시장보고서
상품코드
1879142

마이크로플레이트 분주 워크스테이션 시장 보고서 : 동향, 예측, 경쟁 분석(-2031년)

Microplate Pipetting Workstation Market Report: Trends, Forecast and Competitive Analysis to 2031

발행일: | 리서치사: Lucintel | 페이지 정보: 영문 150 Pages | 배송안내 : 3일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

세계 마이크로플레이트 분주 워크스테이션 시장은 대학, 연구기관, 임상 시장에서의 기회를 배경으로 미래가 기대되는 시장입니다. 마이크로플레이트 분주 워크스테이션 시장은 2025년부터 2031년까지 6.9%의 CAGR로 확대될 것으로 예상됩니다. 주요 성장 요인으로는 고처리량 테스트에 대한 수요 증가, 자동화 실험실 솔루션에 대한 수요 증가, 정밀 연구에 대한 관심 확대 등을 꼽을 수 있습니다.

  • Lucintel의 예측에 따르면, 유형별로는 예측 기간 동안 전자동 타입이 가장 높은 성장률을 보일 것으로 예상됩니다.
  • 용도별로는 연구기관 및 임상 분야가 더 높은 성장률을 보일 것으로 예상됩니다.
  • 지역별로는 아시아태평양(APAC)이 예측 기간 동안 가장 높은 성장률을 보일 것으로 예상됩니다.

마이크로플레이트 분주 워크스테이션 시장의 새로운 동향

마이크로플레이트 분주 워크스테이션 시장은 실험실 절차에 혁명을 가져올 수많은 주요 트렌드에 힘입어 빠르게 변화하고 있습니다. 이러한 추세는 단순한 자동화를 넘어 현대 연구 및 진단의 높은 요구 사항을 충족하는 지능적이고 통합적이며 적응력이 뛰어난 솔루션 설계로 발전하고 있습니다. 효율성, 정확성, 데이터 무결성에 대한 요구가 높아지면서 실험실의 기능과 프로젝트 수행 방식에 혁명을 일으키고 있습니다.

  • 인공지능(AI)과 머신러닝(ML)의 통합 : 주요 트렌드 중 하나는 워크스테이션 소프트웨어에 AI와 ML을 통합하는 것입니다. AI 알고리즘은 분주 프로토콜 최적화, 잠재적 오류 예측, 실시간 품질 관리 시행에 활용됩니다. 이를 통해 워크스테이션은 다양한 액체와 용도에 대응하고 정확도와 재현성을 향상시킵니다. ML은 시스템이 과거 실행 데이터로부터 학습할 수 있도록 하여 시간이 지남에 따라 성능을 향상시키고, 수동 보정의 필요성을 최소화하여 전반적인 효율성을 높일 수 있습니다.
  • 소형화 및 소형화 : 더 작고 컴팩트한 디스펜싱 워크스테이션에 대한 수요가 증가하고 있습니다. 이는 실험실의 작업대 면적의 제한, 인력 및 전문 실험실의 증가, 휴대성 요구로 인한 것입니다. 탁상용 버전과 모듈형 시스템을 통해 실험실은 인프라를 크게 변경하지 않고도 자동화를 도입할 수 있습니다. 이러한 추세에 따라 더 많은 사용자와 애플리케이션이 고정밀 액체 처리 기술을 사용할 수 있게 될 것입니다.
  • 소프트웨어 및 데이터 관리 강화 : 장비 제어를 넘어 고급 소프트웨어에 중점을 두고 있습니다. 새로운 소프트웨어는 실험 설계, 데이터 분석, 실험실 정보 관리 시스템(LIMS)과의 연계 기능을 포함합니다. 데이터 무결성과 추적성을 보장하는 완전한 디지털 엔드투엔드 워크플로우를 제공합니다. 규제 환경에서의 운영, 컴플라이언스 대응, 다기관 연구에서의 협력 강화에 필수적입니다.
  • 모듈성 및 사용자 정의 : 연구소는 정적이고 단일 기능의 워크스테이션에서 모듈식 구성으로 전환하고 있습니다. 이러한 시스템은 히터, 셰이커, 마그네틱 비드 분리 장치 등 다양한 모듈로 재구성할 수 있어 다양한 분석 수행이 가능합니다. 이러한 적응성을 통해 연구소는 하나의 플랫폼을 유전체학에서 세포 기반 분석에 이르기까지 다양한 용도에 적용함으로써 투자 효과를 극대화할 수 있습니다. 이러한 움직임은 변화하는 연구 요구사항에 대해 더 높은 유연성과 확장성을 제공합니다.
  • 음향 디스펜싱 기술 : 음향 디스펜싱 기술 자체는 새로운 것은 아니지만, 그 중요성은 점점 더 커지고 있습니다. 음파를 이용한 비접촉식 기술로, 피펫 팁이 필요 없고 교차 오염의 위험을 줄이면서 나노 리터 단위의 액체를 분주할 수 있습니다. 소형화된 분석 및 하이스루풋 스크리닝에서 타의 추종을 불허하는 정확도를 제공합니다. 특히 고가의 시약이나 화합물의 보존이 최우선 과제인 신약개발 분야에서 그 영향력은 매우 큽니다.

이러한 추세에 따라 차세대 분산형 워크스테이션은 그 어느 때보다 스마트하고 유연하며 통합성을 갖춘 제품으로 시장을 재정의하고 있습니다. 단순한 작업의 자동화가 아닌 워크플로우의 효율화, 오류의 최소화, 그리고 보다 광범위한 첨단 애플리케이션으로 가는 길을 열어주는 종합적인 솔루션의 제공에 중점을 두고 있습니다. 현대의 조사 및 진단에 대한 높은 수준의 요구를 충족시키려는 요구가 혁신의 원동력이 되어 시장은 계속 진화하고 있습니다.

마이크로플레이트 분주 워크스테이션 시장의 최근 동향

마이크로플레이트 분주 워크스테이션 시장에서는 장비의 기능 향상과 적용 범위 확대를 위한 여러 가지 중요한 발전이 이루어지고 있습니다. 이러한 발전은 연구 및 진단 분야에서 고처리량, 정밀하고 합리적인 가격의 액체 처리 기술에 대한 수요 증가에 대응하기 위한 것입니다. 단발적인 진화가 아닌, 실험실 자동화를 현장에 도입하는 종합적인 흐름의 일부입니다.

  • 소형 탁상용 워크스테이션의 도입 : 주요 발전 중 하나는 보다 컴팩트한 탁상용 분주 워크스테이션의 도입입니다. 이 휴대용 시스템은 공간이 충분하지 않은 실험실이나 개인 연구소에서 사용하도록 설계되어 있습니다. 소형이면서도 높은 정확도를 제공하고 다양한 프로토콜에 대응할 수 있어 본격적인 로봇 시스템 도입이 어려운 대학, 임상 검사실 등 보다 많은 사용자층이 고도의 자동화 기술을 접할 수 있도록 하고 있습니다.
  • 워크플로우 최적화를 위한 소프트웨어 개선 : 워크스테이션을 관리하는 소프트웨어가 새로운 개발의 핵심입니다. 새로운 소프트웨어 플랫폼은 프로토콜의 설계와 실행을 용이하게 하는 그래픽적이고 직관적인 인터페이스를 제공합니다. 많은 소프트웨어는 액체의 자동 분류 기능, 각종 액체에 대한 분주 파라미터 최적화, 실행 진행 상황을 모니터링하는 실시간 모니터링 기능을 탑재하고 있습니다. 이는 사용자 오류를 최소화하고 재현성을 극대화하기 위한 중요한 진전입니다.
  • 비전 및 이미징 시스템 통합 : 일부 신형 워크스테이션에는 통합 비전 시스템과 카메라가 장착되어 있습니다. 이들은 분주 전후의 마이크로플레이트를 육안으로 검사하여 칩의 적절한 위치, 웰의 예상 충전, 기포 및 분주 문제가 있는지 확인합니다. 이러한 시각적 피드백을 통한 추가 품질 관리 계층은 실험의 무결성을 보장하고 수동 검사의 필요성을 최소화합니다.
  • 모듈식 및 확장 가능한 하드웨어 : 모듈식 설계 트렌드로 인해 교체 가능한 구성요소를 갖춘 워크스테이션이 가능해졌습니다. 사용자는 각종 분주 헤드, 리저버, 기타 액세서리를 쉽게 교체할 수 있으며, 새로운 용도에 맞게 워크스테이션을 조정할 수 있습니다. 이는 특히 다양한 프로젝트를 진행하는 연구기관에서 유용하며, 여러 대의 전용 기계를 구매할 필요 없이 하나의 기계에 대한 투자를 최대한 활용할 수 있기 때문입니다.
  • 비접촉식 디스펜싱 기술 : 음향식 등 비접촉식 디스펜싱 기술의 보급이 두드러진 추세입니다. 이들은 음파나 기압을 이용하여 피펫 팁을 사용하지 않고 나노리터 단위의 분주를 실현합니다. 이를 통해 교차 오염을 방지하고 귀중한 시약을 절약할 수 있습니다. 시료나 시약의 양이 미량인 하이스루풋 스크리닝이나 유전체학 분야에서 획기적인 기술 혁신이라고 할 수 있습니다.

이러한 발전으로 마이크로플레이트 분주 워크 스테이션은 더욱 지능적이고 사용자 친화적이며 다기능화되어 시장에 영향을 미치고 있습니다. 자동화, 오류 최소화, 유연성 향상에 대한 중요성이 강조되면서 시장 확대가 촉진되고 실험실 내 액체 취급 방법이 변화하고 있습니다. 다양한 과학 분야의 처리량 증가, 정확도 향상, 효율적인 워크플로우에 대한 요구를 충족시키기 위해 시장은 계속 변화하고 있습니다.

목차

제1장 주요 요약

제2장 시장 개요

  • 배경과 분류
  • 공급망

제3장 시장 동향과 예측 분석

  • 업계 성장 촉진요인과 과제
  • PESTLE 분석
  • 특허 분석
  • 규제 환경

제4장 세계의 마이크로플레이트 분주 워크스테이션 시장 : 종류별

  • 매력 분석 : 종류별
  • 전자동
  • 반자동
  • 수동

제5장 세계의 마이크로플레이트 분주 워크스테이션 시장 : 용도별

  • 매력 분석 : 용도별
  • 대학·연구기관
  • 임상
  • 기타

제6장 지역 분석

제7장 북미의 마이크로플레이트 분주 워크스테이션 시장

  • 북미의 마이크로플레이트 분주 워크스테이션 시장 : 종류별
  • 북미의 마이크로플레이트 분주 워크스테이션 시장 : 용도별
  • 미국의 마이크로플레이트 분주 워크스테이션 시장
  • 멕시코의 마이크로플레이트 분주 워크스테이션 시장
  • 캐나다의 마이크로플레이트 분주 워크스테이션 시장

제8장 유럽의 마이크로플레이트 분주 워크스테이션 시장

  • 유럽의 마이크로플레이트 분주 워크스테이션 시장 : 종류별
  • 유럽의 마이크로플레이트 분주 워크스테이션 시장 : 용도별
  • 독일의 마이크로플레이트 분주 워크스테이션 시장
  • 프랑스의 마이크로플레이트 분주 워크스테이션 시장
  • 스페인의 마이크로플레이트 분주 워크스테이션 시장
  • 이탈리아의 마이크로플레이트 분주 워크스테이션 시장
  • 영국의 마이크로플레이트 분주 워크스테이션 시장

제9장 아시아태평양의 마이크로플레이트 분주 워크스테이션 시장

  • 아시아태평양의 마이크로플레이트 분주 워크스테이션 시장 : 종류별
  • 아시아태평양의 마이크로플레이트 분주 워크스테이션 시장 : 용도별
  • 일본의 마이크로플레이트 분주 워크스테이션 시장
  • 인도의 마이크로플레이트 분주 워크스테이션 시장
  • 중국의 마이크로플레이트 분주 워크스테이션 시장
  • 한국의 마이크로플레이트 분주 워크스테이션 시장
  • 인도네시아의 마이크로플레이트 분주 워크스테이션 시장

제10장 기타 지역(ROW)의 마이크로플레이트 분주 워크스테이션 시장

  • ROW의 마이크로플레이트 분주 워크스테이션 시장 : 종류별
  • ROW의 마이크로플레이트 분주 워크스테이션 시장 : 용도별
  • 중동의 마이크로플레이트 분주 워크스테이션 시장
  • 남미의 마이크로플레이트 분주 워크스테이션 시장
  • 아프리카의 마이크로플레이트 분주 워크스테이션 시장

제11장 경쟁 분석

  • 제품 포트폴리오 분석
  • 운영 통합
  • Porter's Five Forces 분석
  • 시장 점유율 분석

제12장 기회와 전략 분석

  • 밸류체인 분석
  • 성장 기회 분석
  • 세계의 마이크로플레이트 분주 워크스테이션 시장 최신 동향
  • 전략 분석

제13장 밸류체인 전반에 걸친 주요 기업 개요

  • 경쟁 분석
  • Siemens Healthineers
  • Roche
  • Beckman Coulter
  • Thermo Fisher Scientific
  • Mettler Toledo
  • Tecan
  • Hamilton Company
  • Mindray
  • Qiagen
  • BD

제14장 부록

KSM 25.12.17

The future of the global microplate pipetting workstation market looks promising with opportunities in the university & research institution and clinical markets. The global microplate pipetting workstation market is expected to grow with a CAGR of 6.9% from 2025 to 2031. The major drivers for this market are the increasing demand for high-throughput testing, the rising need for automated laboratory solutions, and the growing focus on precision research.

  • Lucintel forecasts that, within the type category, fully automatic is expected to witness the highest growth over the forecast period.
  • Within the application category, research institution and clinical is expected to witness higher growth.
  • In terms of region, APAC is expected to witness the highest growth over the forecast period.

Emerging Trends in the Microplate Pipetting Workstation Market

The microplate pipetting workstation market is changing very fast, driven by a number of dominant trends that are revolutionizing laboratory procedures. These trends are transcending simple automation to design intelligent, integrated, and highly adaptive solutions that respond to the sophisticated requirements of contemporary research and diagnostics. The demand for more efficiency, precision, and data integrity is driving this change, which is revolutionizing the way laboratories function and conduct their projects.

  • Artificial Intelligence and Machine Learning Integration: One of the key trends is the integration of AI and ML with workstation software. AI algorithms are utilized for optimizing pipetting protocols, forecasting possible errors, and conducting real-time quality control. This helps the workstations respond to different liquids and applications, providing improved accuracy and reproducibility. ML allows the systems to learn from previous runs, getting better and better with time and minimizing the need for manual calibration, thus increasing overall efficiency.
  • Compactness and Miniaturization: Smaller and more compact pipetting workstations are increasingly in demand. This is due to laboratories with limited bench area, increasing numbers of personnel and specialty labs, and portability requirements. Benchtop versions and modular systems enable laboratories to introduce automation without a major change in infrastructure. This trend is improving access to high-precision liquid handling for more users and applications.
  • Increased Software and Data Management: The emphasis is moving towards advanced software that provides more than instrument control. New software contains elements for experimental design, data analysis, and integrations with Laboratory Information Management Systems (LIMS). It provides a fully digital end-to-end workflow for ensuring data integrity and traceability. It is imperative for regulated environments, compliance, and collaboration improvement in multi-site research studies.
  • Modularity and Customization: Laboratories are shifting away from static, single-function workstations and toward modular configurations. Such systems are reconfigurable with various modules, including heaters, shakers, and magnetic bead separators, to carry out a broad array of assays. This adaptability enables laboratories to get the most out of their investment by applying one platform to various applications, ranging from genomics to cell-based assays. This movement provides more flexibility and scalability for changing research requirements.
  • Acoustic Dispensing Technology: Acoustic dispensing is not new but is acquiring an ever-growing prominence. It is a non-contact technology based on sound waves to dispense nanoliter volumes of liquids without the requirement for pipette tips and with less risk of cross-contamination. It provides unmatched accuracy for miniaturized assays and high-throughput screening. It is most influential in drug discovery, where the preservation of costly reagents and compounds is of the utmost concern.

These trends are redefining the market by making a new generation of pipetting workstations smarter, more flexible, and more integrated than ever before. The emphasis is not on automating an activity alone but delivering an overall solution that increases workflow efficiency, minimizes errors, and opens the door to a broader range of advanced applications. The market is evolving, with innovation fueled by the desire to address the sophisticated needs of contemporary research and diagnostics.

Recent Developments in the Microplate Pipetting Workstation Market

The market for microplate pipetting workstation has seen a number of significant developments that seek to enhance functionality as well as broaden the applications for the instruments. The developments are in response to the growing need for high-throughput, precise, and affordable liquid handling technology in research and diagnostics. The developments are not singular but part of an overarching trend towards bringing laboratory automation onto the shop floor.

  • Introduction of Compact, Benchtop Workstations: One of the major developments has been the introduction of more compact, benchtop pipetting workstations. These portable systems are for use in laboratories that lack adequate space or in personal research laboratories. And though they are small, they provide great precision and can handle a great diversity of protocols, making advanced automation accessible to more users, such as university and clinical laboratory settings that may not be able to afford or accommodate a full-scale robot system.
  • Improved Software for Workflow Optimization: Software that manages the workstations is where the new developments are centered. New software platforms provide graphical, intuitive interfaces that make protocol design and execution easier. Many of these now feature automated liquid class definition, optimizing pipetting parameters for various liquids, and real-time monitoring to monitor a run's progress. It is an important advancement for minimizing user error and maximizing reproducibility.
  • Vision and Imaging System Integration: Some of the newer workstations are coming with integrated vision systems and cameras. These can visually check the microplates prior to and post pipetting to verify tips are properly aligned, wells filled as anticipated, and bubble and dispensing problems are nonexistent. An added layer of quality control is provided through this visual feedback to guarantee the integrity of the experiment and minimize the need for manual inspection.
  • Modular and Expandable Hardware: The modular design trend has resulted in workstations with replaceable components. Users can easily replace various pipetting heads, reservoirs, and other accessories to fit the workstation to new applications. This is especially useful for research institutions that are engaged in a wide range of projects because it enables them to get the most out of an investment in a single machine by not having to buy numerous specialized machines.
  • Non-Contact Dispensing Technology: The growing use of acoustic and other non-contact dispensing technologies is a significant trend. They employ sound waves or air pressure to dispense nanoliter-scale amounts without the pipette tip. This prevents cross-contamination and saves valuable reagents. This is a breakthrough in high-throughput screening and genomics, where sample and reagent volumes are minute.

These advancements are affecting the market by making microplate pipetting workstations more intelligent, user-friendly, and versatile. The emphasis on automation, error minimization, and increased flexibility is fueling market expansion and changing the way liquid handling is carried out in laboratories. The market is changing to address the needs for increased throughput, increased precision, and more efficient workflows in diverse scientific fields.

Strategic Growth Opportunities in the Microplate Pipetting Workstation Market

The microplate pipetting workstation market provides a set of strategic growth opportunities within major application segments. Opportunities are being fueled by a worldwide trend towards automation of life sciences research and diagnostics, powered by demands for increased throughput, accuracy, and cost-effectiveness. Focusing on these individual segments, companies can capitalize on their technical capabilities to deliver customized solutions and achieve differentiators.

  • Drug Discovery and High-Throughput Screening: This is a major growth area. Pharmaceutical and biotech firms must screen vast compound libraries to find potential drug candidates. Opportunities arise in creating ultra-high-throughput workstations, improved software for sophisticated dose-response assays, and integration with other HTS instruments. Being able to save expensive reagents through miniaturization and being able to deliver accurate, reproducible results is the major value proposition in this category.
  • Genomics and Next-Generation Sequencing (NGS): The explosive growth in genomics research and the wider adoption of NGS are driving a strong need for expert pipetting workstations. The potential is in creating systems that can handle complex and sensitive operations such as library preparation, normalization, and sample pooling. These applications demand a high level of accuracy with very minute volumes. Offering validated protocols and interfacing with top sequencing platforms can be a differentiator.
  • Clinical Diagnostics: With diagnostic laboratories headed towards automation to manage large volumes of patient samples, the market for pipetting workstations is increasing. The promise is in creating systems that conform to rigid regulatory compliance and are applicable for uses such as ELISA, PCR setup, and immunoassay. Delivering dependable, easy-to-use systems that improve turnaround time while minimizing the risk of human error is critical to success in this market.
  • Research and Academic Institutions: Research institutions and universities are a significant end-user base with varied requirements. The strategic potential is to provide a variety of products, from entry-level semi-automated systems to completely automated workstations, suited to various budgets. Offering flexible, modular platforms that can be utilized for a broad range of research applications, from cell culture through protein purification, can capture this market.
  • Single-Cell Analysis: This new area of research is generating the need for highly accurate and low-volume liquid handling. The strategic challenge is to create workstations with sophisticated dispensing technologies, such as acoustic dispensing, which can dispense single-cell or nanoliter volumes without cross-contamination. These devices are essential in the preparation of single-cell genomics and proteomics samples, a fast-emerging research field with immense clinical implications.

These strategic growth opportunities are influencing the market by leading to specialization and concentration on value-added solutions. Firms with the ability to come up with tailored products and services for these high-growth uses will be highly successful. The market is segmented, and innovation is being propelled by the distinctive, multifaceted needs of various scientific and clinical areas.

Microplate Pipetting Workstation Market Driver and Challenges

The microplate pipetting workstation market is influenced by a multifaceted interplay of influential drivers and tremendous challenges. The key drivers are based on the inherent requirement for efficiency, accuracy, and automation in scientific research and diagnostics. These drivers drive innovation and market growth. But the market is also held back by challenges related to cost, technical complexity, and the requirement for skilled operators, which have to be carefully addressed by manufacturers and end-users.

The factors responsible for driving the microplate pipetting workstation market include:

1. Increasing Demand for Laboratory Automation: The requirement to enhance throughput and minimize manual labor in labs is a key driver. Microplate pipetting workstations automate time-consuming and repetitive liquid handling tasks, allowing researchers to concentrate on more sophisticated analysis. This is especially important in high-throughput screening, where thousands of samples need to be analyzed quickly and accurately in order to meet aggressive research and development schedules.

2. Growing R&D in Life Sciences: The worldwide growth in the research and development efforts in the life sciences, pharmaceutical, biotechnology, and academia industries is driving market growth. New drug development, therapies, and diagnostic tests need accurate and reproducible liquid handling. Workstations ensure the accuracy and reproducibility necessary for these uses, which results in better quality data and improved reliable results.

3. High-Throughput Screening Requirement: High-throughput screening (HTS) is one of the key components of contemporary drug discovery and is propelling the requirement for automated workplaces. Such systems are capable of processing huge quantities of microplates and conducting intricate liquid transfers with very little manual intervention. They play a key role in speeding up the screening of enormous compound collections and the selection of potential candidates for further development.

4. Increasing Emphasis on Miniaturization: The push towards miniaturizing assays and minimizing reagent volumes is a major driving force. Low-volume dispensing-capable workstations, including acoustic dispensing, are in high demand. This not only saves costly reagents and samples but also facilitates new applications such as single-cell analysis and high-density screening, making new areas of investigation possible.

5. Focus on Data Accuracy and Reproducibility: Data integrity is of overriding importance in scientific research and clinical diagnostics. Automated workstations remove the variability and error sources inherent in manual pipetting. The systems are highly precise and reproducible, which makes experimental results reliable enough for publication, regulatory acceptance, and clinical decision-making.

Challenges in the microplate pipetting workstation market are:

1. High Initial and Ownership Cost: Microplate pipetting workstations, particularly fully automated systems, have a very high initial cost. The amount can be quite prohibitive to smaller labs, academic institutions, and startups with low budgets. Moreover, the continuous costs of consumables, maintenance, and software licenses contribute to the cost of ownership, which may be a turn-off.

2. Technical Sophistication and Requirement for Highly Trained Staff: Running and programming these sophisticated workstations can be technical. They need skilled and trained staff to install protocols, diagnose faults, and undertake regular maintenance. Unavailability of a skilled workforce on tap can be one of the problems for laboratories, resulting in overutilization of equipment or possible mistakes if not run in the right way.

3. Compatibility and Integration Problems: The integration of a new workstation with the existing laboratory workflow may prove to be challenging. Compatibility of the new system with the existing instruments, software, and LIMS takes time and money. This poses a problem for laboratories with already established workflows, which can delay the process of adopting newer, more sophisticated technology.

The combined effect of these drivers and challenges is a market in active transformation. The drivers are driving the market towards more automation and complexity, and these workstations are a requirement for sophisticated research. The technicalities and expenses, though, are bringing about a divergence, where only laboratories with sufficient funding can effectively utilize the newest advancements. The future of the market will hinge on the potential for manufacturers to overcome these issues by delivering more economical, user-friendly, and flexible solutions that are simple to implement in mixed laboratory settings.

List of Microplate Pipetting Workstation Companies

Companies in the market compete on the basis of product quality offered. Major players in this market focus on expanding their manufacturing facilities, R&D investments, infrastructural development, and leverage integration opportunities across the value chain. With these strategies microplate pipetting workstation companies cater increasing demand, ensure competitive effectiveness, develop innovative products & technologies, reduce production costs, and expand their customer base. Some of the microplate pipetting workstation companies profiled in this report include-

  • Siemens Healthineers
  • Roche
  • Beckman Coulter
  • Thermo Fisher Scientific
  • Mettler Toledo
  • Tecan
  • Hamilton Company
  • Mindray
  • Qiagen
  • BD

Microplate Pipetting Workstation Market by Segment

The study includes a forecast for the global microplate pipetting workstation market by type, application, and region.

Microplate Pipetting Workstation Market by Type [Value from 2019 to 2031]:

  • Fully Automatic
  • Semi-automatic
  • Manual

Microplate Pipetting Workstation Market by Application [Value from 2019 to 2031]:

  • Universities & Research Institutions
  • Clinical
  • Others

Country Wise Outlook for the Microplate Pipetting Workstation Market

The microplate pipetting workstation market is growing steadily and also undergoing a dramatic change with increasing demand for laboratory automation, high-throughput screening, and greater accuracy in life sciences research and diagnostics. The workstations play a crucial role in reliably and effectively manipulating liquids in microplates that are employed in applications from drug discovery to genomics. Current progress is geared towards enhancing the system's efficiency, flexibility, and compatibility with additional laboratory equipment to address contemporary research and clinical settings. This advancement is especially evident in leading world markets such as the United States, China, Germany, India, and Japan.

  • United States: The US market for microplate pipetting workstations has a high focus on automation and the incorporation of sophisticated software. Spurred by a strong biotechnology and pharmaceutical industry, highly automated, high-throughput devices capable of complex assay management are in high demand. The most recent innovations involve the integration of machine learning (ML) and artificial intelligence (AI) in the form of error detection and workflow management. Compact, benchtop configurations that balance high performance with affordability in smaller labs are also driving the market.
  • China: The Chinese market is expanding at a rapid pace, driven by rising government investment in life sciences research and development and the rise of local pharmaceutical and biotechnology companies. Domestic manufacturers are emerging as competitive players, offering innovative and economical solutions, even as price sensitivity continues to be a consideration. Demand continues to increase for high-end workstations in top-level research centers and Contract Research Organizations (CROs). The market is also witnessing an increase in collaboration among domestic and foreign firms to design products specifically suited to the requirements of the Chinese market.
  • Germany: Germany boasts a developed and established microplate pipetting workstation market. It is a leader worldwide in laboratory automation and precision engineering. The demand here is for very reliable and sturdy systems meeting tough quality standards. Recent technology is geared towards making workstations that are flexible and modular, able to be rearranged easily for multiple applications, ranging from clinical diagnostics to drug discovery. German companies are also leading the way in making systems with a high degree of accuracy and traceability for regulated environments.
  • India: The Indian market is a high-growth market, with demand coming from a growth biotech industry and an increasing number of academic and research institutions. The market is bifurcated, with expensive, imported workstations being employed at large pharmaceutical corporations and government research laboratories, and less expensive, semi-automatic systems being found in small labs. One important trend is the increasing use of automation to increase efficiency and decrease human error. The market is also being spurred on by government efforts to increase domestic r&d.
  • Japan: The Japanese market is very advanced, with a high demand for miniaturization and precision. The recent advances are directed towards the development of compact, high-performance workstations for applications such as next-generation sequencing and single-cell analysis. The market has strong-established domestic and international competitors who concentrate on producing highly specialized systems. There is a strong drive towards building integrated solutions through the combination of pipetting workstations with other instruments to provide a seamless end-to-end workflow for complex assays.

Features of the Global Microplate Pipetting Workstation Market

  • Market Size Estimates: Microplate pipetting workstation market size estimation in terms of value ($B).
  • Trend and Forecast Analysis: Market trends (2019 to 2024) and forecast (2025 to 2031) by various segments and regions.
  • Segmentation Analysis: Microplate pipetting workstation market size by type, application, and region in terms of value ($B).
  • Regional Analysis: Microplate pipetting workstation market breakdown by North America, Europe, Asia Pacific, and Rest of the World.
  • Growth Opportunities: Analysis of growth opportunities in different types, applications, and regions for the microplate pipetting workstation market.
  • Strategic Analysis: This includes M&A, new product development, and competitive landscape of the microplate pipetting workstation market.

Analysis of competitive intensity of the industry based on Porter's Five Forces model.

This report answers following 11 key questions:

  • Q.1. What are some of the most promising, high-growth opportunities for the microplate pipetting workstation market by type (fully automatic, semi-automatic, and manual), application (universities & research institutions, clinical, and others), and region (North America, Europe, Asia Pacific, and the Rest of the World)?
  • Q.2. Which segments will grow at a faster pace and why?
  • Q.3. Which region will grow at a faster pace and why?
  • Q.4. What are the key factors affecting market dynamics? What are the key challenges and business risks in this market?
  • Q.5. What are the business risks and competitive threats in this market?
  • Q.6. What are the emerging trends in this market and the reasons behind them?
  • Q.7. What are some of the changing demands of customers in the market?
  • Q.8. What are the new developments in the market? Which companies are leading these developments?
  • Q.9. Who are the major players in this market? What strategic initiatives are key players pursuing for business growth?
  • Q.10. What are some of the competing products in this market and how big of a threat do they pose for loss of market share by material or product substitution?
  • Q.11. What M&A activity has occurred in the last 5 years and what has its impact been on the industry?

Table of Contents

1. Executive Summary

2. Market Overview

  • 2.1 Background and Classifications
  • 2.2 Supply Chain

3. Market Trends & Forecast Analysis

  • 3.2 Industry Drivers and Challenges
  • 3.3 PESTLE Analysis
  • 3.4 Patent Analysis
  • 3.5 Regulatory Environment

4. Global Microplate Pipetting Workstation Market by Type

  • 4.1 Overview
  • 4.2 Attractiveness Analysis by Type
  • 4.3 Fully Automatic: Trends and Forecast (2019-2031)
  • 4.4 Semi-automatic: Trends and Forecast (2019-2031)
  • 4.5 Manual: Trends and Forecast (2019-2031)

5. Global Microplate Pipetting Workstation Market by Application

  • 5.1 Overview
  • 5.2 Attractiveness Analysis by Application
  • 5.3 Universities & Research Institutions: Trends and Forecast (2019-2031)
  • 5.4 Clinical: Trends and Forecast (2019-2031)
  • 5.5 Others: Trends and Forecast (2019-2031)

6. Regional Analysis

  • 6.1 Overview
  • 6.2 Global Microplate Pipetting Workstation Market by Region

7. North American Microplate Pipetting Workstation Market

  • 7.1 Overview
  • 7.2 North American Microplate Pipetting Workstation Market by Type
  • 7.3 North American Microplate Pipetting Workstation Market by Application
  • 7.4 United States Microplate Pipetting Workstation Market
  • 7.5 Mexican Microplate Pipetting Workstation Market
  • 7.6 Canadian Microplate Pipetting Workstation Market

8. European Microplate Pipetting Workstation Market

  • 8.1 Overview
  • 8.2 European Microplate Pipetting Workstation Market by Type
  • 8.3 European Microplate Pipetting Workstation Market by Application
  • 8.4 German Microplate Pipetting Workstation Market
  • 8.5 French Microplate Pipetting Workstation Market
  • 8.6 Spanish Microplate Pipetting Workstation Market
  • 8.7 Italian Microplate Pipetting Workstation Market
  • 8.8 United Kingdom Microplate Pipetting Workstation Market

9. APAC Microplate Pipetting Workstation Market

  • 9.1 Overview
  • 9.2 APAC Microplate Pipetting Workstation Market by Type
  • 9.3 APAC Microplate Pipetting Workstation Market by Application
  • 9.4 Japanese Microplate Pipetting Workstation Market
  • 9.5 Indian Microplate Pipetting Workstation Market
  • 9.6 Chinese Microplate Pipetting Workstation Market
  • 9.7 South Korean Microplate Pipetting Workstation Market
  • 9.8 Indonesian Microplate Pipetting Workstation Market

10. ROW Microplate Pipetting Workstation Market

  • 10.1 Overview
  • 10.2 ROW Microplate Pipetting Workstation Market by Type
  • 10.3 ROW Microplate Pipetting Workstation Market by Application
  • 10.4 Middle Eastern Microplate Pipetting Workstation Market
  • 10.5 South American Microplate Pipetting Workstation Market
  • 10.6 African Microplate Pipetting Workstation Market

11. Competitor Analysis

  • 11.1 Product Portfolio Analysis
  • 11.2 Operational Integration
  • 11.3 Porter's Five Forces Analysis
    • Competitive Rivalry
    • Bargaining Power of Buyers
    • Bargaining Power of Suppliers
    • Threat of Substitutes
    • Threat of New Entrants
  • 11.4 Market Share Analysis

12. Opportunities & Strategic Analysis

  • 12.1 Value Chain Analysis
  • 12.2 Growth Opportunity Analysis
    • 12.2.1 Growth Opportunities by Type
    • 12.2.2 Growth Opportunities by Application
  • 12.3 Emerging Trends in the Global Microplate Pipetting Workstation Market
  • 12.4 Strategic Analysis
    • 12.4.1 New Product Development
    • 12.4.2 Certification and Licensing
    • 12.4.3 Mergers, Acquisitions, Agreements, Collaborations, and Joint Ventures

13. Company Profiles of the Leading Players Across the Value Chain

  • 13.1 Competitive Analysis
  • 13.2 Siemens Healthineers
    • Company Overview
    • Microplate Pipetting Workstation Business Overview
    • New Product Development
    • Merger, Acquisition, and Collaboration
    • Certification and Licensing
  • 13.3 Roche
    • Company Overview
    • Microplate Pipetting Workstation Business Overview
    • New Product Development
    • Merger, Acquisition, and Collaboration
    • Certification and Licensing
  • 13.4 Beckman Coulter
    • Company Overview
    • Microplate Pipetting Workstation Business Overview
    • New Product Development
    • Merger, Acquisition, and Collaboration
    • Certification and Licensing
  • 13.5 Thermo Fisher Scientific
    • Company Overview
    • Microplate Pipetting Workstation Business Overview
    • New Product Development
    • Merger, Acquisition, and Collaboration
    • Certification and Licensing
  • 13.6 Mettler Toledo
    • Company Overview
    • Microplate Pipetting Workstation Business Overview
    • New Product Development
    • Merger, Acquisition, and Collaboration
    • Certification and Licensing
  • 13.7 Tecan
    • Company Overview
    • Microplate Pipetting Workstation Business Overview
    • New Product Development
    • Merger, Acquisition, and Collaboration
    • Certification and Licensing
  • 13.8 Hamilton Company
    • Company Overview
    • Microplate Pipetting Workstation Business Overview
    • New Product Development
    • Merger, Acquisition, and Collaboration
    • Certification and Licensing
  • 13.9 Mindray
    • Company Overview
    • Microplate Pipetting Workstation Business Overview
    • New Product Development
    • Merger, Acquisition, and Collaboration
    • Certification and Licensing
  • 13.10 Qiagen
    • Company Overview
    • Microplate Pipetting Workstation Business Overview
    • New Product Development
    • Merger, Acquisition, and Collaboration
    • Certification and Licensing
  • 13.11 BD
    • Company Overview
    • Microplate Pipetting Workstation Business Overview
    • New Product Development
    • Merger, Acquisition, and Collaboration
    • Certification and Licensing

14. Appendix

  • 14.1 List of Figures
  • 14.2 List of Tables
  • 14.3 Research Methodology
  • 14.4 Disclaimer
  • 14.5 Copyright
  • 14.6 Abbreviations and Technical Units
  • 14.7 About Us
  • 14.8 Contact Us
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제