시장보고서
상품코드
1696196

세계의 GPUaaS(GPU As A Service) 시장 예측(-2030년) : 서비스 모델별, GPU 유형별, 배포별, 기업 유형별, 용도별, 지역별

GPU as a Service Market by Service Model (IaaS, PaaS), GPU Type (High-end GPUs, Mid-range GPUs, Low-end GPUs), Deployment (Public Cloud, Private Cloud, Hybrid Cloud), Enterprise Type (Large Enterprises, SMEs) - Global Forecast to 2030

발행일: | 리서치사: MarketsandMarkets | 페이지 정보: 영문 282 Pages | 배송안내 : 즉시배송

    
    
    




※ 본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문 목차를 참고해주시기 바랍니다.

GPUaaS(GPU As A Service) 시장 규모는 2025년에 82억 1,000만 달러 규모에 달할 것으로 예상되며, 2025-2030년에 26.5%의 CAGR로 확대하며, 2030년에는 266억 2,000만 달러에 달할 것으로 예상되고 있습니다.

GPUaaS 시장의 성장은 비디오 렌더링, 3D 컨텐츠 제작, 실시간 용도에서 고성능 GPU에 대한 수요 증가가 주도하고 있습니다. 게임, 영화 제작, 건축 등의 산업은 복잡한 시각효과(VFX) 및 시뮬레이션을 위해 확장 가능하고 비용 효율적인 GPU 솔루션이 필요하며, GPUaaS는 고가의 온프레미스 GPU 클러스터를 없애고 클라우드 리소스에 대한 온디맨드 액세스를 제공합니다. 클라우드 리소스에 대한 온디맨드 액세스를 제공합니다. 또한 언리얼 엔진 5와 같은 실시간 렌더링 엔진과 AI 기반 컨텐츠 생성의 부상으로 시장 성장이 더욱 가속화되고 있으며, 몰입감 있는 가상 경험을 제공하고 스튜디오, 개발자 및 컨텐츠 제작자의 제작 일정을 단축할 수 있게 되었습니다.

조사 범위
조사 대상연도 2020-2030년
기준연도 2024년
예측 기간 2025-2030년
검토 단위 금액(10억 달러)
부문별 서비스 모델별, GPU 유형별, 배포별, 기업 유형별, 용도별, 지역별
대상 지역 북미, 유럽, 아시아태평양, 기타 지역

하이엔드 GPU 부문은 AI, ML, 복잡한 시뮬레이션의 계산 가속화 요구사항 증가로 인해 GPUaaS 시장에서 급성장하고 있으며, NVIDIA의 H100 Tensor Core GPU나 AMD의 Instinct MI300X와 같은 하이엔드 GPU는 대규모 언어 모델(LLM) 및 생성형 AI 용도의 학습에 적합한 방대한 연산 능력을 제공합니다. 예를 들어 Amazon Web Services(AWS)는 EC2 UltraClusters에 NVIDIA H100 GPU를 탑재하여 1조 개의 매개변수 규모의 AI 모델을 지원하고 있습니다. 마찬가지로 Microsoft Azure와 Google Cloud는 하이엔드 GPU를 통합하여 기업을 위한 확장 가능한 AI 인프라를 제공합니다. 영화 및 게임 산업도 이러한 성장에 기여하고 있으며, 실시간 렌더링, 특수효과(VFX), 몰입형 가상 경험에 하이엔드 GPU를 사용하고, 에픽게임즈의 언리얼 엔진 5와 같은 플랫폼은 GPUaaS를 활용하여 포토리얼한 가상 제작에 활용하고 있습니다.에 GPUaaS를 활용하고 있습니다. 또한 헬스케어 및 과학 연구 분야에서도 GPUaaS는 신약 개발 및 의료 영상 분석에 활용되고 있습니다. 산업 전반에 걸쳐 AI 도입이 확대됨에 따라 기업은 증가하는 컴퓨팅 수요를 충족하기 위해 하이엔드 GPU를 선택하고 있습니다. 유연한 종량제 클라우드 모델은 이러한 강력한 자산에 대한 접근성을 확대하여 하이엔드 GPU 부문의 성장을 더욱 가속화할 것입니다.

대기업 부문은 높은 컴퓨팅 요구사항과 광범위한 AI 도입으로 인해 GPUaaS 시장에서 가장 높은 시장 점유율을 차지할 것으로 예상됩니다. 헬스케어, 금융, 자동차, 미디어 분야의 다국적 대기업, 포춘지 선정 500대 기업 및 업계 선두주자들은 의료 영상, 신약 개발, 부정행위 감지, 실시간 분석 등의 AI 용도에 GPUaaS를 적극 활용하고 있습니다. 대규모 언어 모델(LLM) 학습 및 알고리즘 트레이딩와 같은 복잡한 워크로드를 관리하기 위한 확장 가능한 GPU 리소스에 대한 요구가 이러한 성장을 주도하고 있습니다. 클라우드 서비스 프로바이더들은 대기업의 커스터마이징 요구를 충족시키기 위해 전용 GPU 클러스터, 광대역 네트워크, 기업급 보안을 갖춘 맞춤형 솔루션을 제공합니다. 또한 멀티 클라우드 및 하이브리드 클라우드의 확장성을 통해 기업은 저지연 및 고가용성을 보장하면서 비용을 최적화할 수 있습니다. 기업은 장기 계약, 예측 가능한 GPU 사용 비용 구축, 최신 GPU 기술에 대한 접근성 등의 이점을 누릴 수 있습니다. 미션 크리티컬한 용도를 사용하는 개발 업계에서는 자율주행차 개발이나 재무 모델링과 같은 활동에 전용 GPU 리소스를 할당하는 경우가 많으며, AI의 도입이 증가하고 데이터베이스 의사결정에 대한 의존도가 높아짐에 따라 대기업은 GPUaaS 시장을 독점할 것으로 예상됩니다. 확장 가능한 컴퓨팅을 위한 유연성과 비용 효율성을 활용할 것으로 예상됩니다.

아시아태평양은 클라우드 컴퓨팅의 성장 가속화, AI 도입 증가, 데이터센터 인프라에 대한 대규모 투자로 인해 GPUaaS 시장에서 큰 성장을 보일 것으로 예상됩니다. 이러한 성장은 정부 구상, 민간 투자, 기술 혁신을 통해 중국, 일본, 한국, 인도 등이 주도하고 있습니다. 예를 들어 2023년 5월 중국 정부는 AI 산업 기지 건설 계획을 세우고 AI 연구를 추진하고 있습니다. 또한 심천 AI 규제 등의 정책이 공공 데이터 공유와 기업의 혁신을 촉진하여 AI 도입을 지원하고 있습니다. 일본에서는 AI 인프라에 막대한 투자가 이루어지고 있습니다. 마이크로소프트는 2024년 4월 일본의 클라우드와 AI 인프라에 29억 달러를 투자했고, Oracle은 클라우드 데이터센터 건설에 80억 달러를 약속했습니다. 이러한 프로젝트를 통해 기업은 AI 용도를 위한 확장 가능한 GPU 용량을 이용할 수 있게 됩니다. 인도도 IndiaAI 구상을 통해 GPUaaS를 도입하고 있으며, 2024년 3월 인도 정부는 AI 연구와 스타트업을 위해 1만개 이상의 GPU를 도입하기 위해 1,240억 달러의 투자를 승인했습니다. 이러한 전략적 투자와 노력으로 아시아태평양은 GPUaaS 시장에서 고성장 지역으로 부상하고 있습니다.

세계의 GPUaaS(GPU As A Service) 시장에 대해 조사했으며, 서비스 모델별, GPU 유형별, 배포별, 기업 유형별, 용도별, 지역별 동향 및 시장에 참여하는 기업의 개요 등을 정리하여 전해드립니다.

목차

제1장 서론

제2장 조사 방법

제3장 개요

제4장 주요 인사이트

제5장 시장 개요

  • 서론
  • 시장 역학
    • 촉진요인
    • 억제요인
    • 기회
    • 과제
  • 고객 비즈니스에 영향을 미치는 동향/혼란
  • 가격 분석
    • 주요 참여 기업별 GPU 유형의 참고 가격(2024년)
    • 2024년 GPU 유형의 참고 가격
    • 하이엔드 GPU의 평균 판매 가격 동향(지역별, 2021-2024년)
    • 미드레인지 GPU의 평균 판매 가격 동향(지역별, 2021-2024년)
    • 엔트리 레벨 GPU의 평균 판매 가격 동향(지역별, 2021-2024년)
  • 밸류체인 분석
  • 에코시스템 분석
  • 기술 분석
  • 특허 분석
  • 무역 분석
  • 2025-2026년의 주요 컨퍼런스와 이벤트
  • 사례 연구 분석
  • 투자와 자금조달 시나리오
  • 규제 상황
  • Porter's Five Forces 분석
  • 주요 이해관계자와 구입 프로세스

제6장 GPUaaS의 가격 모델

  • 서론
  • 온디맨드 인스턴스
  • 리저브드 인스탄스
  • 스폿 인스턴스

제7장 GPUaaS 시장, 서비스 모델별

  • 서론
  • IAAS
  • PAAS

제8장 GPUaaS 시장, GPU 유형별

  • 서론
  • 하이엔드 GPU
  • 미드레인지 GPU
  • 엔트리 레벨 GPU

제9장 GPUaaS 시장, 배포별

  • 서론
  • 퍼블릭 클라우드
  • 프라이빗 클라우드
  • 하이브리드 클라우드

제10장 GPUaaS 시장, 기업 유형별

  • 서론
  • 대기업
  • 중소기업

제11장 GPUaaS 시장, 용도별

  • 서론
  • AI와 기계학습
  • 고성능 컴퓨팅
  • 미디어와 엔터테인먼트
  • 기타

제12장 GPUaaS 시장, 지역별

  • 서론
  • 북미
    • 북미의 거시경제 전망
    • 미국
    • 캐나다
    • 멕시코
  • 유럽
    • 유럽의 거시경제 전망
    • 영국
    • 독일
    • 프랑스
    • 이탈리아
    • 스페인
    • 폴란드
    • 북유럽
    • 기타
  • 아시아태평양
    • 아시아태평양의 거시경제 전망
    • 중국
    • 일본
    • 한국
    • 인도
    • 호주
    • 인도네시아
    • 말레이시아
    • 태국
    • 베트남
    • 기타
  • 기타 지역
    • 기타 지역의 거시경제 전망
    • 중동
    • 아프리카
    • 남미

제13장 경쟁 구도

  • 서론
  • 주요 참여 기업의 전략/강점, 2023-2025년
  • 매출 분석, 2022-2024년
  • 시장 점유율 분석, 2024년
  • 기업 가치 평가와 재무 지표
  • 브랜드 비교
  • 기업 평가 매트릭스 : 주요 참여 기업, 2024년
  • 기업 평가 매트릭스 : 스타트업/중소기업, 2024년
  • 경쟁 시나리오

제14장 기업 개요

  • 주요 참여 기업
    • AMAZON WEB SERVICES, INC.
    • MICROSOFT
    • GOOGLE
    • ORACLE
    • IBM
    • COREWEAVE
    • ALIBABA CLOUD
    • LAMBDA
    • TENCENT CLOUD
    • JARVISLABS.AI
  • 기타 기업
    • FLUIDSTACK
    • OVH SAS
    • E2E NETWORKS LIMITED
    • RUNPOD
    • SCALEMATRIX HOLDINGS, INC.
    • VAST.AI
    • ACECLOUD
    • SNOWCELL
    • LINODE LLC
    • YOTTA INFRASTRUCTURE
    • VULTR
    • DIGITALOCEAN, LLC
    • RACKSPACE TECHNOLOGY
    • GCORE
    • NEBIUS B.V.

제15장 부록

KSA 25.04.11

The GPU as a Service market is expected to be worth USD 8.21 billion in 2025 and is estimated to reach USD 26.62 billion by 2030, growing at a CAGR of 26.5% between 2025 and 2030. The growth of the GPU as a Service market is driven by increasing demand for high-performance GPUs in video rendering, 3D content creation, and real-time applications. Industries like gaming, film production, and architecture require scalable and cost-effective GPU solutions for complex visual effects (VFX) and simulations. GPUaaS eliminates the need for expensive on-premises GPU clusters, providing on-demand access to cloud resources. Additionally, the rise of real-time rendering engines like Unreal Engine 5 and AI-driven content generation further accelerates market growth, enabling immersive virtual experiences and reducing production timelines for studios, developers, and content creators.

Scope of the Report
Years Considered for the Study2020-2030
Base Year2024
Forecast Period2025-2030
Units ConsideredValue (USD Billion)
SegmentsBy Service model, GPU type, Business model, Deployment, Enterprise type, Application, and Region
Regions coveredNorth America, Europe, APAC, RoW

"High-end GPU segment to have highest CAGR in the forecasted timeline."

The high-end GPU segment will witness a rapid growth in the GPU as a Service market driven by increasing requirement for accelerated computation in AI, ML, and complicated simulations. High-end GPUs like NVIDIA's H100 Tensor Core GPUs and AMD's Instinct MI300X provide immense computing capabilities making them suitable to train large language models (LLMs) and generative AI applications. For example, Amazon Web Services (AWS) provides EC2 UltraClusters with NVIDIA H100 GPUs to support trillion-parameter AI models. Similarly, Microsoft Azure and Google Cloud integrate high-end GPUs to provide scalable AI infrastructure for enterprises.The film and gaming industries are also contributing to this growth, using high-end GPUs for real-time rendering, special effects (VFX), and immersive virtual experiences. Platforms such as Epic Games' Unreal Engine 5 utilize GPUaaS for photorealistic virtual productions. Also, sectors such as healthcare and scientific research utilize GPUaaS for drug discovery and medical imaging analysis. With increased adoption of AI across industries, businesses opt for high-end GPUs to address growing computational needs. The flexible pay-as-you-go cloud model provides greater access to such powerful assets, further increasing the growth of the high-end GPU segment.

"By Enterprise Type- Large Enterprises segment will hold largest market share of GPU as a Service market in 2030"

The large enterprise segment will hold the highest market share within the GPU as a Service market given their high computing requirements and widespread AI deployment. Multinational conglomerates, Fortune 500 firms and industry titans from sectors such as healthcare, finance, automotive, and media utilize GPUaaS for AI applications such as medical imaging, drug discovery, fraud detection, and real-time analytics to a large extent. The need for scalable GPU resources to manage complex workloads, including large language model (LLM) training and algorithmic trading, drives this growth. Cloud service providers offer tailored solutions with dedicated GPU clusters, high-bandwidth networking, and enterprise-grade security to meet the customization needs of large enterprises. In addition, the scalability of multi-cloud and hybrid cloud deployments allows companies to optimize costs while ensuring low latency and high availability. Enterprises benefit from long-term contracts, constructing predictable GPU usage costs and gaining access to the latest GPU technology. Industries with mission-critical applications often allocate dedicated GPU resources for activities such as autonomous car development and financial modeling. With increasing AI adoption and rising dependence on data-driven decisions, the large corporations will continue to rule the GPUaaS market, leveraging its flexibility and cost-effectiveness for scalable computing.

"Asia Pacific is expected to hold high CAGR in during the forecast period."

Asia Pacific is expected to grow significantly in the GPU as a Service market as a result of accelerating growth in cloud computing, rising adoption of AI, and heavy investments in data center infrastructure. The growth is being led by China, Japan, South Korea, and India through government initiatives, private investment, and technological innovations. For instance, In May 2023, the Chinese government made plans to construct AI industrial bases, driving AI research. Moreover, policies such as the Shenzhen AI Regulation support AI adoption by pushing public data sharing and corporate innovation. Japan is seeing huge investments in AI infrastructure. Microsoft invested USD 2.9 billion in Japan's cloud and AI infrastructure in April 2024, and Oracle pledged USD 8 billion to build cloud data centers. These projects give businesses access to scalable GPU capacity for AI applications. India is also moving ahead with GPUaaS adoption with its IndiaAI initiative. In March 2024, the Indian government sanctioned USD 124 billion in investments to deploy more than 10,000 GPUs, enabling AI research and startups. These strategic investments and efforts make Asia Pacific a high-growth region in the GPUaaS market.

Extensive primary interviews were conducted with key industry experts in the GPU as a Service market space to determine and verify the market size for various segments and subsegments gathered through secondary research. The break-up of primary participants for the report has been shown below: The study contains insights from various industry experts, from component suppliers to Tier 1 companies and OEMs. The break-up of the primaries is as follows:

  • By Company Type: Tier 1 - 60%, Tier 2 - 20%, and Tier 3 - 20%
  • By Designation: Managers - 50%, Directors - 20%, and Others - 30%
  • By Region: North America - 40%, Europe - 10%, Asia Pacific - 30%, and RoW - 20%

The report profiles key players in the GPU as a Service market with their respective market ranking analysis. Prominent players profiled in this report are Amazon web Servies, Inc. (US), Microsoft (US), Google (US), Oracle (US), IBM (US), Coreweave (US), Alibaba Cloud (China), Lambda (US), Tencent Cloud (China), Jarvislabs.ai (India), among others.

Apart from this, Fluidstack (UK), OVH SAS (France), E2E Networks Limited (India), RunPod (US), ScaleMatrix Holdings, Inc. (US), Vast.ai (US), AceCloud (India), Snowcell (Norway), Linode LLC. (US), Yotta Infrastructure (India), VULTR (US), DigitalOcean, LLC. (US), Rackspace Technology (US), Gcore (Luxembourg), and Nebius B.V. (Amsterdam), are among a few emerging companies in the GPU as a Service market.

Research Coverage: This research report categorizes the GPU as a Service market based on service model, GPU type, business model, deployment, enterprise type, application, and region. The report describes the major drivers, restraints, challenges, and opportunities pertaining to the GPU as a Service market and forecasts the same till 2030. Apart from these, the report also consists of leadership mapping and analysis of all the companies included in the GPU as a Service ecosystem.

Key Benefits of Buying the Report The report will help the market leaders/new entrants in this market with information on the closest approximations of the revenue numbers for the overall GPU as a Service market and the subsegments. This report will help stakeholders understand the competitive landscape and gain more insights to position their businesses better and plan suitable go-to-market strategies. The report also helps stakeholders understand the pulse of the market and provides them with information on key market drivers, restraints, challenges, and opportunities.

The report provides insights on the following pointers:

  • Analysis of key drivers (growing demand for cloud-based AI and ML workloads fueling the growth of the GPUaaS market, Increasing need for cost-effective GPU solutions for enterprises, and growing adoption of GPUaaS in gaming and virtualization) influencing the growth of the GPU as a Service market.
  • Product Development/Innovation: Detailed insights on upcoming technologies, research & development activities, and new product & service launches in the GPU as a Service market.
  • Market Development: Comprehensive information about lucrative markets - the report analysis the GPU as a Service market across varied regions
  • Market Diversification: Exhaustive information about new products & services, untapped geographies, recent developments, and investments in the GPU as a Service market
  • Competitive Assessment: In-depth assessment of market shares, growth strategies, and service offerings of leading players like Amazon web Servies, Inc. (US), Microsoft (US), Google (US), Oracle (US), IBM (US), among others in the GPU as a Service market.

TABLE OF CONTENTS

1 INTRODUCTION

  • 1.1 STUDY OBJECTIVES
  • 1.2 MARKET DEFINITION
  • 1.3 STUDY SCOPE
    • 1.3.1 MARKETS COVERED AND REGIONAL SCOPE
    • 1.3.2 INCLUSIONS AND EXCLUSIONS
    • 1.3.3 YEARS CONSIDERED
  • 1.4 CURRENCY CONSIDERED
  • 1.5 LIMITATIONS
  • 1.6 STAKEHOLDERS

2 RESEARCH METHODOLOGY

  • 2.1 RESEARCH DATA
    • 2.1.1 SECONDARY AND PRIMARY RESEARCH
    • 2.1.2 SECONDARY DATA
      • 2.1.2.1 List of key secondary sources
      • 2.1.2.2 Key data from secondary sources
    • 2.1.3 PRIMARY DATA
      • 2.1.3.1 List of primary interview participants
      • 2.1.3.2 Breakdown of primaries
      • 2.1.3.3 Key data from primary sources
      • 2.1.3.4 Key industry insights
  • 2.2 MARKET SIZE ESTIMATION METHODOLOGY
    • 2.2.1 TOP-DOWN APPROACH
      • 2.2.1.1 Approach to arrive at market size using top-down analysis (supply side)
    • 2.2.2 BOTTOM-UP APPROACH
      • 2.2.2.1 Approach to arrive at market size using bottom-up analysis (demand side)
  • 2.3 MARKET BREAKDOWN AND DATA TRIANGULATION
  • 2.4 RESEARCH ASSUMPTIONS
  • 2.5 RESEARCH LIMITATIONS
  • 2.6 RISK ANALYSIS

3 EXECUTIVE SUMMARY

4 PREMIUM INSIGHTS

  • 4.1 ATTRACTIVE OPPORTUNITIES FOR PLAYERS IN GPU AS A SERVICE MARKET
  • 4.2 GPU AS A SERVICE MARKET, BY GPU TYPE
  • 4.3 GPU AS A SERVICE MARKET, BY ENTERPRISE TYPE
  • 4.4 GPU AS A SERVICE MARKET, BY APPLICATION
  • 4.5 GPU AS A SERVICE MARKET IN ASIA PACIFIC, BY APPLICATION AND COUNTRY
  • 4.6 GPU AS A SERVICE MARKET, BY COUNTRY

5 MARKET OVERVIEW

  • 5.1 INTRODUCTION
  • 5.2 MARKET DYNAMICS
    • 5.2.1 DRIVERS
      • 5.2.1.1 Surging use of cloud-powered AI, ML, and DL frameworks
      • 5.2.1.2 Increasing need for budget-friendly yet high-performance GPU solutions from enterprises
      • 5.2.1.3 Growing deployment of GPU as a service model in gaming and virtualization applications
    • 5.2.2 RESTRAINTS
      • 5.2.2.1 Supply chain bottlenecks and AI demand dynamics
    • 5.2.3 OPPORTUNITIES
      • 5.2.3.1 Revolutionizing media production workflows
      • 5.2.3.2 Increasing investments in AI infrastructure by cloud service providers
      • 5.2.3.3 Rise of pure-play GPU companies
    • 5.2.4 CHALLENGES
      • 5.2.4.1 Managing high power consumption and cooling needs in cloud GPUs
      • 5.2.4.2 Confronting security, performance, and scalability challenges in multi-tenant environments
  • 5.3 TRENDS/DISRUPTIONS IMPACTING CUSTOMER BUSINESS
  • 5.4 PRICING ANALYSIS
    • 5.4.1 INDICATIVE PRICING OF GPU TYPES, BY KEY PLAYER, 2024
    • 5.4.2 INDICATIVE PRICING OF GPU TYPES, 2024
    • 5.4.3 AVERAGE SELLING PRICE TREND OF HIGH-END GPUS, BY REGION, 2021-2024
    • 5.4.4 AVERAGE SELLING PRICE TREND OF MID-RANGE GPUS, BY REGION, 2021-2024
    • 5.4.5 AVERAGE SELLING PRICE TREND OF ENTRY-LEVEL GPU TYPE, BY REGION, 2021-2024
  • 5.5 VALUE CHAIN ANALYSIS
  • 5.6 ECOSYSTEM ANALYSIS
  • 5.7 TECHNOLOGY ANALYSIS
    • 5.7.1 KEY TECHNOLOGIES
      • 5.7.1.1 Cloud infrastructure and virtualization
      • 5.7.1.2 Containerization and orchestration
    • 5.7.2 COMPLEMENTARY TECHNOLOGIES
      • 5.7.2.1 High-bandwidth memory (HBM3/E)
    • 5.7.3 ADJACENT TECHNOLOGIES
      • 5.7.3.1 High-performance computing (HPC)
  • 5.8 PATENT ANALYSIS
  • 5.9 TRADE ANALYSIS
    • 5.9.1 IMPORT DATA (HS CODE 847330)
    • 5.9.2 EXPORT DATA (HS CODE 847330)
  • 5.10 KEY CONFERENCES AND EVENTS, 2025-2026
  • 5.11 CASE STUDY ANALYSIS
    • 5.11.1 NEARMAP REDUCES COMPUTING COST AND INCREASES DATA PROCESSING CAPACITY USING AMAZON EC2 G4 INSTANCES
    • 5.11.2 SOLUNA DEPLOYS AARNA.ML'S GPU CLOUD MANAGEMENT SOFTWARE TO BOOST ITS MARKETPLACE REACH
    • 5.11.3 COMPUTER VISION TECHNOLOGY COMPANY INCREASES GPU UTILIZATION TO IMPROVE PRODUCTIVITY AND REDUCE DL TRAINING TIME
    • 5.11.4 EPFL OPTIMIZES AI INFRASTRUCTURE TO PRIORITIZE WORKLOAD DEMANDS USING RUN:AI'S GPU ORCHESTRATION PLATFORM
  • 5.12 INVESTMENT AND FUNDING SCENARIO
  • 5.13 REGULATORY LANDSCAPE
    • 5.13.1 REGULATORY BODIES, GOVERNMENT AGENCIES, AND OTHER ORGANIZATIONS
    • 5.13.2 STANDARDS
  • 5.14 PORTER'S FIVE FORCES ANALYSIS
    • 5.14.1 THREAT OF NEW ENTRANTS
    • 5.14.2 THREAT OF SUBSTITUTES
    • 5.14.3 BARGAINING POWER OF SUPPLIERS
    • 5.14.4 BARGAINING POWER OF BUYERS
    • 5.14.5 INTENSITY OF COMPETITIVE RIVALRY
  • 5.15 KEY STAKEHOLDERS AND BUYING PROCESS
    • 5.15.1 KEY STAKEHOLDERS IN BUYING PROCESS
    • 5.15.2 BUYING CRITERIA

6 GPU AS A SERVICE PRICING MODELS

  • 6.1 INTRODUCTION
  • 6.2 ON-DEMAND INSTANCES
  • 6.3 RESERVED INSTANCES
  • 6.4 SPOT INSTANCES

7 GPU AS A SERVICE MARKET, BY SERVICE MODEL

  • 7.1 INTRODUCTION
  • 7.2 IAAS
    • 7.2.1 RISE IN EDGE COMPUTING AND REAL-TIME DATA PROCESSING TO BOOST SEGMENTAL GROWTH
  • 7.3 PAAS
    • 7.3.1 COST EFFICIENCY, SCALABILITY, AND OPERATIONAL SIMPLICITY TO CONTRIBUTE TO SEGMENTAL GROWTH

8 GPU AS A SERVICE MARKET, BY GPU TYPE

  • 8.1 INTRODUCTION
  • 8.2 HIGH-END GPUS
    • 8.2.1 MOUNTING ADOPTION IN AI RESEARCH, NEXT-GEN CLOUD COMPUTING, AND COMPLEX HPC APPLICATIONS TO DRIVE MARKET
  • 8.3 MID-RANGE GPUS
    • 8.3.1 GROWING EMERGENCE AS COST-EFFECTIVE ALTERNATIVE TO HIGH-END GPUS TO FUEL SEGMENTAL GROWTH
  • 8.4 ENTRY-LEVEL GPUS
    • 8.4.1 RISING ADOPTION TO SUPPORT DIGITAL TRANSFORMATION BY SMALL BUSINESSES TO BOLSTER SEGMENTAL GROWTH

9 GPU AS A SERVICE MARKET, BY DEPLOYMENT

  • 9.1 INTRODUCTION
  • 9.2 PUBLIC CLOUD
    • 9.2.1 SCALABILITY AND HIGH-PERFORMANCE COMPUTING CAPABILITIES TO AUGMENT SEGMENTAL GROWTH
  • 9.3 PRIVATE CLOUD
    • 9.3.1 ENHANCED CONTROL, SECURITY, AND CUSTOMIZATION TO FOSTER SEGMENTAL GROWTH
  • 9.4 HYBRID CLOUD
    • 9.4.1 ABILITY TO HANDLE DYNAMIC WORKLOADS AND DATA SECURITY TO ACCELERATE SEGMENTAL GROWTH

10 GPU AS A SERVICE MARKET, BY ENTERPRISE TYPE

  • 10.1 INTRODUCTION
  • 10.2 LARGE ENTERPRISES
    • 10.2.1 RISING DEMAND FOR AI-POWERED SOLUTIONS, BIG DATA ANALYTICS, AND REAL-TIME DECISION-MAKING TO DRIVE MARKET
  • 10.3 SMES
    • 10.3.1 INCREASING ADOPTION OF CLOUD-BASED AI SERVICES TO BOOST SEGMENTAL GROWTH

11 GPU AS A SERVICE MARKET, BY APPLICATION

  • 11.1 INTRODUCTION
  • 11.2 AI & ML
    • 11.2.1 TRAINING
      • 11.2.1.1 Requirement for high computational power to contribute to segmental growth
    • 11.2.2 INFERENCE
      • 11.2.2.1 Rapid advances in edge computing to accelerate segmental growth
  • 11.3 HPC
    • 11.3.1 LOW UPFRONT COSTS AND SCALABILITY OF GPU AS A SERVICE IN AI-DRIVEN RESEARCH AND REAL-TIME PROCESSING TO FUEL SEGMENTAL GROWTH
  • 11.4 MEDIA & ENTERTAINMENT
    • 11.4.1 VIDEO PROCESSING & STREAMING
      • 11.4.1.1 Rising emphasis on optimizing compression, reducing latency, and enhancing video resolution to foster segmental growth
    • 11.4.2 3D RENDERING & ANIMATION
      • 11.4.2.1 Growing focus on accelerating visual effects, motion graphics, and 3D animation workflows to drive market
    • 11.4.3 GAMING & INTERACTIVE MEDIA
      • 11.4.3.1 Increasing development of real-time ray tracing, AI-generated graphics, and virtual world simulations to augment segmental growth
    • 11.4.4 OTHER MEDIA & ENTERTAINMENT APPLICATIONS
  • 11.5 OTHER APPLICATIONS

12 GPU AS A SERVICE MARKET, BY REGION

  • 12.1 INTRODUCTION
  • 12.2 NORTH AMERICA
    • 12.2.1 MACROECONOMIC OUTLOOK FOR NORTH AMERICA
    • 12.2.2 US
      • 12.2.2.1 Rising deployment of AI for data-driven decision-making and automation to drive market
    • 12.2.3 CANADA
      • 12.2.3.1 Increasing establishment of data centers and cloud computing adoption to boost market growth
    • 12.2.4 MEXICO
      • 12.2.4.1 Growing implementation of digital transformation policies to enhance operational efficiency to fuel market growth
  • 12.3 EUROPE
    • 12.3.1 MACROECONOMIC OUTLOOK FOR EUROPE
    • 12.3.2 UK
      • 12.3.2.1 Thriving video game industry to contribute to market growth
    • 12.3.3 GERMANY
      • 12.3.3.1 Increasing investment in AI to enhance automation and predictive maintenance to create lucrative opportunities
    • 12.3.4 FRANCE
      • 12.3.4.1 Growing emphasis on technological and industrial innovation to boost market growth
    • 12.3.5 ITALY
      • 12.3.5.1 Rising focus on enhancing digital infrastructure development to fuel market growth
    • 12.3.6 SPAIN
      • 12.3.6.1 Increasing migration toward cloud platforms to spur demand
    • 12.3.7 POLAND
      • 12.3.7.1 Rapid advances in high-performance computing to contribute to market growth
    • 12.3.8 NORDICS
      • 12.3.8.1 Rising adoption of accelerated computing technology in data centers to foster market growth
    • 12.3.9 REST OF EUROPE
  • 12.4 ASIA PACIFIC
    • 12.4.1 MACROECONOMIC OUTLOOK FOR ASIA PACIFIC
    • 12.4.2 CHINA
      • 12.4.2.1 Rapid proliferation of IoT devices and immense data generation to drive market
    • 12.4.3 JAPAN
      • 12.4.3.1 Increasing investment in AI and cloud infrastructure to fuel market growth
    • 12.4.4 SOUTH KOREA
      • 12.4.4.1 Rising development of AI chips and server solutions by tech giants to accelerate market growth
    • 12.4.5 INDIA
      • 12.4.5.1 Rapid establishment of AI research centers to offer lucrative growth opportunities
    • 12.4.6 AUSTRALIA
      • 12.4.6.1 Increasing development of robust AI ecosystem through strategic investments to augment market growth
    • 12.4.7 INDONESIA
      • 12.4.7.1 Mounting adoption of cloud services to contribute to market growth
    • 12.4.8 MALAYSIA
      • 12.4.8.1 Rising deployment of AI-driven solutions by industries to fuel market growth
    • 12.4.9 THAILAND
      • 12.4.9.1 Increasing investment in smart cities, fintech, and healthcare AI to bolster market growth
    • 12.4.10 VIETNAM
      • 12.4.10.1 Rapid expansion of 5G infrastructure, cloud computing, and AI-driven digital services to drive market
    • 12.4.11 REST OF ASIA PACIFIC
  • 12.5 ROW
    • 12.5.1 MACROECONOMIC OUTLOOK FOR ROW
    • 12.5.2 MIDDLE EAST
      • 12.5.2.1 Bahrain
        • 12.5.2.1.1 Government initiatives to foster innovation and digital transformation to foster market growth
      • 12.5.2.2 Kuwait
        • 12.5.2.2.1 Growing focus on optimizing data processing and enhancing network performance to drive market
      • 12.5.2.3 Oman
        • 12.5.2.3.1 Rising awareness about benefits of HPC technology to contribute to market growth
      • 12.5.2.4 Qatar
        • 12.5.2.4.1 Burgeoning investment in digital infrastructure to augment market growth
      • 12.5.2.5 Saudi Arabia
        • 12.5.2.5.1 Increasing deployment of cloud computing and HPC technologies to accelerate market growth
      • 12.5.2.6 UAE
        • 12.5.2.6.1 Rising adoption of 5G and advanced networks to bolster market growth
      • 12.5.2.7 Rest of Middle East
    • 12.5.3 AFRICA
      • 12.5.3.1 South Africa
        • 12.5.3.1.1 Mounting demand for cloud computing to drive market
      • 12.5.3.2 Other African countries
    • 12.5.4 SOUTH AMERICA
      • 12.5.4.1 Expansion of cloud data centers to boost market growth

13 COMPETITIVE LANDSCAPE

  • 13.1 INTRODUCTION
  • 13.2 KEY PLAYER STRATEGIES/RIGHT TO WIN, 2023-2025
  • 13.3 REVENUE ANALYSIS, 2022-2024
  • 13.4 MARKET SHARE ANALYSIS, 2024
  • 13.5 COMPANY VALUATION AND FINANCIAL METRICS
  • 13.6 BRAND COMPARISON
  • 13.7 COMPANY EVALUATION MATRIX: KEY PLAYERS, 2024
    • 13.7.1 STARS
    • 13.7.2 EMERGING LEADERS
    • 13.7.3 PERVASIVE PLAYERS
    • 13.7.4 PARTICIPANTS
    • 13.7.5 COMPANY FOOTPRINT: KEY PLAYERS, 2024
      • 13.7.5.1 Company footprint
      • 13.7.5.2 Region footprint
      • 13.7.5.3 Service model footprint
      • 13.7.5.4 GPU type footprint
      • 13.7.5.5 Deployment footprint
      • 13.7.5.6 Enterprise type footprint
      • 13.7.5.7 Application footprint
  • 13.8 COMPANY EVALUATION MATRIX: STARTUPS/SMES, 2024
    • 13.8.1 PROGRESSIVE COMPANIES
    • 13.8.2 RESPONSIVE COMPANIES
    • 13.8.3 DYNAMIC COMPANIES
    • 13.8.4 STARTING BLOCKS
    • 13.8.5 COMPETITIVE BENCHMARKING: STARTUPS/SMES, 2024
      • 13.8.5.1 Detailed list of key startups/SMEs
      • 13.8.5.2 Competitive benchmarking of key startups/SMEs
  • 13.9 COMPETITIVE SCENARIO
    • 13.9.1 PRODUCT LAUNCHES
    • 13.9.2 DEALS

14 COMPANY PROFILES

  • 14.1 KEY PLAYERS
    • 14.1.1 AMAZON WEB SERVICES, INC.
      • 14.1.1.1 Business overview
      • 14.1.1.2 Products/Solutions/Services offered
      • 14.1.1.3 Recent developments
        • 14.1.1.3.1 Product launches
        • 14.1.1.3.2 Deals
      • 14.1.1.4 MnM view
        • 14.1.1.4.1 Key strengths/Right to win
        • 14.1.1.4.2 Strategic choices
        • 14.1.1.4.3 Weaknesses/Competitive threats
    • 14.1.2 MICROSOFT
      • 14.1.2.1 Business overview
      • 14.1.2.2 Products/Solutions/Services offered
      • 14.1.2.3 Recent developments
        • 14.1.2.3.1 Deals
      • 14.1.2.4 MnM view
        • 14.1.2.4.1 Key strengths/Right to win
        • 14.1.2.4.2 Strategic choices
        • 14.1.2.4.3 Weaknesses/Competitive threats
    • 14.1.3 GOOGLE
      • 14.1.3.1 Business overview
      • 14.1.3.2 Products/Solutions/Services offered
      • 14.1.3.3 Recent developments
        • 14.1.3.3.1 Product launches
        • 14.1.3.3.2 Deals
      • 14.1.3.4 MnM view
        • 14.1.3.4.1 Key strengths/Right to win
        • 14.1.3.4.2 Strategic choices
        • 14.1.3.4.3 Weaknesses/Competitive threats
    • 14.1.4 ORACLE
      • 14.1.4.1 Business overview
      • 14.1.4.2 Products/Solutions/Services offered
      • 14.1.4.3 Recent developments
        • 14.1.4.3.1 Product launches
        • 14.1.4.3.2 Deals
      • 14.1.4.4 MnM view
        • 14.1.4.4.1 Key strengths/Right to win
        • 14.1.4.4.2 Strategic choices
        • 14.1.4.4.3 Weaknesses/Competitive threats
    • 14.1.5 IBM
      • 14.1.5.1 Business overview
      • 14.1.5.2 Products/Solutions/Services offered
      • 14.1.5.3 Recent developments
        • 14.1.5.3.1 Product launches
        • 14.1.5.3.2 Deals
      • 14.1.5.4 MnM view
        • 14.1.5.4.1 Key strengths/Right to win
        • 14.1.5.4.2 Strategic choices
        • 14.1.5.4.3 Weaknesses/Competitive threats
    • 14.1.6 COREWEAVE
      • 14.1.6.1 Business overview
      • 14.1.6.2 Products/Solutions/Services offered
      • 14.1.6.3 Recent developments
        • 14.1.6.3.1 Product launches
        • 14.1.6.3.2 Deals
        • 14.1.6.3.3 Expansions
    • 14.1.7 ALIBABA CLOUD
      • 14.1.7.1 Business overview
      • 14.1.7.2 Products/Solutions/Services offered
      • 14.1.7.3 Recent developments
        • 14.1.7.3.1 Expansions
    • 14.1.8 LAMBDA
      • 14.1.8.1 Business overview
      • 14.1.8.2 Products/Solutions/Services offered
      • 14.1.8.3 Recent developments
        • 14.1.8.3.1 Deals
    • 14.1.9 TENCENT CLOUD
      • 14.1.9.1 Business overview
      • 14.1.9.2 Products/Solutions/Services offered
      • 14.1.9.3 Recent developments
        • 14.1.9.3.1 Expansions
    • 14.1.10 JARVISLABS.AI
      • 14.1.10.1 Business overview
      • 14.1.10.2 Products/Solutions/Services offered
  • 14.2 OTHER PLAYERS
    • 14.2.1 FLUIDSTACK
    • 14.2.2 OVH SAS
    • 14.2.3 E2E NETWORKS LIMITED
    • 14.2.4 RUNPOD
    • 14.2.5 SCALEMATRIX HOLDINGS, INC.
    • 14.2.6 VAST.AI
    • 14.2.7 ACECLOUD
    • 14.2.8 SNOWCELL
    • 14.2.9 LINODE LLC
    • 14.2.10 YOTTA INFRASTRUCTURE
    • 14.2.11 VULTR
    • 14.2.12 DIGITALOCEAN, LLC
    • 14.2.13 RACKSPACE TECHNOLOGY
    • 14.2.14 GCORE
    • 14.2.15 NEBIUS B.V.

15 APPENDIX

  • 15.1 DISCUSSION GUIDE
  • 15.2 KNOWLEDGESTORE: MARKETSANDMARKETS' SUBSCRIPTION PORTAL
  • 15.3 CUSTOMIZATION OPTIONS
  • 15.4 RELATED REPORTS
  • 15.5 AUTHOR DETAILS
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제