´Â Áú¹®

Q1. ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ¹«¼± ½ÃÀå ±Ô¸ð´Â?

A1. ¼¼°èÀÇ ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ¹«¼± ½ÃÀåÀº 2030³â±îÁö ÃßÁ¤ 152¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

Q2. ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ¹«¼± ½ÃÀåÀÇ ¼ºÀå ¿¹ÃøÀº?

A2. ¼¼°èÀÇ ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ¹«¼± ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö 6.0%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

Q.3 ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ¹«¼± ½ÃÀåÀÇ ¼ºÀå¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â ÁÖ¿ä ÃËÁø¿äÀÎÀº ¹«¾ùÀΰ¡?

A3. ÀÌ ½ÃÀåÀÇ ÁÖ¿ä ÃËÁø¿äÀÎÀº SDRÀÇ ÅÚ·¹Æ÷´Ï¿¡ ´ëÇÑ ¼ö¿ë È®´ë, Â÷¼¼´ë IP ½Ã½ºÅÛ¿¡ ´ëÇÑ °ü½É Áõ°¡, ¹æÀ§ Åë½Å ³×Æ®¿öÅ©ÀÇ Çö´ëÈ­¸¦ À§ÇÑ ±º»ç ¿¹»ê Áõ°¡ÀÔ´Ï´Ù.

Q4. ½ÃÀåÀÇ ÁÖ¿ä ºÎ¹®Àº :

A4. ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ¹«¼± ½ÃÀåÀÇ ¹Ì·¡´Â Ç×°ø¿ìÁÖ ¹× ¹æÀ§, Åë½Å, °ø°ø ¾ÈÀü ¹× »ó¾÷ ½ÃÀå¿¡¼­ÀÇ ±âȸ¿¡ ÀÇÇØ À¯¸Á½ÃµÇ°í ÀÖ½À´Ï´Ù.

Q5. ½ÃÀåÀÇ ÁÖ¿ä ±â¾÷Àº :

A5. ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ¹«¼± ½ÃÀå ÁÖ¿ä ±â¾÷Àº ´ÙÀ½°ú °°½À´Ï´Ù:

  • Collins Aerospace Systems
  • Harris Corporation
  • Elbit Systems
  • L3 Technologies
  • BAE Systems
  • Huawei Technologies
  • Datasoft Corporation
  • Raytheon Company
  • Northrop Grumman Corporation

Q6. ÇâÈÄ °¡Àå Å« ½ÃÀå ºÎ¹®Àº :

A6. LucintelÀº ÈÞ´ë¿ë SDRÀÇ º¸±Þ°ú µðÁöÅÐ ¹× ¾Æ³¯·Î±× ±â¼úÀ» ´ÜÀÏ Ä¨¿¡ ÅëÇÕÇÔÀ¸·Î½á ¿¹Ãø ±â°£ µ¿¾È ¼­ºñ½º°¡ °¡Àå ³ôÀº ¼ºÀåÀ» ÀÌ·ê °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

Q7. ½ÃÀå¿¡¼­ ÇâÈÄ 5³â°£ ÃÖ´ë°¡ µÉ °ÍÀ¸·Î ¿¹»óµÇ´Â Áö¿ªÀº:

A7. APACÀº ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº ¼ºÀåÀÌ ¿¹»óµË´Ï´Ù.

Q8. º¸°í¼­ »ç¿ëÀÚ Á¤ÀÇ´Â °¡´ÉÇѰ¡?

A8. ±×·¸½À´Ï´Ù, Lucintel´Â Ãß°¡ ºñ¿ë ¾øÀÌ 10% ÁÖ¹®À» ¹Þ¾Æ¼­ ¸¸µé¾îÁý´Ï´Ù.

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼¼°èÀÇ ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ¹«¼± ½ÃÀå : ½ÃÀå ¿ªÇÐ

  • ¼­¹®, ¹è°æ ¹× ºÐ·ù
  • °ø±Þ¸Á
  • ¾÷°èÀÇ ÃËÁø¿äÀÎ ¹× °úÁ¦

Á¦3Àå ½ÃÀå µ¿Çâ ¹× ¿¹Ãø ºÐ¼®(2018-2030³â)

  • °Å½Ã°æÁ¦ µ¿Çâ(2018-2023³â)°ú ¿¹Ãø(2024-2030³â)
  • ¼¼°èÀÇ ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ¹«¼± ½ÃÀå µ¿Çâ(2018-2023³â)°ú ¿¹Ãø(2024-2030³â)
  • ¼¼°èÀÇ ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ¹«¼± ½ÃÀå : ÄÄÆ÷³ÍÆ®º°
    • Çϵå¿þ¾î
    • ¼ÒÇÁÆ®¿þ¾î
    • ¼­ºñ½º
  • ¼¼°èÀÇ ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ¹«¼± ½ÃÀå : À¯Çüº°
    • ¹ü¿ë ¹«¼±±â
    • ÅëÇÕ Àü¼ú ¹«¼± ½Ã½ºÅÛ(JTRS)
    • ÀÎÁö ¹× ÀÎÅÚ¸®ÀüÆ®¶óµð¿À
    • Áö»ó Æ®··Å© ¹«¼±(TETRA)
  • ¼¼°èÀÇ ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ¹«¼± ½ÃÀå : Á֯ļöº°
    • HF ¹êµå
    • VHF ¹êµå
    • UHF ¹êµå
    • ±âŸ
  • ¼¼°èÀÇ ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ¹«¼± ½ÃÀå : ¿ëµµº°
    • Ç×°ø¿ìÁÖ ¹× ¹æÀ§
    • Åë½Å
    • °ø¾È
    • »ó¾÷
    • ±âŸ

Á¦4Àå ½ÃÀå µ¿Çâ ¹× ¿¹Ãø ºÐ¼® : Áö¿ªº°(2018-2023³â)

  • Áö¿ªº° ¼¼°èÀÇ ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ¹«¼± ½ÃÀå
  • ºÏ¹ÌÀÇ ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ¹«¼± ½ÃÀå
  • À¯·´ÀÇ ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ¹«¼± ½ÃÀå
  • ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ¹«¼± ½ÃÀå
  • ±âŸ Áö¿ªÀÇ ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ¹«¼± ½ÃÀå

Á¦5Àå °æÀï ºÐ¼®

  • Á¦Ç° Æ÷Æ®Æú¸®¿À ºÐ¼®
  • ¿î¿µ ÅëÇÕ
  • Porter's Five Forces ºÐ¼®

Á¦6Àå ¼ºÀå ±âȸ ¹× Àü·« ºÐ¼®

  • ¼ºÀå ±âȸ ºÐ¼®
    • ÄÄÆ÷³ÍÆ®º° ¼¼°è ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ¹«¼± ½ÃÀåÀÇ ¼ºÀå ±âȸ
    • À¯Çüº° ¼¼°è ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ¹«¼± ½ÃÀåÀÇ ¼ºÀå ±âȸ
    • Á֯ļöº° ¼¼°è ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ¹«¼± ½ÃÀåÀÇ ¼ºÀå ±âȸ
    • ¿ëµµº° ¼¼°è ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ¹«¼± ½ÃÀåÀÇ ¼ºÀå ±âȸ
    • Áö¿ªº° ¼¼°è ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ¹«¼± ½ÃÀåÀÇ ¼ºÀå ±âȸ
  • ¼¼°è ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ¹«¼± ½ÃÀåÀÇ »õ·Î¿î µ¿Çâ
  • Àü·« ºÐ¼®
    • ½ÅÁ¦Ç° °³¹ß
    • ¼¼°è ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ¹«¼± ½ÃÀåÀÇ ¿ë·® È®´ë
    • ¼¼°è ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ¹«¼± ½ÃÀåÀÇ ÇÕº´, Àμö ¹× ÇÕÀÛ »ç¾÷
    • ÀÎÁõ ¹× ¶óÀ̼±½Ì

Á¦7Àå ÁÖ¿ä ±â¾÷ÀÇ ±â¾÷ ÇÁ·ÎÆÄÀÏ

  • Collins Aerospace Systems
  • Harris Corporation
  • Elbit Systems
  • L3 Technologies
  • BAE Systems
  • Huawei Technologies
  • Datasoft Corporation
  • Raytheon Company
  • Northrop Grumman Corporation
AJY 24.10.17

Software Defined Radio Trends and Forecast

The future of the global software defined radio market looks promising with opportunities in the aerospace & defense, telecommunication, public safety, and commercial markets. The global software defined radio market is expected to reach an estimated $15.2 billion by 2030 with a CAGR of 6.0% from 2024 to 2030. The major drivers for this market are increasing telephony acceptance of SDRs and rising interest in next-generation IP systems and military budget increase to modernize defense communication networks.

Lucintel forecasts that service is expected to witness highest growth over the forecast period due to increasing acceptance of portable SDRs and combining of digital and analog technologies onto a single chip drives

APAC is expected to witness highest growth over the forecast period due to better information exchange and safe collaboration are made possible by law enforcement's need for enhanced communication during natural catastrophes.

Emerging Trends in the Software Defined Radio Market

Some of the key trends in the SDR market are driven by changes in technology and industry needs, including emerging trends that shape the way SDR systems are designed and deployed.

  • Integration with 5G Networks: SDR finds its place increasingly in the integration with 5G networks to provide flexibility and efficiency in wireless communication. This trend enables dynamic management of spectrum access and opens up possibilities for various 5G use cases. Indeed, SDR technology contributes much to meeting the challenges of evolving 5G standards and network performance.
  • AI and Machine Learning for Signal Processing: The utilization of AI and machine learning in SDR systems is skyrocketing in functionality, especially in the signal processing area. These technologies enable more efficient spectrum management, better clarity of signals, and interference mitigation. AI-driven SDR systems can adapt and morph in real time with changing requirements and environments of the signal being received.
  • Security Features: Due to its growing usage, much attention is being diverted toward incorporating advanced security features in SDR. The new trend of encryption and secure protocols for communications is in vogue, catering to the securing of systems from cyber threats. Enhanced security will be required for applications related to defense, public safety, and critical infrastructure.
  • Increased Utilization in IoT Applications: The adaptability of SDR technology has encouraged IoT applications. This is because SDR ensures in IoT that there is good communication among the devices and multiple networks using different protocols and frequency; hence, it ensures scalability. The trend is encouraging innovation into smart cities and industrial IoT solutions.
  • Miniaturization and Integration: There is a trend of miniaturization in SDR components and integration into compact systems. This development makes the deployment of SDR possible on more compact and portable devices and applications. Miniaturization helps in the advancement of mobile communications and wearable technologies.

These trends emerging in SDRs will remain important factors that could raise flexibility, security, and the range of applications. In addition, it will be combined with 5G, AI in operation, security, and IoT to shape the future of SDR. Further into the future, these trends will continue to expand the capabilities and applications of SDR systems in a wide variety of industries.

Recent Developments in the Software Defined Radio Market

Recent developments in the SDR market are indicative of the development of technologies and increased use across various industries.

  • Advanced Signal Processing Algorithms: New signal processing algorithms are really improving the performance of SDR systems. These advances improve signal clarity, reduce interference, and lead to better spectrum management. Enhanced algorithms support more reliable and efficient communication in all sorts of applications.
  • Next-generation network integration: SDR systems are integrated with next-generation networks, such as 5G and above. It supports flexible and adaptive communication solutions, hence it allows dynamic allocation of the radio frequency spectrum along with improved network performance. In other words, the synergy of SDR with advanced networks drives the market growth.
  • Amateur SDR platforms have become extremely popular due to the low cost and customizability of the technology developed on them. The key to such innovation with SDR is the ability to change and develop SDR systems toward specific needs. Open-source projects inspire collaboration, increasing the speed of technological development.
  • Series of SDposium: It has been said that one of the top factors for their growth is the use of SDRs in applications-from a simple shortwave radio to an advanced personal communication system. Growth into emerging markets in the future is expected to be increasingly demanding of more sophisticated communication technologies. Indeed, more regions, such as Southeast Asia and Latin America, have increasingly adopted SDR systems for various purposes: defense, telecommunications, and public safety. Such expansion is one of the drivers of global market growth.
  • Higher Mobility and Portability: SDR can support applications in highly dynamic environments. They will become even more mobile and portable; enhanced miniaturization and integration enable its use in handheld and wearable devices. Further mobility will extend the realms of SDR application into rather specialized areas like emergency response and field communications.

Coupled with improved signal processing, advanced network integration, and geographical expansion, these recent developments are reshaping the structure of the SDR market. Innovations also pervade the forefront of open-source platforms, with much concentration on making systems highly portable and mobile. While these developments abound, so will the advances in SDR technology and its applications across sectors.

Strategic Growth Opportunities for Software Defined Radio Market

While various key applications continue presenting new opportunities for growth in the SDR market, interested companies can position themselves with emerging trends and ever-expanding demands.

  • Defense and Military Applications: Due to its potential for flexibility and adaptability, large potentialities are open to SDR technology in the field of defense and military applications. Increased communication capabilities, transmission security, and interoperability make SDR an ideal solution for modern defense systems. Important fields of investment regarding modern SDR solutions are tactical communication and electronic warfare.
  • Public Safety and Emergency Services: SDR systems are finding their applications in the public safety and emergency services domain, which demands truly reliable and versatile communication. This opens up SDR opportunities in disaster responses, first responder coordination, and emergency management. Improved signal clarity and multi-band communication capabilities support effective emergency operations.
  • Telecommunication Infrastructure: SDR is revolutionizing the telecommunications infrastructure through the dynamic management of radio spectrums and multiple communication standards that it offers. A number of opportunities lie in upgrading existing networks and deploying SDR systems for 5G and further generations of wireless technology. Flexibility provided by SDR helps optimize network performance and capacity.
  • IoT: The IoT segment offers a very promising future for SDR, which can support several communication protocols and frequencies. It will enable the right and scalable way of IoT devices and applications for smart cities, industrial automation, and connected devices, thus driving innovation and market expansion.
  • Commercial and Consumer Electronics: SDR technology finds its way into commercial and consumer electronics, including smartphones and wearables. Opportunities are foreseen with the integration of mobile phones for new advanced capabilities given by SDR; it also opens up new applications. The trend toward miniaturization and increased functionality propels growth in this segment.

These emerging growth opportunities are shaping the SDR market, extending application areas in defense, public safety, telecommunications, IoT, and consumer electronics. Companies that are focused on such segments will have manifold opportunities to realize not only the versatility of SDR but also the adaptability that drives innovation and captures new market segments.

Software Defined Radio Market Driver and Challenges

It emerges from a blend of drivers and challenges, which span technological, economic, and regulatory domains. Technological advancements, economic investment, and regulatory changes have strong influences on market dynamics. These are the basic factors that are essential in navigation through the complexities of SDR technology, which has become indispensable in modern communication systems, defense applications, and consumer electronics.

The factors responsible for driving the software defined radio market include:

1. Technological Advancements: Development in the field of digital signal processing and microelectronic technology propels the SDR market. The development of hardware, faster processors, and more effective analog-to-digital converters increases the capability and performance of SDR systems. Thus, enhanced capacity pertains to better clarity in signal reception, increased frequency agility, or diversified communications solutions, thereby broadening the scope of SDR technology in various fields.

2. Increasing demand for flexible communication systems: Modern applications require the use of systems that can easily adopt any form of communication as well as frequencies, thus high demand for SDR. SDR technology enables different standards for communications and frequency; therefore, it is the best in an area where dynamism and scalability are needed. Its flexibility, especially in defense, telecommunication, and emergency services, demands SDR systems, which can be reconfigured with minimum inconvenience and frequency.

3. Increased investment in defense and security: Some of the factors that drive the SDR market include huge investments in the sectors of defense and security. Advanced communication systems that can offer operations that are secure, reliable, and interoperable are in high demand by defense organizations and governments. Since SDR technology offers better performance and integration capability, it is thus considered a major asset in military communications, electronic warfare, and intelligence operations that drive growth in this segment.

Challenges in the software defined radio market are:

1. High Development Costs: SDR's development and deployment cost is high because of the sophisticated integration of hardware and software. It therefore becomes a barrier to entry by small companies due to the high cost in development and deployment, hence hindering the wide diffusion of SDR solutions. Management of such costs with delivery of advanced features remains quite a challenge for the market.

2. This is most relevant to regulatory and licensing issues, which are part and parcel of the tortuous navigation process in the complex regulatory environment wherein SDR systems exist. Regulations regarding spectrum usage, standards of communication, and even licensing vary considerably depending on location. Most of these regulations impinge heavily on market entry, operational flexibility, and the ability to deploy SDR systems across the world.

3. The security problem is thus one of the key challenges regarding the security of SDR systems. Along with the popularization of SDR technology, more active measures shall be taken to address identified weaknesses against various kinds of cyber threats. In this respect, serious security measures should be undertaken so as not to let the communication systems and integrity of the data be compromised for retaining trust and dependability in the applications involving SDR.

The SDR market is driven by the following factors: emerging technology, increasing demand for flexible communication systems, significant investment in defense, expansion of wireless networks, and growth of IoT-based applications. However, these developments have challenges associated with them, like high development cost, regulatory complications, and security concerns. A proper balance between drivers and challenges acts as a key to sustainability for growth and innovation in the SDR market and keeps this technology relevant to ever-evolving communication needs.

List of Software Defined Radio Companies

Companies in the market compete on the basis of product quality offered. Major players in this market focus on expanding their manufacturing facilities, R&D investments, infrastructural development, and leverage integration opportunities across the value chain. Through these strategies software defined radio companies cater increasing demand, ensure competitive effectiveness, develop innovative products & technologies, reduce production costs, and expand their customer base. Some of the software defined radio companies profiled in this report include-

  • Collins Aerospace Systems
  • Harris Corporation
  • Elbit Systems
  • L3 Technologies
  • BAE Systems
  • Huawei Technologies
  • Datasoft Corporation
  • Raytheon Company
  • Northrop Grumman Corporation

Software Defined Radio by Segment

The study includes a forecast for the global software defined radio by component, type, frequency, application, and region.

Software Defined Radio Market by Component [Analysis by Value from 2018 to 2030]:

  • Hardware
  • Software
  • Service

Software Defined Radio Market by Type [Analysis by Value from 2018 to 2030]:

  • General Purpose Radio
  • Joint Tactical Radio System (JTRS)
  • Cognitive/intelligent Radio
  • Terrestrial Trunked Radio (TETRA)

Software Defined Radio Market by Frequency [Analysis by Value from 2018 to 2030]:

  • HF Band
  • VHF Band
  • UHF Band
  • Others

Software Defined Radio Market by Application [Analysis by Value from 2018 to 2030]:

  • Aerospace & Defense
  • Telecommunication
  • Public Safety
  • Commercial
  • Others

Software Defined Radio Market by Region [Analysis by Value from 2018 to 2030]:

  • North America
  • Europe
  • Asia Pacific
  • The Rest of the World

Country Wise Outlook for the Software Defined Radio Market

The SDR market is at a nascent stage of development and is growing rapidly due to advances in digital signal processing, increasing demand for flexible and programmable communication systems, and the growth of applications such as defense, telecommunications, and public safety. SDR technology makes communications solutions much more adaptable and effective, using software to manage radio functions traditionally handled by hardware.

  • United States: It is one of the forerunners in the development of SDR technologies with enormous investments both in military and commercial sectors. Its latest development includes improvement in signal processing and integration of AI for better spectrum management. The U.S. Department of Defense is taking advantage of the benefits provided by SDR to make communication systems more versatile, while private sector companies are pushing innovation at the commercial level in SDR products.
  • China: In China, the SDR market is growing with the development of communication infrastructure and the military. Recent developments are that 5G SDR systems are in the process of designing, and SDR components are being produced more in-country to reduce foreign dependence. China is highly investing in research related to SDR due to its increasing demand for defense and telecommunication.
  • Germany: Germany's SDR market is improving both in the defense and commercial sectors. Developments taking place in Germany include the integration of SDR into public safety communications and improvements in interoperability in different communication systems. Germany also focuses on SDR solutions for smart grid applications and industrial automation.
  • India: The SDRs are fast getting adopted in India due to the modernization of the defense sector and rapid developments taking place in telecommunication. This includes the deployment of SDR systems for military communications and the integration of SDR technology into mobile networks. The Indian government is now emphasizing indigenization and manufacturing of SDR components to build national capability.
  • Japan: The Japanese SDR market is characterized by developments in high-frequency SDR systems and applications that range from commercial to defense sectors. Development has of late been present in signal processing falling under the umbrella of disaster response or under integration of SDR technology in smart city initiatives. Japan is also looking to employ SDR solutions for next-generation wireless communication systems.

Features of the Global Software Defined Radio Market

Market Size Estimates: Software defined radio market size estimation in terms of value ($B).

Trend and Forecast Analysis: Market trends (2018 to 2023) and forecast (2024 to 2030) by various segments and regions.

Segmentation Analysis: Software defined radio market by various segments, such as by component, type, frequency, application and region in terms of($B).

Regional Analysis: Software defined radio market breakdown by North America, Europe, Asia Pacific, and Rest of the World.

Growth Opportunities: Analysis of growth opportunities in different, component, type, frequency, application, and regions for the software defined radio market.

Strategic Analysis: This includes M&A, new product development, and competitive landscape of the software defined radio market.

Analysis of competitive intensity of the industry based on Porter's Five Forces model.

If you are looking to expand your business in this market or adjacent markets, then contact us. We have done hundreds of strategic consulting projects in market entry, opportunity screening, due diligence, supply chain analysis, M & A, and more.

FAQ

Q.1 What is the software defined radio market size?

Answer: The global software defined radio market is expected to reach an estimated $15.2 billion by 2030.

Q.2 What is the growth forecast for software defined radio market?

Answer: The global software defined radio market is expected to grow with a cagr of 6.0% from 2024 to 2030.

Q.3 What are the major drivers influencing the growth of the software defined radio market?

Answer: The major drivers for this market are increasing telephony acceptance of SDRs and rising interest in next-generation IP systems and military budget increase to modernize defense communication networks.

Q4. What are the major segments for software defined radio market?

Answer: The future of the software defined radio market looks promising with opportunities in the aerospace & defense, telecommunication, public safety, and commercial markets.

Q5. Who are the key Software Defined Radio Market companies?

Answer: Some of the key software defined radio companies are as follows:

  • Collins Aerospace Systems
  • Harris Corporation
  • Elbit Systems
  • L3 Technologies
  • BAE Systems
  • Huawei Technologies
  • Datasoft Corporation
  • Raytheon Company
  • Northrop Grumman Corporation

Q6. Which software defined radio market segment will be the largest in future?

Answer: Lucintel forecasts that service is expected to witness highest growth over the forecast period due to increasing acceptance of portable SDRs and combining of digital and analog technologies onto a single chip drives.

Q7. In software defined radio market, which region is expected to be the largest in next 5 years?

Answer: APAC is expected to witness highest growth over the forecast period.

Q.8 Do we receive customization in this report?

Answer: Yes, Lucintel provides 10% customization without any additional cost.

This report answers following 11 key questions:

  • Q.1. What are some of the most promising, high-growth opportunities for the software defined radio market by component (hardware, software, and service), type (general purpose radio, joint tactical radio system (JTRS), cognitive/intelligent radio, and terrestrial trunked radio (TETRA)), frequency (HF band, VHF band, UHF band, and others), application (aerospace & defense, telecommunication, public safety, commercial, and others), and region (North America, Europe, Asia Pacific, and the Rest of the World)?
  • Q.2. Which segments will grow at a faster pace and why?
  • Q.3. Which region will grow at a faster pace and why?
  • Q.4. What are the key factors affecting market dynamics? What are the key challenges and business risks in this market?
  • Q.5. What are the business risks and competitive threats in this market?
  • Q.6. What are the emerging trends in this market and the reasons behind them?
  • Q.7. What are some of the changing demands of customers in the market?
  • Q.8. What are the new developments in the market? Which companies are leading these developments?
  • Q.9. Who are the major players in this market? What strategic initiatives are key players pursuing for business growth?
  • Q.10. What are some of the competing products in this market and how big of a threat do they pose for loss of market share by material or product substitution?
  • Q.11. What M&A activity has occurred in the last 5 years and what has its impact been on the industry?
  • Market Report

Table of Contents

1. Executive Summary

2. Global Software Defined Radio Market : Market Dynamics

  • 2.1: Introduction, Background, and Classifications
  • 2.2: Supply Chain
  • 2.3: Industry Drivers and Challenges

3. Market Trends and Forecast Analysis from 2018 to 2030

  • 3.1. Macroeconomic Trends (2018-2023) and Forecast (2024-2030)
  • 3.2. Global Software Defined Radio Market Trends (2018-2023) and Forecast (2024-2030)
  • 3.3: Global Software Defined Radio Market by Component
    • 3.3.1: Hardware
    • 3.3.2: Software
    • 3.3.3: Service
  • 3.4: Global Software Defined Radio Market by Type
    • 3.4.1: General Purpose Radio
    • 3.4.2: Joint Tactical Radio System (JTRS)
    • 3.4.3: Cognitive/intelligent Radio
    • 3.4.4: Terrestrial Trunked Radio (TETRA)
  • 3.5: Global Software Defined Radio Market by Frequency
    • 3.5.1: HF Band
    • 3.5.2: VHF Band
    • 3.5.3: UHF Band
    • 3.5.4: Others
  • 3.6: Global Software Defined Radio Market by Application
    • 3.6.1: Aerospace & Defense
    • 3.6.2: Telecommunication
    • 3.6.3: Public Safety
    • 3.6.4: Commercial
    • 3.6.5: Others

4. Market Trends and Forecast Analysis by Region from 2018 to 2030

  • 4.1: Global Software Defined Radio Market by Region
  • 4.2: North American Software Defined Radio Market
    • 4.2.1: North American Software Defined Radio Market by Component: Hardware, Software, and Service
    • 4.2.2: North American Software Defined Radio Market by Application: Aerospace & Defense, Telecommunication, Public Safety, Commercial, and Others
  • 4.3: European Software Defined Radio Market
    • 4.3.1: European Software Defined Radio Market by Component: Hardware, Software, and Service
    • 4.3.2: European Software Defined Radio Market by Application: Aerospace & Defense, Telecommunication, Public Safety, Commercial, and Others
  • 4.4: APAC Software Defined Radio Market
    • 4.4.1: APAC Software Defined Radio Market by Component: Hardware, Software, and Service
    • 4.4.2: APAC Software Defined Radio Market by Application: Aerospace & Defense, Telecommunication, Public Safety, Commercial, and Others
  • 4.5: ROW Software Defined Radio Market
    • 4.5.1: ROW Software Defined Radio Market by Component: Hardware, Software, and Service
    • 4.5.2: ROW Software Defined Radio Market by Application: Aerospace & Defense, Telecommunication, Public Safety, Commercial, and Others

5. Competitor Analysis

  • 5.1: Product Portfolio Analysis
  • 5.2: Operational Integration
  • 5.3: Porter's Five Forces Analysis

6. Growth Opportunities and Strategic Analysis

  • 6.1: Growth Opportunity Analysis
    • 6.1.1: Growth Opportunities for the Global Software Defined Radio Market by Component
    • 6.1.2: Growth Opportunities for the Global Software Defined Radio Market by Type
    • 6.1.3: Growth Opportunities for the Global Software Defined Radio Market by Frequency
    • 6.1.4: Growth Opportunities for the Global Software Defined Radio Market by Application
    • 6.1.5: Growth Opportunities for the Global Software Defined Radio Market by Region
  • 6.2: Emerging Trends in the Global Software Defined Radio Market
  • 6.3: Strategic Analysis
    • 6.3.1: New Product Development
    • 6.3.2: Capacity Expansion of the Global Software Defined Radio Market
    • 6.3.3: Mergers, Acquisitions, and Joint Ventures in the Global Software Defined Radio Market
    • 6.3.4: Certification and Licensing

7. Company Profiles of Leading Players

  • 7.1: Collins Aerospace Systems
  • 7.2: Harris Corporation
  • 7.3: Elbit Systems
  • 7.4: L3 Technologies
  • 7.5: BAE Systems
  • 7.6: Huawei Technologies
  • 7.7: Datasoft Corporation
  • 7.8: Raytheon Company
  • 7.9: Northrop Grumman Corporation
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦