시장보고서
상품코드
1894041

공기 불요 추진 체계 시장 보고서 : 동향, 예측, 경쟁 분석(-2031년)

Air Independent Propulsion Systems Market Report: Trends, Forecast and Competitive Analysis to 2031

발행일: | 리서치사: Lucintel | 페이지 정보: 영문 150 Pages | 배송안내 : 3일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

세계의 공기 불요 추진 체계 시장은 스털링, MESMA, 연료전지의 각 시장에서의 기회를 배경으로 장래성이 기대되고 있습니다. 세계의 공기 불요 추진 체계 시장은 2025-2031년에 걸쳐 CAGR 4.8%로 확대되어 2031년까지 1,710억 달러 규모에 이를 것으로 예측되고 있습니다. 이 시장의 주요 촉진요인은 안전하고 확실한 수중 군사 작전의 필요성이 높아지고, 공기 독립 추진 기술의 진보, 기존 잠수함에의 이 기술 탑재 개수의 실현 가능성, 수중 과학 연구·탐사 활동 증가입니다.

  • Lucintel은 설치형태 카테고리에 있어서 조선과 잠수함 건조에 있어서의 기술진보의 필요성이 높아지고 있기 때문에 예측기간 중에는 라인핏이 최대의 부문으로 계속될 것으로 예상됩니다.
  • 지역별로는 아시아태평양이 예측기간 동안 가장 높은 성장률을 보일 것으로 예측됩니다. 이는 각국이 스텔스 함정, 공격형 잠수함, 초계정, 센서, 레이더, 미사일, 자율 시스템을 구입하여 수상·수중 함대 능력의 강화를 도모하고 있기 때문입니다.

공기 불요 추진 체계 시장의 새로운 동향

기술 개발과 전략적 우선순위 변화로 인한 공기 불요 추진 체계 시장은 빠르게 진화하고 있습니다. 주요 신규 동향이 공기 불요 추진 체계 시장의 능력과 응용 범위를 재구축하여 해군 작전에 있어서의 효과성을 높이고 있습니다. 아래 5가지 주요 동향을 발표합니다.

  • 하이브리드 AIP 시스템 : 최근 몇 년 동안 연료전지와 첨단 배터리 기술을 결합한 하이브리드 공기 불요 추진 체계의 사용이 증가하고 있습니다. 이러한 시스템의 고효율 설계로 수중 항속 시간이 연장되는 동시에 전력 최적화도 향상되었습니다. 이 하이브리드화에 의해 보다 긴 임무 수행과 운용 유연성의 향상이 가능해집니다
  • 연료전지 기술의 발전 : 고성능 연료전지는 보다 효율적이고 신뢰할 수 있는 AIP 시스템을 실현합니다. 예를 들어, 출력 밀도의 향상을 포함하여 잠수함의 성능 향상과 관련된 총 비용을 줄일 수 있습니다. 이 동향은 수중 작전 시간의 극대화에 기여해, 수상 보급에의 의존도를 줄이는데 도움이 됩니다.
  • 에너지 밀도 향상 : 슈퍼커패시터 및 고용량 배터리와 같은 보다 강력한 에너지 저장 장치는 AIP 시스템의 효율성 향상에 기여합니다. 에너지 밀도의 향상에 의해 수중에서의 운용 시간이 연장되는 것과 동시에, 충전 간격의 단축이 가능하게 됩니다. 이 동향은 잠수함의 응용 가능성을 넓혀, 임무 기간의 연장에 도움을 줍니다.
  • 스텔스성과 소음 저감 : 신형 AIP 시스템은 스텔스 성능을 최적화하면서 소음 저감에 중점을 둡니다. 시스템 설계와 재료 혁신으로 잠수함의 음향 특성이 개선되고 보다 정숙화가 진행되고 있습니다. 이것에 의해 작전에 있어서의 스텔스성과 유효성이 향상해, 전략적 우위성을 유지하면서 감지를 회피하는 것이 가능해집니다.
  • 모듈화 및 확장성 설계: 모듈화되고 확장 가능한 AIP 시스템을 통해 잠수함 설계는 유연성을 높입니다. 다양한 크기와 유형의 잠수함에 적응할 수 있으며 다양한 운영 요구 사항을 충족합니다. 이 동향은 AIP 기술을 탑재한 잠수함의 기동성과 유연성을 높이고 있습니다.

결론적으로 하이브리드 기술, 연료전지 진보, 고에너지 밀도, 스텔스 성능 향상, 모듈 설계 등 공기 불요 추진 체계 시장의 새로운 동향은 잠수함의 능력을 변화시키고 있습니다. 이러한 동향은 기술 혁신을 촉진하고 장시간 수중 작전을 지원함으로써 전략적인 해군 우위성을 확립하는 데 기여하고 있습니다.

공기 불요 추진 체계 시장의 최근 동향

공기 불요 추진 체계의 발전은 전략적 용도를 위한 획기적인 기술 향상을 반영합니다. 주요 개발은 잠수함 능력 향상과 운영 효율성 증가를 위한 진전을 보여줍니다. 아래에 5개의 주목할만한 개발을 발표합니다.

  • 연료전지 통합 : 고급 연료전지 통합으로 AIP 시스템의 효율성과 지속 시간이 향상되었습니다. 최근의 동향에는 출력 향상이 포함되어 잠수함은 부상하지 않고 장기간의 잠항이 가능해졌습니다. 이러한 진보는 임무의 연장을 지원해, 작전의 유연성을 높입니다.
  • 스털링 엔진 개선 : 스털링 엔진 기술의 향상으로 AIP 시스템의 효율화가 진행되고 있습니다. 열효율의 향상에 의해 수중 지속시간이 연장되어 작동음 레벨의 저감에 의한 스텔스성의 강화를 도모하고 있습니다. 이러한 개량은 신형 잠수함 설계에 내장되어 있습니다.
  • 하이브리드 전력 솔루션 : 첨단 배터리와 연료전지의 하이브리드화로 기존 AIP 아키텍처의 시스템 성능이 향상되었습니다. 이 조합은 에너지 효율의 향상과 수중 임무 시간의 연장을 가져, 작전의 유연성을 높이고 있습니다.
  • 첨단 에너지 저장 기술 : 대용량 배터리 및 슈퍼커패시터와 같은 AIP 지원을 위한 개선된 에너지 저장 시스템이 개발되었습니다. 이러한 장치는 에너지 밀도 향상과 충전 시간 단축을 실현하여 장시간 다이빙 작전의 성능 향상에 기여합니다. 이 개발은 전략적 해군 요건 달성에 크게 기여합니다.
  • 스텔스 최적화 : 현대 AIP 시스템은 소음 최소화, 음향 시그니처 감소, 스텔스 향상을 목표로 합니다. 시스템 설계나 재료의 개량에 의해 소음을 최소화해, 잠수함의 감지를 곤란하게 하는 것과 동시에, 작전 효율을 향상시키고 있습니다.

연료전지 기술 발전, 스털링 엔진 개선, 하이브리드 전력 솔루션, 첨단 에너지 저장 기술, 스텔스 최적화는 잠수함의 능력을 크게 향상시키고 장기 임무 달성을 지원하며 비용 효율적인 운영을 실현합니다.

목차

제1장 주요 요약

제2장 시장 개요

  • 배경과 분류
  • 공급망

제3장 시장 동향과 예측 분석

  • 산업의 촉진요인과 과제
  • PESTLE 분석
  • 특허 분석
  • 규제 환경

제4장 세계의 공기 불요 추진 체계 시장 : 유형별

  • 매력도 분석 : 유형별
  • 스털링
  • MESMA
  • 연료전지
  • 기타

제5장 세계의 공기 불요 추진 체계 시장 : 설치 형태별

  • 매력도 분석 : 설치 형태별
  • LINE-FIT
  • 리노베이션 설치

제6장 지역별 분석

제7장 북미의 공기 불요 추진 체계 시장

  • 북미의 공기 불요 추진 체계 시장 : 유형별
  • 북미의 공기 불요 추진 체계 시장 : 설치 형태별
  • 미국의 공기 불요 추진 체계 시장
  • 멕시코의 공기 불요 추진 체계 시장
  • 캐나다의 공기 불요 추진 체계 시장

제8장 유럽의 공기 불요 추진 체계 시장

  • 유럽의 공기 불요 추진 체계 시장 : 유형별
  • 유럽의 공기 불요 추진 체계 시장 : 설치 형태별
  • 독일의 공기 불요 추진 체계 시장
  • 프랑스의 공기 불요 추진 체계 시장
  • 스페인의 공기 불요 추진 체계 시장
  • 이탈리아의 공기 불요 추진 체계 시장
  • 영국의 공기 불요 추진 체계 시장

제9장 아시아태평양의 공기 불요 추진 체계 시장

  • 아시아태평양의 공기 불요 추진 체계 시장 : 유형별
  • 아시아태평양의 공기 불요 추진 체계 시장 : 설치 형태별
  • 일본의 공기 불요 추진 체계 시장
  • 인도의 공기 불요 추진 체계 시장
  • 중국의 공기 불요 추진 체계 시장
  • 한국의 공기 불요 추진 체계 시장
  • 인도네시아의 공기 불요 추진 체계 시장

제10장 기타 중동 및 아프리카의 공기 불요 추진 체계 시장

  • 기타 중동 및 아프리카의 공기 불요 추진 체계 시장 : 유형별
  • 기타 중동 및 아프리카의 공기 불요 추진 체계 시장 : 설치 형태별
  • 중동지역의 공기 불요 추진 체계 시장
  • 남미의 공기 불요 추진 체계 시장
  • 아프리카의 공기 불요 추진 체계 시장

제11장 경쟁 분석

  • 제품 포트폴리오 분석
  • 운영 통합
  • Porter's Five Forces 분석
  • 시장 점유율 분석

제12장 기회와 전략 분석

  • 밸류체인 분석
  • 성장 기회 분석
  • 세계 공기 불요 추진 체계 시장의 새로운 동향
  • 전략적 분석

제13장 밸류체인 전체 주요 기업의 기업 프로파일

  • 경쟁 분석
  • Saab
  • Siemens
  • China Shipbuilding Industry
  • UTC Aerospace Systems
  • Lockheed Martin
  • Naval
  • General Dynamics

제14장 부록

SHW 26.01.06

The future of the global air independent propulsion systems market looks promising with opportunities in the stirling, MESMA, and fuel cell markets. The global air independent propulsion systems market is expected to reach an estimated $171 billion by 2031 with a CAGR of 4.8% from 2025 to 2031. The major drivers for this market are growth in the need for secure and safe military operations undersea, improvements in air-independent propulsion technology and the ability to refit conventional submarines with these technologies, along with the increase in underwater science and exploration activities.

  • Lucintel forecasts that, within the fit category, line-fit will remain the largest segment over the forecast period due to rising need for technology advancement in the shipbuilding and submarine building.
  • In terms of regions, APAC is expected to witness highest growth over the forecast period because the countries are purchasing stealthy warships, attack submarines, patrol boats, sensors, radars, missiles, and autonomous systems to upgrade their surface and subsurface naval capabilities.

Emerging Trends in the Air Independent Propulsion Systems Market

Driven by technological developments and changing strategic priorities, the air independent propulsion systems market is rapidly evolving. Key emerging trends are reshaping the capabilities and applications of air independent propulsion system market, making them more effective in naval operations. Here are five key trends:

  • Hybrid AIP Systems: In recent years, there has been an increase in the use of hybrid air independent propulsion system featuring fuel cells and advanced battery technologies. Underwater endurance has been extended due to these systems' high-efficiency designs, while power optimization has also improved. This hybridization facilitates longer missions and increased operational flexibility.
  • Fuel Cell Technology Advancements: Better-performing fuel cells result in more efficient and reliable AIP systems. Examples include higher power densities, which lower overall costs for improving submarines' performance. This trend helps maximize underwater operational durations, reducing dependence on surface air.
  • Enhanced Energy Density: More powerful energy storage devices, such as supercapacitors and high-capacity batteries, contribute to better performance in terms of AIP system efficiency. Greater energy density enables longer underwater operation times, coupled with quicker recharging intervals. This trend expands the possibilities for submarine applications and assists in lengthening their missions.
  • Stealth and Noise Reduction: New AIP systems focus on noise reduction while optimizing stealth capabilities. Submarines are becoming quieter with improved acoustic signatures as a result of innovations in system design and materials. This makes them more stealthy and effective in operations, preserving strategic advantages and avoiding detection.
  • Modular and Scalable Designs: Modular and scalable AIP systems have allowed submarines to be designed flexibly. They can be adjusted to suit different sizes and types of submarines, meeting various operational requirements. This trend enhances the flexibility and mobility of subs equipped with AIP technology.

In conclusion, the emerging trends concerning air independent propulsion systems market, such as hybrid technologies, fuel cell advancements, higher energy densities, enhanced stealth features, and modular designs, are changing submarine capabilities. These trends encourage innovation and support longer-duration underwater operations, promoting strategic naval advantages.

Recent Developments in the Air Independent Propulsion Systems Market

Advances in air independent propulsion systems reflect breakthrough technology improvements for strategic applications. Key developments represent progress toward better submarine capabilities and greater operational efficiency. Here are five notable developments:

  • Fuel Cell Integration: Advanced fuel cell integration increases the efficiency and endurance of AIP systems. Recent developments include power output enhancement, allowing submarines to stay submerged for longer durations without surfacing. These advancements support extended missions and enhance operational flexibility.
  • Stirling Engine Enhancements: There have been improvements in Stirling engine technology, leading to more efficient AIP systems. These advancements include increased thermal efficiency, contributing to longer underwater endurance and reduced operational sound levels, which enhance stealth characteristics. These developments are being incorporated into new submarine designs.
  • Hybrid Power Solutions: Hybridization of advanced batteries with fuel cells has improved overall system performance for conventional AIP architectures. This combination leads to increased energy efficiency and extended underwater missions, enhancing operational flexibility.
  • Advanced Energy Storage: Improved energy storage systems, such as high-capacity batteries and supercapacitors, have been developed to support AIP. These devices offer increased energy density and reduced recharging times, contributing to better performance during longer underwater operations. This development has a significant impact on fulfilling strategic naval requirements.
  • Stealth Optimization: Modern AIP systems aim to minimize noise, reduce acoustic signatures, and improve stealth. Noise is minimized through improvements in system design and materials, making submarines less detectable and improving operational efficiency.

Advances in fuel cell technology, Stirling engine enhancements, hybrid power solutions, advanced energy storage, and stealth optimization are majorly improving submarine capabilities, supporting long-term mission accomplishment, and offering cost-effective operations.

Strategic Growth Opportunities in the Air Independent Propulsion Systems Market

The market for air independent propulsion systems offers several strategic growth opportunities, driven by growing technological advancements and increasing demand for naval capabilities. Identifying these openings enables stakeholders to exploit emerging trends and extend their market presence. Here are five main opportunities for growth:

  • Advanced Fuel Cell Technologies: Investing in the research and deployment of advanced fuel cell technologies offers significant potential for growth. Improved fuel cell performance can increase the power output and efficiency of AIP systems, raising demand for state-of-the-art solutions targeting naval applications.
  • Hybrid AIP Solutions: Another opportunity is the development of hybrid AIP systems that combine fuel cell technology with evolved batteries. These hybrids offer greater operational efficiency, making it possible for submarines to support longer underwater missions. Such capabilities are attractive to naval forces seeking enhanced operational flexibility.
  • Energy Storage Innovations: Innovations in energy storage, such as high-capacity batteries or supercapacitors, can drive the growth of AIP systems. Improved energy densities and faster recharging times enhance overall system performance, meeting the requirements of modern-day submarines and creating new market opportunities.
  • Stealth and Acoustic Management: Focusing on acoustic management technologies and stealth optimization could lead to an increase in the sales of AIP systems. Submarines with reduced sound signatures will be highly valued by defense organizations looking for covert operations capabilities.
  • Modular and Scalable Designs: Developing modular and scalable AIP systems offers another growth opportunity. Flexible designs that can be adapted to different submarine types allow operational demands to be met, expanding the market base for AIP technologies.

Strategic growth opportunities within air independent propulsion systems include advancing fuel cell technologies, developing hybrid solutions, innovating energy storage devices, optimizing stealth, and enhancing modular designs. Taking advantage of these opportunities could result in market expansion and more effective naval operations.

Air Independent Propulsion Systems Market Driver and Challenges

Various technological, economic, and regulatory factors influence the air independent propulsion systems market. Understanding these drivers and challenges is crucial for stakeholders looking to navigate the market and make informed decisions.

The factors responsible for driving the air independent propulsion systems market include:

  • Technological Advancements: Market growth is propelled by innovations in fuel cells, Stirling engines, hybrid systems, and other aspects of AIP technology. Submarine performance, such as endurance, improves with these advancements, increasing adoption rates and further development of AIP systems.
  • Increasing Naval Capabilities: Efficient AIP systems are required due to the growing demand for advanced naval capabilities and extended underwater operations. The improvements in performance and stealth have boosted market demand for submarines equipped with AIP systems, aligning with defense strategies.
  • Focus on Stealth and Covert Operations: The development of AIP systems with lower acoustic signatures and improved stealth capabilities is driven by the emphasis on stealth and covert operations. These advancements enhance operational effectiveness and appeal to defense organizations that require such capabilities.
  • Government Investments and Defense Budgets: Increased government investments in defense and naval modernization programs are fueling market growth. Funds allocated to research, development, and acquisition of advanced AIP systems support technological advancements and expand the market segment.
  • Strategic Defense Requirements: The need for advanced AIP systems is driven by strategic defense requirements, such as longer underwater endurance and increased operational flexibility. This need supports the development and deployment of cutting-edge technologies in naval applications.

Challenges in the air independent propulsion systems market are:

  • High Development and Acquisition Costs: The high costs involved in developing or acquiring sophisticated AIP systems can hinder adoption, especially in nations with limited defense budgets. Infrastructure spending may also limit market growth.
  • Complex Maintenance and Support: AIP systems require complex maintenance, and operational efficiency can be affected by a lack of skilled personnel or adequate facilities. These factors may increase the total cost of ownership (TCO).
  • Regulatory and Export Controls: Compliance with regulatory and export controls poses challenges for the AIP systems market. Changes in regulations may affect technology transfers and expansion into international markets, making it difficult to navigate regions with differing restrictions.

Technological developments, the growth of naval capabilities, increased focus on stealth, government investments, and defense strategies are the primary drivers behind the expansion of the air independent propulsion systems market. However, challenges such as high costs, complex maintenance, and regulatory compliance must also be addressed. Balancing these drivers and obstacles is crucial for the future development of the market.

List of Air Independent Propulsion Systems Companies

Companies in the market compete on the basis of product quality offered. Major players in this market focus on expanding their manufacturing facilities, R&D investments, infrastructural development, and leverage integration opportunities across the value chain. With these strategies air independent propulsion systems companies cater increasing demand, ensure competitive effectiveness, develop innovative products & technologies, reduce production costs, and expand their customer base. Some of the air independent propulsion systems companies profiled in this report include-

  • Saab
  • Siemens
  • China Shipbuilding Industry
  • UTC Aerospace Systems
  • Lockheed Martin
  • Naval
  • General Dynamics

Air Independent Propulsion Systems by Segment

The study includes a forecast for the global air independent propulsion systems by type, fit, and region.

Air Independent Propulsion Systems Market by Type [Analysis by Value from 2019 to 2031]:

  • Stirling
  • Mesma
  • Fuel Cell
  • Others

Air Independent Propulsion Systems Market by Fit [Analysis by Value from 2019 to 2031]:

  • Line-Fit
  • Retrofit

Air Independent Propulsion Systems Market by Region [Analysis by Value from 2019 to 2031]:

  • North America
  • Europe
  • Asia Pacific
  • The Rest of the World

Country Wise Outlook for the Air Independent Propulsion Systems Market

Submarine operations are transformed by air independent propulsion systems, which improve underwater endurance and stealth capabilities. Recent changes in technology, efficiency, and strategic applications are important as nations seek to enhance their naval capacities and adapt to new operational demands. Notable developments in the US, China, Germany, India, and Japan include:

  • United States: The US is advancing its air independent propulsion systems technology with a greater emphasis on integrating fuel cell systems and modern lithium-ion battery technologies. Current initiatives focus on increasing submarine endurance and operational range, supported by ongoing studies of hybrid AIP systems. These advancements aim to maintain the country's strategic superiority and extend its submarine operational capabilities.
  • China: China has made significant progress in air independent propulsion systems technology, concentrating on the development of air-independent fuel cells. Recent milestones include integrating high-efficiency AIP systems into new submarine classes for improved stealth and endurance. China's indigenous AIP development plans will reduce external dependency and improve naval efficiency.
  • Germany: Germany has been a leader in proprietary Stirling engine-based air independent propulsion systems technology. Recent improvements include enhanced performance and efficiency of Stirling engines, leading to better underwater endurance and stealth. German submarines feature various models, each incorporating the country's developed AIP systems, underscoring Germany's technological edge in naval operations.
  • India: India is making progress in developing indigenous air independent propulsion systems to strengthen its submarine capabilities. Recently, tests were conducted on an Indian-designed fuel cell-based AIP system integrated into the country's submarine fleet. This development will enhance the Indian Navy's stealth capabilities and operational range, aligning with defense objectives.
  • Japan: Japan is improving its air independent propulsion systems technology, focusing on enhancing the efficiency of its fuel cell systems. Advanced AIP systems have been integrated into new submarine classes, increasing both underwater endurance and stealth. These advancements support Japan's strategic interests and improve operational efficiency at sea.

Features of the Global Air Independent Propulsion Systems Market

  • Market Size Estimates: Air independent propulsion systems market size estimation in terms of value ($B).
  • Trend and Forecast Analysis: Market trends (2019 to 2024) and forecast (2025 to 2031) by various segments and regions.
  • Segmentation Analysis: Air independent propulsion systems market size by type, fit, and region in terms of value ($B).
  • Regional Analysis: Air independent propulsion systems market breakdown by North America, Europe, Asia Pacific, and Rest of the World.
  • Growth Opportunities: Analysis of growth opportunities in different type, fit, and regions for the air independent propulsion systems market.
  • Strategic Analysis: This includes M&A, new product development, and competitive landscape of the air independent propulsion systems market.

Analysis of competitive intensity of the industry based on Porter's Five Forces model.

If you are looking to expand your business in this or adjacent markets, then contact us. We have done hundreds of strategic consulting projects in market entry, opportunity screening, due diligence, supply chain analysis, M & A, and more.

This report answers following 11 key questions:

  • Q.1. What are some of the most promising, high-growth opportunities for the air independent propulsion systems market by type (stirling, MESMA, fuel cell, and others), fit (line-fit and retrofit), and region (North America, Europe, Asia Pacific, and the Rest of the World)?
  • Q.2. Which segments will grow at a faster pace and why?
  • Q.3. Which region will grow at a faster pace and why?
  • Q.4. What are the key factors affecting market dynamics? What are the key challenges and business risks in this market?
  • Q.5. What are the business risks and competitive threats in this market?
  • Q.6. What are the emerging trends in this market and the reasons behind them?
  • Q.7. What are some of the changing demands of customers in the market?
  • Q.8. What are the new developments in the market? Which companies are leading these developments?
  • Q.9. Who are the major players in this market? What strategic initiatives are key players pursuing for business growth?
  • Q.10. What are some of the competing products in this market and how big of a threat do they pose for loss of market share by material or product substitution?
  • Q.11. What M&A activity has occurred in the last 5 years and what has its impact been on the industry?

Table of Contents

1. Executive Summary

2. Market Overview

  • 2.1 Background and Classifications
  • 2.2 Supply Chain

3. Market Trends & Forecast Analysis

  • 3.2 Industry Drivers and Challenges
  • 3.3 PESTLE Analysis
  • 3.4 Patent Analysis
  • 3.5 Regulatory Environment

4. Global Air Independent Propulsion Systems Market by Type

  • 4.1 Overview
  • 4.2 Attractiveness Analysis by Type
  • 4.3 Stirling: Trends and Forecast (2019-2031)
  • 4.4 MESMA: Trends and Forecast (2019-2031)
  • 4.5 Fuel Cell: Trends and Forecast (2019-2031)
  • 4.6 Others: Trends and Forecast (2019-2031)

5. Global Air Independent Propulsion Systems Market by Fit

  • 5.1 Overview
  • 5.2 Attractiveness Analysis by Fit
  • 5.3 Line-Fit: Trends and Forecast (2019-2031)
  • 5.4 Retrofit: Trends and Forecast (2019-2031)

6. Regional Analysis

  • 6.1 Overview
  • 6.2 Global Air Independent Propulsion Systems Market by Region

7. North American Air Independent Propulsion Systems Market

  • 7.1 Overview
  • 7.2 North American Air Independent Propulsion Systems Market by Type
  • 7.3 North American Air Independent Propulsion Systems Market by Fit
  • 7.4 United States Air Independent Propulsion Systems Market
  • 7.5 Mexican Air Independent Propulsion Systems Market
  • 7.6 Canadian Air Independent Propulsion Systems Market

8. European Air Independent Propulsion Systems Market

  • 8.1 Overview
  • 8.2 European Air Independent Propulsion Systems Market by Type
  • 8.3 European Air Independent Propulsion Systems Market by Fit
  • 8.4 German Air Independent Propulsion Systems Market
  • 8.5 French Air Independent Propulsion Systems Market
  • 8.6 Spanish Air Independent Propulsion Systems Market
  • 8.7 Italian Air Independent Propulsion Systems Market
  • 8.8 United Kingdom Air Independent Propulsion Systems Market

9. APAC Air Independent Propulsion Systems Market

  • 9.1 Overview
  • 9.2 APAC Air Independent Propulsion Systems Market by Type
  • 9.3 APAC Air Independent Propulsion Systems Market by Fit
  • 9.4 Japanese Air Independent Propulsion Systems Market
  • 9.5 Indian Air Independent Propulsion Systems Market
  • 9.6 Chinese Air Independent Propulsion Systems Market
  • 9.7 South Korean Air Independent Propulsion Systems Market
  • 9.8 Indonesian Air Independent Propulsion Systems Market

10. ROW Air Independent Propulsion Systems Market

  • 10.1 Overview
  • 10.2 ROW Air Independent Propulsion Systems Market by Type
  • 10.3 ROW Air Independent Propulsion Systems Market by Fit
  • 10.4 Middle Eastern Air Independent Propulsion Systems Market
  • 10.5 South American Air Independent Propulsion Systems Market
  • 10.6 African Air Independent Propulsion Systems Market

11. Competitor Analysis

  • 11.1 Product Portfolio Analysis
  • 11.2 Operational Integration
  • 11.3 Porter's Five Forces Analysis
    • Competitive Rivalry
    • Bargaining Power of Buyers
    • Bargaining Power of Suppliers
    • Threat of Substitutes
    • Threat of New Entrants
  • 11.4 Market Share Analysis

12. Opportunities & Strategic Analysis

  • 12.1 Value Chain Analysis
  • 12.2 Growth Opportunity Analysis
    • 12.2.1 Growth Opportunities by Type
    • 12.2.2 Growth Opportunities by Fit
  • 12.3 Emerging Trends in the Global Air Independent Propulsion Systems Market
  • 12.4 Strategic Analysis
    • 12.4.1 New Product Development
    • 12.4.2 Certification and Licensing
    • 12.4.3 Mergers, Acquisitions, Agreements, Collaborations, and Joint Ventures

13. Company Profiles of the Leading Players Across the Value Chain

  • 13.1 Competitive Analysis
  • 13.2 Saab
    • Company Overview
    • Air Independent Propulsion Systems Business Overview
    • New Product Development
    • Merger, Acquisition, and Collaboration
    • Certification and Licensing
  • 13.3 Siemens
    • Company Overview
    • Air Independent Propulsion Systems Business Overview
    • New Product Development
    • Merger, Acquisition, and Collaboration
    • Certification and Licensing
  • 13.4 China Shipbuilding Industry
    • Company Overview
    • Air Independent Propulsion Systems Business Overview
    • New Product Development
    • Merger, Acquisition, and Collaboration
    • Certification and Licensing
  • 13.5 UTC Aerospace Systems
    • Company Overview
    • Air Independent Propulsion Systems Business Overview
    • New Product Development
    • Merger, Acquisition, and Collaboration
    • Certification and Licensing
  • 13.6 Lockheed Martin
    • Company Overview
    • Air Independent Propulsion Systems Business Overview
    • New Product Development
    • Merger, Acquisition, and Collaboration
    • Certification and Licensing
  • 13.7 Naval
    • Company Overview
    • Air Independent Propulsion Systems Business Overview
    • New Product Development
    • Merger, Acquisition, and Collaboration
    • Certification and Licensing
  • 13.8 General Dynamics
    • Company Overview
    • Air Independent Propulsion Systems Business Overview
    • New Product Development
    • Merger, Acquisition, and Collaboration
    • Certification and Licensing

14. Appendix

  • 14.1 List of Figures
  • 14.2 List of Tables
  • 14.3 Research Methodology
  • 14.4 Disclaimer
  • 14.5 Copyright
  • 14.6 Abbreviations and Technical Units
  • 14.7 About Us
  • 14.8 Contact Us
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제