½ÃÀ庸°í¼­
»óǰÄÚµå
1617391

¼¼°èÀÇ ÄÚÀý AI ½ÃÀå ¿¹Ãø(-2030³â)

Causal AI Market by Offering, Application - Global Forecast to 2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: MarketsandMarkets | ÆäÀÌÁö Á¤º¸: ¿µ¹® 332 Pages | ¹è¼Û¾È³» : Áï½Ã¹è¼Û

    
    
    




¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¼¼°èÀÇ ÄÚÀý AI ½ÃÀå ±Ô¸ð´Â 2024³â 5,620¸¸ ´Þ·¯¿¡¼­ 2030³â±îÁö 4¾ï 5,680¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ¿¹Ãø ±â°£¿¡ CAGR·Î 41.8%°­·ÂÇÑ ¼ºÀåÀÌ Àü¸ÁµË´Ï´Ù.

ÀÇ·á, ±ÝÀ¶, ÀÚÀ²ÁÖÇàÂ÷ µî ±âÁ¸ AI Á¢±Ù ¹æ½ÄÀ¸·Î´Â ¿¹ÃøÀÇ Àΰú°ü°è¸¦ ÆÄ¾ÇÇÏ´Â µ¥ ¾î·Á¿òÀ» °Þ°í ÀÖ´Â »ê¾÷¿¡¼­ °í±Þ ÀÇ»ç°áÁ¤ Åø¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϸ鼭 ÀÌ·¯ÇÑ ¼ºÀå¼¼¸¦ °ßÀÎÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ Àΰú°ü°è ÆÄ¾Ç¿¡¼­ Àΰú°ü°è¿¡ ±â¹ÝÇÑ °èȹ ½ÇÇàÀ¸·Î ÃÊÁ¡ÀÌ À̵¿ÇÔ¿¡ µû¶ó ƯÈ÷ ½Å¼ÓÇÑ ºÐ¼®°ú ¸ÂÃãÇü ¼­ºñ½º¿¡¼­ ´Ù¾çÇÑ »ê¾÷¿¡¼­ ÄÚÁî¾Ë AI¸¦ µµÀÔÇÏ´Â °ÍÀÌ Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù. ÇÏÁö¸¸ Àΰú°ü°è Ãß·Ð ¸ðµ¨À» ±¸ÃàÇÏ°í ½ÇÇà¿¡ ¿Å±â±â±îÁöÀÇ º¹ÀâÇÑ ÇÁ·Î¼¼½º°¡ ½ÃÀå¿¡ Å« °É¸²µ¹·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. À̸¦ À§Çؼ­´Â ¹æ´ëÇÑ Áö½Ä°ú ÄÄÇ»ÆÃ ¸®¼Ò½º°¡ ÇÊ¿äÇϹǷΠÁß¼Ò±â¾÷ÀÇ µµÀÔÀÌ Á¦ÇÑµÉ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ¹× ±ÔÁ¦ Áؼö¿¡ ´ëÇÑ ¿ì·Á´Â µ¥ÀÌÅÍ °¡¿ë¼º°ú Ȱ¿ëÀ» ¹æÇØÇϰí ÀÖÀ¸¸ç, ÀÌ´Â Çõ½Å°ú À±¸®Àû ¹®Á¦ »çÀÌÀÇ ±ÕÇüÀ» ¸ÂÃß´Â °ÍÀÌ ¾ó¸¶³ª ¾î·Á¿î ÀÏÀÎÁö Àß º¸¿©ÁÝ´Ï´Ù.

Á¶»ç ¹üÀ§
Á¶»ç ´ë»ó³â 2019-2030³â
±âÁسâ 2023³â
¿¹Ãø ±â°£ 2024-2030³â
´ÜÀ§ 100¸¸ ´Þ·¯
ºÎ¹® Á¦°ø, ¿ëµµ, ¾÷°è, Áö¿ª
´ë»ó Áö¿ª ºÏ¹Ì, À¯·´, ¾Æ½Ã¾ÆÅÂÆò¾ç, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«, ¶óƾ¾Æ¸Þ¸®Ä«

"Á¦°øº°·Î´Â ¼ÒÇÁÆ®¿þ¾î ºÎ¹®ÀÌ ¿¹Ãø ±â°£ Áß °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù."

¿¹Ãø ±â°£ Áß ¼ÒÇÁÆ®¿þ¾î ºÎ¹®Àº Á¶Á÷ÀÌ ÀÇ»ç°áÁ¤¿¡ °í±Þ Àΰú°ü°è Ãß·Ð ±â´ÉÀ» Ȱ¿ëÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÔÀ¸·Î½á ÄÚÀý AI ½ÃÀå¿¡¼­ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÄÚÀý AI ±â¼úÀº ±âÁ¸ÀÇ ¿¹Ãø ºÐ¼®À» ³Ñ¾î Àΰú°ü°è¸¦ ¹ß°ßÇÒ ¼ö ÀÖ´Â Åø¿Í Ç÷§ÆûÀ» ±â¾÷¿¡ Á¦°øÇÕ´Ï´Ù. ÀÌ ´É·ÂÀº º¹ÀâÇÏ°í ²÷ÀÓ¾øÀÌ º¯È­Çϴ ȯ°æ¿¡¼­ Á¤º¸¿¡ ÀÔ°¢ÇÑ ÀÇ»ç°áÁ¤À» ³»¸®·Á´Â ±â¾÷¿¡°Ô Á¡Á¡ ´õ Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù. ¼ÒÇÁÆ®¿þ¾î ¼Ö·ç¼ÇÀº ÀÇ·á, ±ÝÀ¶, ¼Ò¸Å, Á¦Á¶ µîÀÇ ºÐ¾ß¿¡¼­ ±âÁ¸ ½Ã½ºÅÛÀ» °³¼±, ¸ÂÃãÈ­, ÅëÇÕÇÏ¿© Á¢±Ù¼º°ú À¯¿¬¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ AI Ç÷§ÆûÀÇ ºü¸¥ ¹ßÀü, Ŭ¶ó¿ìµå ±â¹Ý ¹èÆ÷ ¿É¼Ç, »ç¿ëÇϱ⠽¬¿î ÀÎÅÍÆäÀ̽º´Â ¼ÒÇÁÆ®¿þ¾îÀÇ Ã¤ÅÃÀ» Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù. ±â¾÷Àº ÄÚÀý AI ±â¼úÀ» Ȱ¿ëÇØ ¾÷¹« °³¼±, °í°´ ´ëÀÀ °­È­, µ¥ÀÌÅÍ ºÐ¼®À» ÅëÇÑ ¸®½ºÅ© °ü¸® °­È­, ½Ç¿ëÀûÀÎ ÀλçÀÌÆ®À» À§ÇÑ µ¥ÀÌÅÍ ºÐ¼®¿¡ Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù.

"»ê¾÷º°·Î´Â ÀÇ·á ¹× »ý¸í°úÇÐ ºÐ¾ß°¡ ¿¹Ãø ±â°£ Áß °¡Àå ºü¸¥ ½ÃÀå ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù."

ÀÇ·á ¹× »ý¸í°úÇÐ »ê¾÷Àº ¸ÂÃãÇü ÀÇ·á ¹× ÀǾàǰ °³¹ßÀ» Çõ½ÅÇϰí ȯÀÚ Ä¡·á¸¦ °­È­ÇÒ °ÍÀ¸·Î ¿¹»óµÊ¿¡ µû¶ó ÄÚÁî¾ó AI ½ÃÀåÀÌ ±Þ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÄÚÀý AI´Â ÀÇ·á ÇÁ·Î¹ÙÀÌ´õ¿Í ¿¬±¸ÀÚµéÀÌ Àΰú°ü°è¸¦ ¹àÇô³»¾î Áúº´ ¹ß»ý, Ä¡·á È¿°ú ¹× Àü¹ÝÀûÀÎ °Ç°­ °á°ú¿¡ ´ëÇÑ ÀÌÇØ¸¦ Çâ»ó½Ãų ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. ÀÌ·¯ÇÑ ´É·ÂÀº ÀÓ»óÀû ÀÇ»ç°áÁ¤À» °³¼±Çϰí, Ä¡·áÀÇ ½ÃÇàÂø¿À¸¦ ÃÖ¼ÒÈ­Çϸç, °Ç°­ »óÅ¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â ¿µÇâ·Â ÀÖ´Â ¿äÀÎÀ» ÀνÄÇÔÀ¸·Î½á ÀǾàǰ °³¹ß °úÁ¤À» °¡¼ÓÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÇÇÐ ¿¬±¸¿¡¼­ ÄÚÀÚ¸£ AI´Â ´ë±Ô¸ð µ¥ÀÌÅͼ¼Æ®¸¦ ºÐ¼®ÇÒ ¶§ ±³¶õ ¿äÀÎÀ» °í·ÁÇϸ鼭 Àΰú°ü°è¸¦ ÀÌÇØÇϰí, ´Ü¼øÇÑ »ó°ü°ü°è°¡ ¾Æ´Ñ Àΰú°ü°è¸¦ ÆÄ¾ÇÇÏ´Â °ÍÀÌ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ÀÇ·á ±â°üÀº ºñ¿ë °ü¸®¿Í ȯÀÚ °á°ú ¹× ¾÷¹« È¿À²¼º Çâ»óÀ» À§ÇØ ¿¹Ãø ¹× ó¹æ ºÐ¼®¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó ÄÚÀý AIÀÇ È°¿ëÀ» ´Ã¸®°í ÀÖ½À´Ï´Ù. ÀüÀÚÀǹ«±â·Ï, ¿þ¾î·¯ºí ÀÇ·á±â±â µî ÀÇ·á µ¥ÀÌÅÍÀÇ µðÁöÅÐÈ­µµ ÀÌ ºÐ¾ßÀÇ ¼ºÀåÀ» °¡¼ÓÇϰí ÄÚÀý AI¸¦ Ȱ¿ëÇÒ ¼ö ÀÖ´Â ±âȸ¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù.

¼¼°èÀÇ ÄÚÀý AI ½ÃÀå¿¡ ´ëÇØ Á¶»çºÐ¼®ÇßÀ¸¸ç, ÁÖ¿ä ÃËÁø¿äÀΰú ¾ïÁ¦¿äÀÎ, °æÀï ±¸µµ, ÇâÈÄ µ¿ÇâµîÀÇ Á¤º¸¸¦ Á¦°øÇϰí ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­·Ð

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå °³¿ä

Á¦4Àå Áß¿ä ÀλçÀÌÆ®

  • ÄÚÀý AI ½ÃÀåÀÇ ±â¾÷¿¡°Ô ¸Å·ÂÀûÀÎ ±âȸ
  • ÄÚÀý AI ½ÃÀå : »óÀ§ 3 ¿ëµµ
  • ºÏ¹ÌÀÇ ÄÚÀý AI ½ÃÀå : ¾÷°èº°, ¿ëµµº°
  • ÄÚÀý AI ½ÃÀå : Áö¿ªº°

Á¦5Àå ½ÃÀåÀÇ °³¿ä¿Í »ê¾÷ µ¿Çâ

  • ¼­·Ð
  • ½ÃÀå ¿ªÇÐ
    • ÃËÁø¿äÀÎ
    • ¾ïÁ¦¿äÀÎ
    • ±âȸ
    • °úÁ¦
  • ÀΰúÀû AIÀÇ ÁøÈ­
  • °ø±Þ¸Á ºÐ¼®
  • ¿¡ÄڽýºÅÛ ºÐ¼®
    • ÄÚÀý AI Ç÷§Æû ÇÁ·Î¹ÙÀÌ´õ
    • ÄÚÀý AI Åø ÇÁ·Î¹ÙÀÌ´õ
    • ÄÚÀý AI Åø ŰƮ, API ÇÁ·Î¹ÙÀÌ´õ
    • ÄÚÀý AI ¼­ºñ½º ÇÁ·Î¹ÙÀÌ´õ
  • ÅõÀÚ »óȲ°ú ÀÚ±ÝÁ¶´Þ ½Ã³ª¸®¿À
  • ÄÚÀý AI ½ÃÀå¿¡ ´ëÇÑ »ý¼ºÇü AIÀÇ ¿µÇâ
    • Àΰú ºÐ¼®¿¡ ´ëÇÑ µ¥ÀÌÅÍ °¡¿ë¼ºÀÇ Çâ»ó
    • Àΰú ¸ðµ¨ÀÇ ½ºÆ®·¹½º Å×½ºÆ®
    • º¹ÀâÇÑ ´Ùº¯·® ÇØ¼®ÀÇ Áö¿ø
    • °¡¼Ó ¸ðµ¨ °³¹ß
    • º¸´Ù °øÆòÇÑ °á°ú¸¦ ÇâÇÑ Æí°ßÀÇ »è°¨
    • Àΰú Å×½ºÆ®¸¦ ÇâÇÑ ´ÙÀ̳ª¹Í ½Ã¹Ä·¹À̼Ç
  • °¡°Ý ºÐ¼®
    • °¡°Ý µ¥ÀÌÅÍ : Á¦°øº°
    • °¡°Ý µ¥ÀÌÅÍ : ¿ëµµº°
  • »ç·Ê ¿¬±¸ ºÐ¼®
  • ±â¼ú ºÐ¼®
    • ÁÖ¿ä ±â¼ú
    • º¸¿Ï ±â¼ú
    • ÀÎÁ¢ ±â¼ú
  • ±ÔÁ¦ »óȲ
    • ±ÔÁ¦±â°ü, Á¤ºÎ±â°ü, ±âŸ Á¶Á÷
    • ±ÔÁ¦ : ÄÚÀý AI
  • ƯÇ㠺м®
    • Á¶»ç ¹æ¹ý
    • Ãâ¿øµÈ ƯÇã : ¹®¼­ À¯Çüº°
    • Çõ½Å°ú ƯÇã Ãâ¿ø
  • ÁÖ¿ä ÄÁÆÛ·±½º¿Í À̺¥Æ®(2024-2025³â)
  • Porter's Five Forces ºÐ¼®
  • ÁÖ¿ä ÀÌÇØ°ü°èÀÚ¿Í ±¸ÀÔ ±âÁØ
  • °í°´ ºñÁî´Ï½º¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â µ¿Çâ/È¥¶õ

Á¦6Àå ÄÚÀý AI ½ÃÀå : Á¦°øº°

  • ¼­·Ð
  • ¼ÒÇÁÆ®¿þ¾î
  • ¼­ºñ½º

Á¦7Àå ÄÚÀý AI ½ÃÀå : ¿ëµµº°

  • ¼­·Ð
  • À繫 °ü¸®
  • ÆÇ¸Å¡¤°í°´ °ü¸®
  • °æ¿µ¡¤°ø±Þ¸Á °ü¸®
  • ¸¶ÄÉÆÃ¡¤°¡°Ý °ü¸®
  • ±âŸ ¿ëµµ

Á¦8Àå ÄÚÀý AI ½ÃÀå : ¾÷°èº°

  • ¼­·Ð
  • BFSI
  • ÀǷᡤ»ý¸í°úÇÐ
  • ¼Ò¸Å¡¤E-Commerce
  • Á¦Á¶
  • ¿î¼Û¡¤¹°·ù
  • ¹Ìµð¾î¡¤¿£ÅÍÅ×ÀÎ¸ÕÆ®
  • Åë½Å
  • ¿¡³ÊÁö¡¤À¯Æ¿¸®Æ¼
  • ±âŸ »ê¾÷

Á¦9Àå ÄÚÀý AI ½ÃÀå : Áö¿ªº°

  • ¼­·Ð
  • ºÏ¹Ì
    • ºÏ¹ÌÀÇ ÄÚÀý AI ½ÃÀå ÃËÁø¿äÀÎ
    • ºÏ¹ÌÀÇ °Å½Ã°æÁ¦ Àü¸Á
    • ¹Ì±¹
    • ij³ª´Ù
  • À¯·´
    • À¯·´ÀÇ ÄÚÀý AI ½ÃÀå ÃËÁø¿äÀÎ
    • À¯·´ÀÇ °Å½Ã°æÁ¦ Àü¸Á
    • ¿µ±¹
    • µ¶ÀÏ
    • ÇÁ¶û½º
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ÄÚÀý AI ½ÃÀå ÃËÁø¿äÀÎ
    • ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ °Å½Ã°æÁ¦ Àü¸Á
    • Áß±¹
    • Àεµ
    • ÀϺ»
    • Çѱ¹
    • ASEAN
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • Áßµ¿¡¤¾ÆÇÁ¸®Ä«ÀÇ ÄÚÀý AI ½ÃÀå ÃËÁø¿äÀÎ
    • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ °Å½Ã°æÁ¦ Àü¸Á
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿
  • ¶óƾ¾Æ¸Þ¸®Ä«
    • ¶óƾ¾Æ¸Þ¸®Ä«ÀÇ ÄÚÀý AI ½ÃÀå ÃËÁø¿äÀÎ
    • ¶óƾ¾Æ¸Þ¸®Ä«ÀÇ °Å½Ã°æÁ¦ Àü¸Á
    • ºê¶óÁú
    • ¸ß½ÃÄÚ
    • ±âŸ ¶óƾ¾Æ¸Þ¸®Ä«

Á¦10Àå °æÀï ±¸µµ

  • °³¿ä
  • ÁÖ¿ä Âü¿© ±â¾÷ÀÇ Àü·«/°­Á¡
  • ¸ÅÃ⠺м®
  • ½ÃÀå Á¡À¯À² ºÐ¼®
  • Á¦Ç°ÀÇ ºñ±³ ºÐ¼®
    • DECISIONOS PLATFORM(CAUSALENS)
    • CAUSAL REASONING PLATFORM(CAUSELY)
    • LIFESIGHT PLATFORM(LIFESIGHT)
    • CAUSALITY ENGINE, COGNIZANT CAUSALITY SERVICE(COGNIZANT)
    • DYNATRACE PLATFORM(DYNATRACE)
  • ±â¾÷ÀÇ Æò°¡¿Í À繫 ÁöÇ¥
  • ±â¾÷ Æò°¡ ¸ÅÆ®¸¯½º : ÁÖ¿ä ±â¾÷(2023³â)
  • ±â¾÷ Æò°¡ ¸ÅÆ®¸¯½º : ½ºÅ¸Æ®¾÷/Áß¼Ò±â¾÷(2023³â)
  • °æÀï ½Ã³ª¸®¿À¿Í µ¿Çâ

Á¦11Àå ±â¾÷ °³¿ä

  • ¼­·Ð
  • ÁÖ¿ä ±â¾÷
    • GOOGLE
    • IBM
    • MICROSOFT
    • DYNATRACE
    • COGNIZANT
    • LOGILITY
    • DATAROBOT
    • CAUSALENS
    • DATA POEM
    • LIFESIGHT
    • AITIA
    • CAUSALY
  • ½ºÅ¸Æ®¾÷/Áß¼Ò±â¾÷
    • CAUSALITY LINK
    • TASKADE
    • CAUSELY
    • XPLAIN DATA
    • PARABOLE.AI
    • DATMA
    • INCRMNTAL
    • SCALNYX
    • GEMINOS
    • CAUSAI
    • CAUSA
    • ACTABLE AI
    • BIOTX.AI
    • HOWSO
    • VELDT
    • CML INSIGHT

Á¦12Àå ÀÎÁ¢ ½ÃÀå°ú °ü·Ã ½ÃÀå

  • ¼­·Ð
  • AI ½ÃÀå - ¼¼°èÀÇ ¿¹Ãø(-2030³â)
    • ½ÃÀåÀÇ Á¤ÀÇ
    • ½ÃÀåÀÇ °³¿ä
  • AI °Å¹ö³Í½º ½ÃÀå - ¼¼°èÀÇ ¿¹Ãø(-2030³â)
    • ½ÃÀåÀÇ Á¤ÀÇ
    • ½ÃÀåÀÇ °³¿ä

Á¦13Àå ºÎ·Ï

KSA 25.01.07

It is anticipated that the Causal AI market will experience substantial growth, increasing from USD 56.2 million in 2024 to USD 456.8 million by 2030, with a strong CAGR of 41.8% throughout the forecast period. The rise is fueled by growing demand for advanced decision-making tools in industries such as healthcare, finance, and autonomous vehicles, where traditional AI approaches struggle to clarify the causal relationships behind predictions. Moreover, the increasing significance of employing Causal AI across different industries is evident, particularly in swift analysis and tailored services, as the focus shifts from identifying relationships to executing plans rooted in causality. However, significant obstacles are being faced by the market due to the complex process of constructing and putting into effect causal inference models. This requires extensive knowledge and computational resources, possibly restricting smaller companies from adopting them. Moreover, worries about data privacy and adhering to regulations still hinder the availability and use of data, highlighting the difficulty of balancing innovation with ethical concerns.

Scope of the Report
Years Considered for the Study2019-2030
Base Year2023
Forecast Period2024-2030
Units ConsideredUSD (Million)
SegmentsOffering, Application, Vertical and Region
Regions coveredNorth America, Europe, Asia Pacific, Middle East & Africa, and Latin America

"By offering, software segment is expected to have the largest market share during the forecast period"

During the forecast period, the software segment is expected to have largest market share in the causal AI market by enabling organizations to leverage advanced causal inference capabilities for decision-making. Causal AI technology provides businesses with tools and platforms to discover cause and effect connections, going beyond traditional predictive analytics. This ability is increasingly crucial for companies looking to make well-informed decisions in complex, constantly changing environments. Software solutions can improve, customize, and integrate with existing systems to increase accessibility and flexibility in sectors such as healthcare, finance, retail, and manufacturing. Moreover, the quick advancement of AI platforms, cloud-based deployment choices, and easy-to-use interfaces has also increased the adoption of software. Businesses are using causal AI technology to improve operations, enhance customer interactions, and enhance risk management through analyzing data for actionable insights.

"By vertical, Healthcare & Life sciences is expected to register the fastest market growth rate during the forecast period."

The healthcare and life sciences industry is forecasted to experience fast growth in the causal AI market as it holds promise for transforming personalized medicine, drug development, and enhancing patient care. Causal AI enables healthcare providers and researchers to uncover causal connections, resulting in improved comprehension of disease development, treatment efficacy, and overall health outcomes. This capacity improves clinical decision-making, minimizes trial-and-error in treatments, and speeds up drug development processes by recognizing influential factors affecting health conditions. Furthermore, in medical research, it is crucial for causal AI to analyze large datasets while considering confounding variables in order to understand causality instead of just correlation. Healthcare organizations are increasingly using causal AI to meet the growing need for predictive and prescriptive analytics in order to control costs, boost patient outcomes, and improve operational efficiency. Advancements in digitizing medical data, including electronic health records and wearable health devices, are also driving growth in the sector, creating opportunities for causal AI applications.

"By Region, North America to have the largest market share in 2024, and Asia Pacific is slated to grow at the fastest rate during the forecast period."

North America is projected to be at the forefront of the causal AI market by 2024, as a result of its advanced technology, significant investments in AI R&D, and the major presence of key companies like Google, IBM, and Microsoft. The area has developed a strong atmosphere that supports the application of causal AI across sectors like healthcare, finance, and manufacturing, giving an advantage in competition. Additionally, its significant impact in the field is reinforced by top educational establishments and a dedication to fostering innovation. However, the Asia Pacific (APAC) area is expected to experience the most rapid expansion in the estimated period because of rapid digital transformation and growing enthusiasm for AI-driven solutions in nations like China, Japan, and India. The rapid growth of the region is fueled by the increasing embrace of AI in industries such as e-commerce, automotive production, and finance, combined with significant backing and funding for AI research from the government. Moreover, an increasing number of technology proficient individuals and the flourishing startup culture in APAC are leading to a demand for informal AI programs, positioning it as a rapidly growing sector in the times ahead.

Breakdown of primaries

In-depth interviews were conducted with Chief Executive Officers (CEOs), innovation and technology directors, system integrators, and executives from various key organizations operating in the Causal AI market.

  • By Company: Tier I - 17%, Tier II - 26%, and Tier III - 57%
  • By Designation: D-Level Executives - 47%, C-Level Executives - 19%, and others - 34%
  • By Region: North America - 45%, Europe - 20%, Asia Pacific - 24%, Middle East & Africa - 7%, and Latin America - 4%

The report includes the study of key players offering Causal AI solutions. It profiles major vendors in the Causal AI market. The major players in the Causal AI market include IBM (US), Google (US), Microsoft (US), Dynatrace (US), Cognizant (US), Logility (US), Datarobot (US), CausaLens (UK), Aitia (US), Taskade (US), Causely (US), Causaly (UK), Causality Link (US), Xplain data (Germany), Parabole.AI (US), Datma (US), Incrmntl (Israel), Scalnyx (France), Geminos (US), Data Poem (US), CausaAI (Netherlands), Causa (UK), Lifesight (US), Actable AI (UK), biotx.ai (Germany), Howso (US), VELDT (Japan), and CML Insight (US).

Research coverage

This research report categorizes the Causal AI Market by offering (software and services), by application (financial management, sales & customer management, operations & supply chain management, marketing & pricing management, and other applications), by vertical (BFSI, healthcare & life sciences, retail & e-commerce, manufacturing, transportation & logistics, media & entertainment, telecommunications, energy & utilities, and other verticals) and by Region (North America, Europe, Asia Pacific, Middle East & Africa, and Latin America). The scope of the report covers detailed information regarding the major factors, such as drivers, restraints, challenges, and opportunities, influencing the growth of the Causal AI market. A detailed analysis of the key industry players has been done to provide insights into their business overview, solutions, and services; key strategies; contracts, partnerships, agreements, new product & service launches, mergers and acquisitions, and recent developments associated with the Causal AI market. Competitive analysis of upcoming startups in the Causal AI market ecosystem is covered in this report.

Key Benefits of Buying the Report

The report would provide the market leaders/new entrants in this market with information on the closest approximations of the revenue numbers for the overall Causal AI market and its subsegments. It would help stakeholders understand the competitive landscape and gain more insights better to position their business and plan suitable go-to-market strategies. It also helps stakeholders understand the pulse of the market and provides them with information on key market drivers, restraints, challenges, and opportunities.

The report provides insights on the following pointers:

  • Analysis of key drivers ( Increasing Demand for Explainable AI in Regulated Industries, Growing demand for Robust Counterfactual Analysis, Surge in Demand for Predictive Maintenance and Root Cause Analysis, Shift from Predictive to Causal AI based Prescriptive Analytics), restraints (Lack of Standardized Tools and Frameworks for Causal Inference, High Computational Costs for Causal Modeling), opportunities (Causal AI in Precision Healthcare and Drug Discovery, Scalable Causal Inference APIs for Real-Time Applications , Integrating Causal AI with IoT for Real-Time Decision Making), and challenges (Complexity of Causal Model Development and Interpretability, Data Quality and Availability for Causal Inference).
  • Product Development/Innovation: Detailed insights on upcoming technologies, research & development activities, and new product & service launches in the Causal AI market.
  • Market Development: Comprehensive information about lucrative markets - the report analyses the Causal AI market across varied regions.
  • Market Diversification: Exhaustive information about new products & services, untapped geographies, recent developments, and investments in the Causal AI market.
  • Competitive Assessment: In-depth assessment of market shares, growth strategies and service offerings of leading players like IBM (US), Google (US), Microsoft (US), Dynatrace (US), Cognizant (US), Logility (US), Datarobot (US), CausaLens (UK), Aitia (US), Taskade (US), Causely (US), Causaly (UK), Causality Link (US), Xplain data (Germany), Parabole.AI (US), Datma (US), Incrmntl (Israel), Scalnyx (France), Geminos (US), Data Poem (US), CausaAI (Netherlands), Causa (UK), Lifesight (US), Actable AI (UK), biotx.ai (Germany), Howso (US), VELDT (Japan), and CML Insight (US) among others in the Causal AI market. The report also helps stakeholders understand the pulse of the Causal AI market and provides them with information on key market drivers, restraints, challenges, and opportunities.

TABLE OF CONTENTS

1 INTRODUCTION

  • 1.1 STUDY OBJECTIVES
  • 1.2 MARKET DEFINITION
    • 1.2.1 INCLUSIONS AND EXCLUSIONS
  • 1.3 MARKET SCOPE
    • 1.3.1 MARKET SEGMENTATION
    • 1.3.2 YEARS CONSIDERED
  • 1.4 CURRENCY CONSIDERED
  • 1.5 STAKEHOLDERS
  • 1.6 SUMMARY OF CHANGES

2 RESEARCH METHODOLOGY

  • 2.1 RESEARCH DATA
    • 2.1.1 SECONDARY DATA
    • 2.1.2 PRIMARY DATA
      • 2.1.2.1 Breakup of primary profiles
      • 2.1.2.2 Key industry insights
  • 2.2 MARKET BREAKUP AND DATA TRIANGULATION
  • 2.3 MARKET SIZE ESTIMATION
    • 2.3.1 TOP-DOWN APPROACH
    • 2.3.2 BOTTOM-UP APPROACH
  • 2.4 MARKET FORECAST
  • 2.5 RESEARCH ASSUMPTIONS
  • 2.6 RESEARCH LIMITATIONS

3 EXECUTIVE SUMMARY

4 PREMIUM INSIGHTS

  • 4.1 ATTRACTIVE OPPORTUNITIES FOR PLAYERS IN CAUSAL AI MARKET
  • 4.2 CAUSAL AI MARKET: TOP THREE APPLICATIONS
  • 4.3 NORTH AMERICA: CAUSAL AI MARKET, BY APPLICATION AND VERTICAL
  • 4.4 CAUSAL AI MARKET, BY REGION

5 MARKET OVERVIEW AND INDUSTRY TRENDS

  • 5.1 INTRODUCTION
  • 5.2 MARKET DYNAMICS
    • 5.2.1 DRIVERS
      • 5.2.1.1 Increasing demand for explainable AI in regulated industries
      • 5.2.1.2 Growing demand for robust counterfactual analysis
      • 5.2.1.3 Surge in demand for predictive maintenance and root cause analysis
      • 5.2.1.4 Shift from predictive to causal AI-based prescriptive analytics
    • 5.2.2 RESTRAINTS
      • 5.2.2.1 Lack of standardized tools and frameworks for causal inference
      • 5.2.2.2 High computational costs for causal modeling
    • 5.2.3 OPPORTUNITIES
      • 5.2.3.1 Causal AI in precision healthcare and drug discovery
      • 5.2.3.2 Scalable causal inference APIs for real-time applications
      • 5.2.3.3 Integrating causal AI with IoT for real-time decision making
    • 5.2.4 CHALLENGES
      • 5.2.4.1 Complexity of causal model development and interpretability
      • 5.2.4.2 Data quality and availability for causal inference
  • 5.3 EVOLUTION OF CAUSAL AI
  • 5.4 SUPPLY CHAIN ANALYSIS
  • 5.5 ECOSYSTEM ANALYSIS
    • 5.5.1 CAUSAL AI PLATFORM PROVIDERS
    • 5.5.2 CAUSAL AI TOOL PROVIDERS
    • 5.5.3 CAUSAL AI TOOLKITS AND APIS PROVIDERS
    • 5.5.4 CAUSAL AI SERVICE PROVIDERS
  • 5.6 INVESTMENT LANDSCAPE AND FUNDING SCENARIO
  • 5.7 IMPACT OF GENERATIVE AI IN CAUSAL AI MARKET
    • 5.7.1 ENHANCED DATA AVAILABILITY FOR CAUSAL ANALYSIS
    • 5.7.2 STRESS TESTING OF CAUSAL MODELS
    • 5.7.3 SUPPORT FOR COMPLEX MULTIVARIABLE ANALYSIS
    • 5.7.4 ACCELERATED MODEL DEVELOPMENT
    • 5.7.5 BIAS REDUCTION FOR FAIRER OUTCOMES
    • 5.7.6 DYNAMIC SIMULATIONS FOR CAUSAL TESTING
  • 5.8 PRICING ANALYSIS
    • 5.8.1 PRICING DATA, BY OFFERING
    • 5.8.2 PRICING DATA, BY APPLICATION
  • 5.9 CASE STUDY ANALYSIS
    • 5.9.1 CASE STUDY 1: DYNATRACE BOOSTS BMO'S DIGITAL EFFICIENCY WITH CAUSAL AI-POWERED INSIGHTS AND AUTOMATION
    • 5.9.2 CASE STUDY 2: FINGERSOFT ACHIEVES DATA-DRIVEN MARKETING OPTIMIZATION WITH INCRMNTAL'S CAUSAL AI INSIGHTS
    • 5.9.3 CASE STUDY 3: ACCELERATING FAULT DETECTION WITH CAUSAL AI FOR ENHANCED PRODUCT RELIABILITY IN MANUFACTURING
    • 5.9.4 CASE STUDY 4: LEVERAGING CAUSAL AI FOR ENHANCED ROOT CAUSE ANALYSIS IN TRUMPF'S EQUIPMENT MAINTENANCE
    • 5.9.5 CASE STUDY 5: CAUSA TECH ENHANCED OPERATIONAL EFFICIENCY FOR LEADING MANUFACTURING FIRM, STRENGTHENING SUPPLY CHAIN RESILIENCE
    • 5.9.6 CASE STUDY 6: LIFESIGHT ADDRESSING KEY CHALLENGES IN MARKETING, ENHANCING EFFICIENCY AND SALES FOR DTC BEAUTY BRAND
  • 5.10 TECHNOLOGY ANALYSIS
    • 5.10.1 KEY TECHNOLOGIES
      • 5.10.1.1 Causal inference algorithms
      • 5.10.1.2 Explainable AI (XAI)
      • 5.10.1.3 Structural equation modeling (SEM)
      • 5.10.1.4 Bayesian networks
      • 5.10.1.5 Causal graphs
    • 5.10.2 COMPLEMENTARY TECHNOLOGIES
      • 5.10.2.1 Machine learning
      • 5.10.2.2 Reinforcement learning
      • 5.10.2.3 Data engineering
      • 5.10.2.4 Knowledge graphs
    • 5.10.3 ADJACENT TECHNOLOGIES
      • 5.10.3.1 Predictive analytics
      • 5.10.3.2 Decision intelligence
      • 5.10.3.3 Synthetic data generation
      • 5.10.3.4 Natural language processing (NLP)
  • 5.11 REGULATORY LANDSCAPE
    • 5.11.1 REGULATORY BODIES, GOVERNMENT AGENCIES, AND OTHER ORGANIZATIONS
    • 5.11.2 REGULATIONS: CAUSAL AI
      • 5.11.2.1 North America
        • 5.11.2.1.1 Blueprint for AI Bill of Rights (US)
        • 5.11.2.1.2 Directive on Automated Decision-Making (Canada)
      • 5.11.2.2 Europe
        • 5.11.2.2.1 UK AI Regulation White Paper
        • 5.11.2.2.2 Gesetz zur Regulierung Kunstlicher Intelligenz (AI Regulation Law - Germany)
        • 5.11.2.2.3 Loi pour une Republique numerique (Digital Republic Act - France)
        • 5.11.2.2.4 Codice in materia di protezione dei dati personali (Data Protection Code - Italy)
        • 5.11.2.2.5 Ley de Servicios Digitales (Digital Services Act - Spain)
        • 5.11.2.2.6 Dutch Data Protection Authority (Autoriteit Persoonsgegevens) Guidelines
        • 5.11.2.2.7 Swedish National Board of Trade AI Guidelines
        • 5.11.2.2.8 Danish Data Protection Agency (Datatilsynet) AI Recommendations
        • 5.11.2.2.9 Artificial Intelligence 4.0 (AI 4.0) Program - Finland
      • 5.11.2.3 Asia Pacific
        • 5.11.2.3.1 Personal Data Protection Bill (PDPB) & National Strategy on AI (NSAI) - India
        • 5.11.2.3.2 Basic Act on Advancement of Utilizing Public and Private Sector Data & AI Guidelines - Japan
        • 5.11.2.3.3 New Generation Artificial Intelligence Development Plan & AI Ethics Guidelines - China
        • 5.11.2.3.4 Framework Act on Intelligent Informatization - South Korea
        • 5.11.2.3.5 AI Ethics Framework (Australia) & AI Strategy (New Zealand)
        • 5.11.2.3.6 Model AI Governance Framework - Singapore
        • 5.11.2.3.7 National AI Framework - Malaysia
        • 5.11.2.3.8 National AI Roadmap - Philippines
      • 5.11.2.4 Middle East & Africa
        • 5.11.2.4.1 Saudi Data & Artificial Intelligence Authority (SDAIA) Regulations
        • 5.11.2.4.2 UAE National AI Strategy 2031
        • 5.11.2.4.3 Qatar National AI Strategy
        • 5.11.2.4.4 National Artificial Intelligence Strategy (2021-2025) - Turkey
        • 5.11.2.4.5 African Union (AU) AI Framework
        • 5.11.2.4.6 Egyptian Artificial Intelligence Strategy
        • 5.11.2.4.7 Kuwait National Development Plan (New Kuwait Vision 2035)
      • 5.11.2.5 Latin America
        • 5.11.2.5.1 Brazilian General Data Protection Law (LGPD)
        • 5.11.2.5.2 Federal Law on Protection of Personal Data Held by Private Parties - Mexico
        • 5.11.2.5.3 Argentina Personal Data Protection Law (PDPL) & AI Ethics Framework
        • 5.11.2.5.4 Chilean Data Protection Law & National AI Policy
        • 5.11.2.5.5 Colombian Data Protection Law (Law 1581) & AI Ethics Guidelines
        • 5.11.2.5.6 Peruvian Personal Data Protection Law & National AI Strategy
  • 5.12 PATENT ANALYSIS
    • 5.12.1 METHODOLOGY
    • 5.12.2 PATENTS FILED, BY DOCUMENT TYPE
    • 5.12.3 INNOVATION AND PATENT APPLICATIONS
  • 5.13 KEY CONFERENCES AND EVENTS (2024-2025)
  • 5.14 PORTER'S FIVE FORCES ANALYSIS
    • 5.14.1 THREAT OF NEW ENTRANTS
    • 5.14.2 THREAT OF SUBSTITUTES
    • 5.14.3 BARGAINING POWER OF SUPPLIERS
    • 5.14.4 BARGAINING POWER OF BUYERS
    • 5.14.5 INTENSITY OF COMPETITIVE RIVALRY
  • 5.15 KEY STAKEHOLDERS & BUYING CRITERIA
    • 5.15.1 KEY STAKEHOLDERS IN BUYING PROCESS
    • 5.15.2 BUYING CRITERIA
  • 5.16 TRENDS/DISRUPTIONS IMPACTING CUSTOMER BUSINESS

6 CAUSAL AI MARKET, BY OFFERING

  • 6.1 INTRODUCTION
    • 6.1.1 OFFERING: CAUSAL AI MARKET DRIVERS
  • 6.2 SOFTWARE
    • 6.2.1 RISING DEMAND FOR DATA-DRIVEN DECISIONS DRIVES GROWTH IN INDUSTRY-SPECIFIC CAUSAL AI SOFTWARE
    • 6.2.2 CAUSAL AI PLATFORMS
    • 6.2.3 CAUSAL AI SOLUTIONS
      • 6.2.3.1 Causal discovery
      • 6.2.3.2 Causal modeling
      • 6.2.3.3 Decision intelligence
      • 6.2.3.4 Root-cause analysis
      • 6.2.3.5 Causal AI APIs
      • 6.2.3.6 Software development kits
  • 6.3 SERVICES
    • 6.3.1 CAUSAL AI SERVICES ENABLE BUSINESSES TO PREDICT IMPACT OF POTENTIAL CHANGES AND MAKE PROACTIVE ADJUSTMENTS
      • 6.3.1.1 Consulting services
      • 6.3.1.2 Deployment & integration services
      • 6.3.1.3 Training, support & maintenance services

7 CAUSAL AI MARKET, BY APPLICATION

  • 7.1 INTRODUCTION
    • 7.1.1 APPLICATION: CAUSAL AI MARKET DRIVERS
  • 7.2 FINANCIAL MANAGEMENT
    • 7.2.1 CAUSAL AI IMPROVES REGULATORY COMPLIANCE AND FOSTERS AGILE FINANCIAL MANAGEMENT IN ORGANIZATIONS
    • 7.2.2 FACTOR INVESTING
    • 7.2.3 PORTFOLIO SIMULATION
    • 7.2.4 INVESTMENT ANALYSIS
    • 7.2.5 OTHER FINANCIAL MANAGEMENT APPLICATIONS
  • 7.3 SALES & CUSTOMER MANAGEMENT
    • 7.3.1 CAUSAL AI HELPS ORGANIZATIONS IDENTIFY KEY DRIVERS OF CUSTOMER ACTIONS BY ANALYZING CAUSAL RELATIONSHIPS BETWEEN FACTORS
    • 7.3.2 CHURN PREDICTION & PREVENTION
    • 7.3.3 CUSTOMER SEGMENTATION
    • 7.3.4 CUSTOMER LIFETIME VALUE (CLV) PREDICTION
    • 7.3.5 CUSTOMER EXPERIENCE OPTIMIZATION
    • 7.3.6 PERSONALIZED RECOMMENDATIONS
    • 7.3.7 OTHER SALES & CUSTOMER MANAGEMENT APPLICATIONS
  • 7.4 OPERATIONS & SUPPLY CHAIN MANAGEMENT
    • 7.4.1 CAUSAL AI ENABLES BUSINESSES OPTIMIZE PROCESSES, PREDICT DISRUPTIONS, AND MAKE DATA-DRIVEN DECISIONS TO ENHANCE EFFICIENCY
    • 7.4.2 BOTTLENECK REMEDIATION
    • 7.4.3 PREDICTIVE MAINTENANCE
    • 7.4.4 REAL-TIME FAILURE RESPONSE
    • 7.4.5 INVENTORY MANAGEMENT
    • 7.4.6 OTHER OPERATIONS & SUPPLY CHAIN MANAGEMENT APPLICATIONS
  • 7.5 MARKETING & PRICING MANAGEMENT
    • 7.5.1 CAUSAL AI HELPS BUSINESSES MAKE DATA-DRIVEN DECISIONS TO BOOST PROFITABILITY AND GAIN COMPETITIVE EDGE IN RAPIDLY CHANGING MARKET
    • 7.5.2 MARKETING CHANNEL OPTIMIZATION
    • 7.5.3 PRICE ELASTICITY MODELING
    • 7.5.4 PROMOTIONAL IMPACT ANALYSIS
    • 7.5.5 COMPETITIVE PRICING ANALYSIS
    • 7.5.6 OTHER MARKETING & PRICING MANAGEMENT APPLICATIONS
  • 7.6 OTHER APPLICATIONS

8 CAUSAL AI MARKET, BY VERTICAL

  • 8.1 INTRODUCTION
    • 8.1.1 VERTICAL: CAUSAL AI MARKET DRIVERS
  • 8.2 BFSI
    • 8.2.1 CAUSAL AI RESHAPE BFSI PRACTICES, SETTING NEW STANDARDS FOR CUSTOMER-CENTRIC SERVICE DELIVERY IN FINANCIAL ECOSYSTEMS
    • 8.2.2 BFSI: USE CASES
  • 8.3 HEALTHCARE & LIFE SCIENCES
    • 8.3.1 CAUSAL AI GUIDES POLICIES OR PUBLIC HEALTH INTERVENTIONS, LEADING TO EFFECTIVE HEALTH PROGRAMS
    • 8.3.2 HEALTHCARE & LIFE SCIENCES: USE CASES
  • 8.4 RETAIL & E-COMMERCE
    • 8.4.1 BUSINESSES USING CAUSAL AI FOR ANALYZING FINANCIAL IMPACT, PROVIDING DATA-BACKED INSIGHTS ON DECISIONS
    • 8.4.2 RETAIL & E-COMMERCE: USE CASES
  • 8.5 MANUFACTURING
    • 8.5.1 CAUSAL AI ENABLES DEEPER INSIGHTS INTO CAUSE-AND-EFFECT RELATIONSHIPS IN PRODUCTION PROCESSES, REVOLUTIONIZING MANUFACTURING
    • 8.5.2 MANUFACTURING: USE CASES
  • 8.6 TRANSPORTATION & LOGISTICS
    • 8.6.1 CAUSAL AI ENHANCING INVENTORY MANAGEMENT, ROUTE PLANNING, AND OVERALL OPERATIONAL EFFICIENCY, REDUCING DOWNTIME AND COSTS
    • 8.6.2 TRANSPORTATION & LOGISTICS: USE CASES
  • 8.7 MEDIA & ENTERTAINMENT
    • 8.7.1 CAUSAL AI PROVIDES DEEPER INSIGHTS INTO CONTENT CREATION AND AUDIENCE ENGAGEMENT
    • 8.7.2 MEDIA & ENTERTAINMENT: USE CASES
  • 8.8 TELECOMMUNICATIONS
    • 8.8.1 TELECOM COMPANIES UTILIZING CAUSAL AI TO IDENTIFY SPECIFIC FACTORS CONTRIBUTING TO CUSTOMER DISSATISFACTION
    • 8.8.2 TELECOMMUNICATIONS: USE CASES
  • 8.9 ENERGY & UTILITIES
    • 8.9.1 CAUSAL AI OPTIMIZES ENERGY PRODUCTION, ALLOWING MORE EFFICIENT SCHEDULING AND OPERATION OF PLANTS
    • 8.9.2 ENERGY & UTILITIES: USE CASES
  • 8.10 OTHER VERTICALS

9 CAUSAL AI MARKET, BY REGION

  • 9.1 INTRODUCTION
  • 9.2 NORTH AMERICA
    • 9.2.1 NORTH AMERICA: CAUSAL AI MARKET DRIVERS
    • 9.2.2 NORTH AMERICA: MACROECONOMIC OUTLOOK
    • 9.2.3 US
      • 9.2.3.1 Need for advanced analytics that determine cause-and-effect relationships to drive market
    • 9.2.4 CANADA
      • 9.2.4.1 Use of causal AI to enhance everything from supply chain operations to personalized marketing strategies to drive market
  • 9.3 EUROPE
    • 9.3.1 EUROPE: CAUSAL AI MARKET DRIVERS
    • 9.3.2 EUROPE: MACROECONOMIC OUTLOOK
    • 9.3.3 UK
      • 9.3.3.1 Advancements in machine learning, data analytics, and artificial intelligence technologies to drive market
    • 9.3.4 GERMANY
      • 9.3.4.1 Investment in AI research through initiatives to drive market
    • 9.3.5 FRANCE
      • 9.3.5.1 French AI startups attracting significant investment to scale their AI-driven platforms to drive market
    • 9.3.6 REST OF EUROPE
  • 9.4 ASIA PACIFIC
    • 9.4.1 ASIA PACIFIC: CAUSAL AI MARKET DRIVERS
    • 9.4.2 ASIA PACIFIC: MACROECONOMIC OUTLOOK
    • 9.4.3 CHINA
      • 9.4.3.1 China's strong commitment to becoming world leader in AI to drive market
    • 9.4.4 INDIA
      • 9.4.4.1 Advancements in causal AI by Indian tech firms and academia, supported by collaborations and government initiatives, to drive market
    • 9.4.5 JAPAN
      • 9.4.5.1 Industries leveraging causal AI to optimize operations and create more adaptive systems to drive market
    • 9.4.6 SOUTH KOREA
      • 9.4.6.1 Partnerships with global AI firms to create more advanced causal inference algorithms to drive market
    • 9.4.7 ASEAN
      • 9.4.7.1 Integration of causal AI into diverse sectors to drive market
    • 9.4.8 REST OF ASIA PACIFIC
  • 9.5 MIDDLE EAST & AFRICA
    • 9.5.1 MIDDLE EAST & AFRICA: CAUSAL AI MARKET DRIVERS
    • 9.5.2 MIDDLE EAST & AFRICA: MACROECONOMIC OUTLOOK
    • 9.5.3 SAUDI ARABIA
      • 9.5.3.1 Leveraging causal models to enhance predictive capabilities, optimize resource allocation, and improve operational efficiencies to drive market
    • 9.5.4 UAE
      • 9.5.4.1 Prioritization of AI across development strategies to drive market
    • 9.5.5 SOUTH AFRICA
      • 9.5.5.1 Startups using causal AI to improve financial inclusion to drive market
    • 9.5.6 REST OF MIDDLE EAST
  • 9.6 LATIN AMERICA
    • 9.6.1 LATIN AMERICA: CAUSAL AI MARKET DRIVERS
    • 9.6.2 LATIN AMERICA: MACROECONOMIC OUTLOOK
    • 9.6.3 BRAZIL
      • 9.6.3.1 Growing demand for advanced analytics and decision-making tools across sectors to drive market
    • 9.6.4 MEXICO
      • 9.6.4.1 Causal AI to play pivotal role in reshaping technological landscape and business strategies
    • 9.6.5 REST OF LATIN AMERICA

10 COMPETITIVE LANDSCAPE

  • 10.1 OVERVIEW
  • 10.2 KEY PLAYER STRATEGIES/RIGHT TO WIN
  • 10.3 REVENUE ANALYSIS
  • 10.4 MARKET SHARE ANALYSIS
    • 10.4.1 MARKET SHARE OF KEY PLAYERS OFFERING CAUSAL AI
      • 10.4.1.1 Market Ranking Analysis
  • 10.5 PRODUCT COMPARATIVE ANALYSIS
    • 10.5.1 DECISIONOS PLATFORM (CAUSALENS)
    • 10.5.2 CAUSAL REASONING PLATFORM (CAUSELY)
    • 10.5.3 LIFESIGHT PLATFORM (LIFESIGHT)
    • 10.5.4 CAUSALITY ENGINE, COGNIZANT CAUSALITY SERVICE (COGNIZANT)
    • 10.5.5 DYNATRACE PLATFORM (DYNATRACE)
  • 10.6 COMPANY VALUATION AND FINANCIAL METRICS
  • 10.7 COMPANY EVALUATION MATRIX: KEY PLAYERS, 2023
    • 10.7.1 STARS
    • 10.7.2 EMERGING LEADERS
    • 10.7.3 PERVASIVE PLAYERS
    • 10.7.4 PARTICIPANTS
    • 10.7.5 COMPANY FOOTPRINT: KEY PLAYERS, 2023
      • 10.7.5.1 Company footprint
      • 10.7.5.2 Regional footprint
      • 10.7.5.3 Offering footprint
      • 10.7.5.4 Application footprint
      • 10.7.5.5 Vertical footprint
  • 10.8 COMPANY EVALUATION MATRIX: STARTUPS/SMES, 2023
    • 10.8.1 PROGRESSIVE COMPANIES
    • 10.8.2 RESPONSIVE COMPANIES
    • 10.8.3 DYNAMIC COMPANIES
    • 10.8.4 STARTING BLOCKS
    • 10.8.5 COMPETITIVE BENCHMARKING: STARTUPS/SMES, 2023
      • 10.8.5.1 Detailed list of key startups/SMEs
      • 10.8.5.2 Competitive benchmarking of key startups/SMEs
  • 10.9 COMPETITIVE SCENARIO AND TRENDS
    • 10.9.1 PRODUCT LAUNCHES AND ENHANCEMENTS
    • 10.9.2 DEALS

11 COMPANY PROFILES

  • 11.1 INTRODUCTION
  • 11.2 KEY PLAYERS
    • 11.2.1 GOOGLE
      • 11.2.1.1 Business overview
      • 11.2.1.2 Products/Solutions/Services offered
      • 11.2.1.3 Recent developments
        • 11.2.1.3.1 Product launches & enhancements
        • 11.2.1.3.2 Deals
      • 11.2.1.4 MnM view
        • 11.2.1.4.1 Key strengths
        • 11.2.1.4.2 Strategic choices
        • 11.2.1.4.3 Weaknesses and competitive threats
    • 11.2.2 IBM
      • 11.2.2.1 Business overview
      • 11.2.2.2 Products/Solutions/Services offered
      • 11.2.2.3 Recent developments
        • 11.2.2.3.1 Product launches & enhancements
      • 11.2.2.4 MnM view
        • 11.2.2.4.1 Key strengths
        • 11.2.2.4.2 Strategic choices
        • 11.2.2.4.3 Weaknesses and competitive threats
    • 11.2.3 MICROSOFT
      • 11.2.3.1 Business overview
      • 11.2.3.2 Products/Solutions/Services offered
      • 11.2.3.3 Recent developments
        • 11.2.3.3.1 Product launches & enhancements
      • 11.2.3.4 MnM view
        • 11.2.3.4.1 Key strengths
        • 11.2.3.4.2 Strategic choices
        • 11.2.3.4.3 Weaknesses and competitive threats
    • 11.2.4 DYNATRACE
      • 11.2.4.1 Business overview
      • 11.2.4.2 Products/Solutions/Services offered
      • 11.2.4.3 Recent developments
        • 11.2.4.3.1 Product launches & enhancements
        • 11.2.4.3.2 Deals
      • 11.2.4.4 MnM view
        • 11.2.4.4.1 Key strengths
        • 11.2.4.4.2 Strategic choices
        • 11.2.4.4.3 Weaknesses and competitive threats
    • 11.2.5 COGNIZANT
      • 11.2.5.1 Business overview
      • 11.2.5.2 Products/Solutions/Services offered
      • 11.2.5.3 Recent developments
        • 11.2.5.3.1 Product launches & enhancements
      • 11.2.5.4 MnM View
        • 11.2.5.4.1 Key strengths
        • 11.2.5.4.2 Strategic choices
        • 11.2.5.4.3 Weaknesses and competitive threats
    • 11.2.6 LOGILITY
      • 11.2.6.1 Business overview
      • 11.2.6.2 Products/Solutions/Services offered
      • 11.2.6.3 Recent developments
        • 11.2.6.3.1 Deals
    • 11.2.7 DATAROBOT
      • 11.2.7.1 Business overview
      • 11.2.7.2 Products/Solutions/Services offered
    • 11.2.8 CAUSALENS
      • 11.2.8.1 Business overview
      • 11.2.8.2 Products/Solutions/Services offered
      • 11.2.8.3 Recent developments
        • 11.2.8.3.1 Product launches & enhancements
        • 11.2.8.3.2 Deals
    • 11.2.9 DATA POEM
    • 11.2.10 LIFESIGHT
    • 11.2.11 AITIA
    • 11.2.12 CAUSALY
  • 11.3 STARTUPS/SMES
    • 11.3.1 CAUSALITY LINK
      • 11.3.1.1 Business overview
      • 11.3.1.2 Products/Solutions/Services offered
      • 11.3.1.3 Recent developments
        • 11.3.1.3.1 Product launches & enhancements
        • 11.3.1.3.2 Deals
    • 11.3.2 TASKADE
      • 11.3.2.1 Business overview
      • 11.3.2.2 Products/Solutions/Services offered
      • 11.3.2.3 Recent developments
        • 11.3.2.3.1 Product launches & enhancements
    • 11.3.3 CAUSELY
    • 11.3.4 XPLAIN DATA
    • 11.3.5 PARABOLE.AI
    • 11.3.6 DATMA
    • 11.3.7 INCRMNTAL
    • 11.3.8 SCALNYX
    • 11.3.9 GEMINOS
    • 11.3.10 CAUSAI
    • 11.3.11 CAUSA
    • 11.3.12 ACTABLE AI
    • 11.3.13 BIOTX.AI
    • 11.3.14 HOWSO
    • 11.3.15 VELDT
    • 11.3.16 CML INSIGHT

12 ADJACENT AND RELATED MARKETS

  • 12.1 INTRODUCTION
  • 12.2 ARTIFICIAL INTELLIGENCE (AI) MARKET - GLOBAL FORECAST TO 2030
    • 12.2.1 MARKET DEFINITION
    • 12.2.2 MARKET OVERVIEW
      • 12.2.2.1 Artificial intelligence market, by offering
      • 12.2.2.2 Artificial intelligence market, by business function
      • 12.2.2.3 Artificial intelligence market, by technology
      • 12.2.2.4 Artificial intelligence market, by vertical
      • 12.2.2.5 Artificial intelligence market, by region
  • 12.3 AI GOVERNANCE MARKET- GLOBAL FORECAST TO 2030
    • 12.3.1 MARKET DEFINITION
    • 12.3.2 MARKET OVERVIEW
      • 12.3.2.1 AI governance market, by product type
      • 12.3.2.2 AI governance market, by functionality
      • 12.3.2.3 AI governance market, by end user
      • 12.3.2.4 AI governance market, by region

13 APPENDIX

  • 13.1 DISCUSSION GUIDE
  • 13.2 KNOWLEDGESTORE: MARKETSANDMARKETS' SUBSCRIPTION PORTAL
  • 13.3 CUSTOMIZATION OPTIONS
  • 13.4 RELATED REPORTS
  • 13.5 AUTHOR DETAILS
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦