시장보고서
상품코드
1755997

세계의 풍력 블레이드용 복합재료 시장 예측(-2030년) : 섬유 유형별, 수지 유형별, 블레이드 사이즈별, 용도별, 지역별

Wind Blade Composites Market by Fiber Type, Resin Type, Blade Size, Application, and Region - Global Forecast to 2030

발행일: | 리서치사: MarketsandMarkets | 페이지 정보: 영문 250 Pages | 배송안내 : 즉시배송

    
    
    




※ 본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문 목차를 참고해주시기 바랍니다.

풍력 블레이드용 복합재료 시장 규모는 2025년에 132억 8,000만 달러, 2030년에는 218억 7,000만 달러에 달할 것으로 추정되며, 2025-2030년의 CAGR은 10.5%에 달할 것으로 보이고 있습니다.

풍력 블레이드용 복합재료 분야에서 탄소섬유에 대한 수요는 풍력 터빈의 대형화, 고효율화에 대한 요구가 증가함에 따라 크게 성장하고 있습니다. 탄소섬유는 기존 소재에 비해 우수한 강도 대 중량비를 제공하여 더 길고, 더 가볍고, 더 견고한 블레이드를 쉽게 제조할 수 있습니다. 이러한 특성은 터빈의 에너지 출력을 최적화하는 데 필수적이며, 특히 높은 인프라 비용을 줄이기 위해 성능을 극대화하는 것이 필수적인 해양 용도에서 중요합니다. 또한 탄소섬유는 블레이드의 피로 저항과 수명을 향상시켜 유지보수의 필요성을 줄이고 작동 수명을 연장시킵니다. 재생에너지를 촉진하고 이산화탄소 배출량을 줄이기 위한 전 세계적인 노력이 가속화됨에 따라 풍력에너지 설비의 확대가 가속화되고 있으며, 블레이드 제조에 탄소섬유와 같은 첨단 소재의 채택이 더욱 가속화되고 있습니다.

조사 범위
조사 대상연도 2023-2030년
기준연도 2024년
예측 기간 2025-2030년
검토 단위 금액(100만 달러) 및 킬로톤
부문 섬유 유형별, 수지 유형별, 블레이드 사이즈별, 용도별, 지역
대상 지역 유럽, 북미, 아시아태평양, 중동 및 아프리카, 남미

폴리우레탄 수지에 대한 수요는 주로 뛰어난 기계적 특성, 비용 효율성 및 제조 생산성 향상으로 인해 발생합니다. 기존 수지에 비해 폴리우레탄 수지는 우수한 기계적 강도와 강화된 내피로성을 제공하여 내구성이 뛰어나면서도 가벼운 풍력 터빈 블레이드 제조에 최적의 선택이 될 수 있습니다. 또한 점도가 낮기 때문에 제조 공정에서 사출 속도가 빨라 제조 사이클 시간을 크게 단축하고 전반적인 생산성을 향상시킬 수 있습니다. 또한 이 수지의 비용 효율성으로 인해 제조업체는 저렴한 비용으로 고품질 블레이드를 생산할 수 있습니다. 이는 기존 에너지원과 동등한 비용으로 풍력에너지 부문에 필수적인 요소입니다.

최대 50m 길이의 풍력 블레이드는 풍력 블레이드용 복합재료 시장에서 두 번째로 빠르게 성장하는 부문이 될 것으로 예측됩니다. 이는 육상 풍력발전소, 특히 신흥 시장과 풍력발전 용량이 작은 지역에서 널리 사용되고 있기 때문입니다. 이 짧은 블레이드는 제조, 운송 및 설치에 있으며, 비용 효율적이며, 인프라가 제한적인 시장과 소규모 풍력발전 프로젝트에 이상적입니다. 또한 현재 가동 중이거나 교체 및 업그레이드 중인 상당수의 구형 풍력 터빈은 원래 이 크기의 블레이드를 사용하도록 설계되었습니다. 특히 아시아태평양과 같은 신흥 시장에서는 재생에너지에 대한 정책 프레임워크와 투자가 소형 터빈의 도입을 더욱 촉진하고 블레이드의 보급을 촉진하고 있습니다.

육상 풍력 터빈은 해상 풍력 터빈에 비해 광범위하게 채택되고 비용 효율이 높으며 설치 과정이 간단하므로 전체 풍력 블레이드용 복합재료 시장 중 두 번째로 높은 성장률을 보일 것으로 예측됩니다. 육상 풍력발전 프로젝트는 일반적으로 개발 기간이 짧고 비용이 낮기 때문에 특히 토지 자원이 풍부하고 재생에너지 정책에 적극적인 국가에서는 다양한 지역에서 대규모로 쉽게 개발할 수 있습니다. 그 결과, 풍력 블레이드 제조에 활용되는 복합재료 수요는 육상용도에서 크게 증가하고 있습니다. 최근 복합재 기술의 발전으로 육상 터빈의 요구 사항을 충족하도록 특별히 설계된 더 길고, 더 가볍고, 더 탄력적인 블레이드를 생산할 수 있게 되었습니다.

유럽은 예측 기간 중 풍력 블레이드용 복합재료 시장에서 두 번째로 빠르게 성장하는 지역으로 성장할 것으로 예측됩니다. 이러한 성장은 재생에너지에 대한 확고한 의지, 야심찬 기후 목표, 잘 구축된 풍력에너지 인프라에 기인합니다. 유럽연합(EU)은 이산화탄소 배출량을 줄이고 에너지 포트폴리오에서 재생에너지의 비율을 높이기 위한 엄격한 목표를 설정하고 있으며, 풍력발전은 매우 중요한 요소입니다. 독일, 덴마크, 네덜란드를 비롯한 주요 기업은 육상 및 해상 풍력 모두에 대규모 투자를 하고 있으며, 이는 터빈 블레이드용 고성능, 경량, 내구성이 뛰어난 복합소재에 대한 수요를 촉진하고 있습니다. 또한 이 지역의 높은 제조 능력은 재료 과학의 지속적인 혁신과 유리한 규제 환경과 결합하여 풍력 블레이드용 복합재료 시장의 빠른 성장을 가속하는 중요한 요인으로 작용하고 있습니다. 또한 첨단 복합재료로 만든 첨단 복합재료로 만든 보다 효율적인 블레이드의 통합을 통한 노후화된 풍력발전소의 현대화는 이 지역 시장 성장을 더욱 촉진하고 있습니다.

세계의 풍력 블레이드용 복합재료 시장에 대해 조사했으며, 섬유 유형별, 수지 유형별, 블레이드 사이즈별, 용도별, 지역별 동향 및 시장에 참여하는 기업의 개요 등을 정리하여 전해드립니다.

목차

제1장 서론

제2장 조사 방법

제3장 개요

제4장 주요 인사이트

제5장 시장 개요

  • 서론
  • 시장 역학
  • Porter's Five Forces 분석
  • 주요 이해관계자와 구입 기준
  • 가격 분석
  • 거시경제 전망
  • 밸류체인 분석
  • 공급망 분석
  • 에코시스템 분석
  • 무역 분석
  • 기술 분석
  • 특허 분석
  • 규제 상황
  • 2025-2026년의 주요 컨퍼런스와 이벤트
  • 사례 연구 분석
  • 고객 비즈니스에 영향을 미치는 동향/혼란
  • 생성형 AI/AI가 풍력 블레이드용 복합재료 시장에 미치는 영향
  • 투자와 자금조달 시나리오
  • 2025년 미국 관세가 풍력발전 블레이드 복합재 시장에 미치는 영향

제6장 풍력 블레이드용 복합재료 시장(섬유 유형별)

  • 서론
  • 탄소섬유
  • 유리섬유
  • 기타

제7장 풍력 블레이드용 복합재료 시장(수지 유형별)

  • 서론
  • 에폭시
  • 폴리우레탄
  • 기타

제8장 풍력 블레이드용 복합재료 시장(블레이드 사이즈별)

  • 서론
  • 50미터 이하
  • 50미터 초과

제9장 풍력 블레이드용 복합재료 시장(용도별)

  • 서론
  • 육상 풍력 터빈
  • 해상 풍력 터빈

제10장 풍력 블레이드용 복합재료 시장(지역별)

  • 서론
  • 북미
  • 유럽
  • 아시아태평양
  • 남미
  • 중동 및 아프리카

제11장 경쟁 구도

  • 개요
  • 주요 참여 기업의 전략/강점
  • 매출 분석
  • 시장 점유율 분석
  • 브랜드/제품 비교 분석
  • 기업 평가 매트릭스 : 주요 참여 기업, 2024년
  • 기업 평가 매트릭스 : 스타트업/중소기업, 2024년
  • 기업 평가와 재무 지표
  • 경쟁 시나리오

제12장 기업 개요

  • 주요 참여 기업
    • GURIT SERVICES AG
    • CHINA NATIONAL BUILDING MATERIAL GROUP CORPORATION
    • HEXCEL CORPORATION
    • TORAY INDUSTRIES, INC.
    • CHINA JUSHI CO., LTD.
    • ROCHLING SE & CO. KG
    • SGL CARBON
    • DOWAKSA
    • EXEL COMPOSITES
    • EVONIK
    • ARKEMA
    • TEIJIN LIMITED
    • OWENS CORNING
    • EXXON MOBIL CORPORATION
    • HUNTSMAN INTERNATIONAL LLC
  • 기타 기업
    • PULTREX LTD
    • EPSILON COMPOSITE
    • AERON COMPOSITE LIMITED
    • WESTLAKE CORPORATION
    • ELAN COMPOSITES
    • NORTHERN LIGHT COMPOSITES
    • JIUDING NEW MATERIAL CO., LTD.
    • HS HYOSUNG ADVANCED MATERIALS
    • INDORE COMPOSITE
    • RELIANCE INDUSTRIES LTD.

제13장 부록

KSA 25.07.01

The wind blade composites market is estimated to be valued at USD 13.28 billion in 2025 and reach USD 21.87 billion by 2030, at a CAGR of 10.5% from 2025 to 2030. The demand for carbon fiber within the wind blade composites sector is experiencing significant growth, primarily driven by the increasing requirements for larger, more efficient wind turbines. Carbon fiber provides a superior strength-to-weight ratio compared to conventional materials, facilitating the production of longer, lighter, and stiffer blades. These attributes are critical for optimizing the energy output of turbines, particularly in offshore applications where maximizing performance is essential to mitigate high infrastructure costs. Additionally, carbon fiber enhances the fatigue resistance and longevity of blades, reducing maintenance requirements and extending their operational life. As global initiatives to promote renewable energy and decrease carbon emissions gain momentum, the expansion of wind energy installations is accelerating, further propelling the adoption of advanced materials, such as carbon fiber, in blade manufacturing.

Scope of the Report
Years Considered for the Study2023-2030
Base Year2024
Forecast Period2025-2030
Units ConsideredValue (USD Million) and Volume (Kiloton)
SegmentsFiber type, resin type, blade size, application, and region
Regions coveredEurope, North America, Asia Pacific, Middle East & Africa, and South America

"Polyurethane resin to be second fastest-growing resin type segment during forecast period"

The demand for polyurethane resin is primarily driven by its exceptional mechanical properties, cost efficiency, and improved manufacturing productivity. Compared to conventional resins, polyurethane resin offers superior mechanical strength and enhanced fatigue resistance, making it an optimal choice for the production of durable yet lightweight wind turbine blades. Its low viscosity facilitates accelerated infusion rates during the manufacturing process, leading to a significant reduction in production cycle times and an overall increase in productivity. Additionally, the cost-effectiveness of these resins allows manufacturers to produce high-quality blades at reduced costs, which is essential for the wind energy sector as it moves towards achieving cost parity with traditional energy sources.

"Wind blades up to 50 meters length to be second-fastest-growing blade size segment during forecast period"

Wind blades measuring up to 50 meters are projected to be the second-fastest growing segment in the wind blade composites market, largely attributed to their prevalent application in onshore wind farms, particularly in developing regions and areas with lower wind capacity. These shorter blades offer a more cost-efficient for manufacturing, transportation, and installation, rendering them ideal for markets characterized by limited infrastructure or smaller-scale wind energy initiatives. Furthermore, a significant proportion of older wind turbines, still operational and undergoing replacement or upgrades, were originally engineered to support blades of this size. Policy frameworks and investments in renewable energy-especially within emerging markets such as the Asia-Pacific region-further bolster the deployment of smaller turbines, thereby enhancing the uptake of these blades.

"Onshore wind turbines to be second-fastest growing application segment during forecast period"

Onshore wind turbines are anticipated to exhibit the second-highest growth rate within the overall wind blade composites market, driven by their extensive adoption, cost efficiency, and simpler installation processes compared to offshore counterparts. Onshore wind projects typically have shorter development timelines and lower costs, facilitating large-scale deployments across various regions, particularly in nations with abundant land resources and proactive renewable energy policies. Consequently, the demand for composite materials utilized in wind blade manufacturing has markedly increased for onshore applications. Recent advancements in composite technology have led to the production of longer, lighter, and more resilient blades specifically designed to meet the requirements of onshore turbines.

"Europe to register second-highest growth rate in wind blade composites market during forecast period"

Europe is anticipated to rank as the second-fastest-growing region in the wind blade composites market throughout the forecast period. This growth can be attributed to a robust commitment to renewable energy, ambitious climate objectives, and a well-established wind energy infrastructure. The European Union has instituted stringent targets to reduce carbon emissions and enhance the share of renewables in its energy portfolio, with wind power as a pivotal component. Key players, including Germany, Denmark, and the Netherlands, are making significant investments in both onshore and offshore wind initiatives, thereby driving the demand for high-performance, lightweight, and durable composite materials for turbine blades. Furthermore, the region's advanced manufacturing capabilities, coupled with ongoing technological innovations in materials science and favorable regulatory environments, are essential factors propelling the swift expansion of the wind blade composites market. Additionally, the modernization of older wind farms through the integration of cutting-edge, more efficient blades crafted from advanced composites further stimulates market growth in the region.

This study has been validated through interviews with industry experts globally. The primary sources have been divided into the following three categories:

  • By Company Type: Tier 1 - 60%, Tier 2 - 20%, and Tier 3 - 20%
  • By Designation: C-level - 33%, Director-level - 33%, and Managers - 34%
  • By Region: North America - 20%, Europe - 25%, Asia Pacific - 25%, Middle East & Africa - 20%, and South America - 10%

Report provides a comprehensive analysis of the following companies:

China Jushi Co., Ltd. (China), DowAksa (Turkey), Teijin Limited (Japan), SGL Carbon (Germany), Hexcel Corporation (US), Gurit Services AG (Switzerland), China National Building Material Group Corporation (China), Toray Industries, Inc. (Japan), Rochling (Germany), Exel Composites (Finland), Evonik (Germany), Arkema (France), Owens Corning (US), Exxon Mobil (US), and Huntsman (US).

Research Coverage

This research report categorizes the wind blade composites market based on fiber type (glass fiber, carbon fiber, and other fiber types), resin type (epoxy, polyurethane, and other resin types), blade size (up to 50 meters and over 50 meters), application (onshore wind turbines and offshore wind turbines), and region (North America, Europe, Asia Pacific, Middle East & Africa, and South America). The scope of the report includes detailed information about the major factors influencing the growth of the wind blade composites market, such as drivers, restraints, challenges, and opportunities. A thorough examination of the key industry players has been conducted to provide insights into their business overviews, solutions and services, key strategies, and recent developments in the wind blade composites market are all covered. This report includes a competitive analysis of the upcoming startups in the wind blade composites market ecosystem.

Reasons to Buy this Report

The report will help the market leaders/new entrants in this market with information on the closest approximations of the revenue numbers for the overall wind blade composites market and the subsegments. This report will help stakeholders understand the competitive landscape and gain more insights to position their businesses better and plan suitable go-to-market strategies. The report also helps stakeholders understand the market pulse and provides information on key market drivers, restraints, challenges, and opportunities.

The report provides insights on the following pointers:

  • Analysis of key drivers (Rising new installations of wind turbines, Increasing turbine size), restraints (High raw material costs, Limited blade recycling technology), opportunities (Development of recyclable resin, Increasing offshore wind turbine installations), and challenges (Geopolitical instability, High capital investments) influencing the growth of the wind blade composites market.
  • Product Development/Innovation: Detailed insights into upcoming technologies, research & development activities, and product launches in the wind blade composites market.
  • Market Development: Comprehensive information about lucrative markets - the report analyzes the wind blade composites market across varied regions.
  • Market Diversification: Exhaustive information about services, untapped geographies, recent developments, and investments in the wind blade composites market.
  • Competitive Assessment: In-depth assessment of market shares, growth strategies, and offerings of leading players such as China Jushi Co., Ltd. (China), DowAksa (Turkey), Teijin Limited (Japan), SGL Carbon (Germany), Hexcel Corporation (US), Gurit Services AG (Switzerland), China National Building Material Group Corporation (China), Toray Industries, Inc. (Japan), Rochling (Germany), Exel Composites (Finland), Evonik (Germany), Arkema (France), Owens Corning (US), Exxon Mobil (US), and Huntsman (US) in the wind blade composites market.

TABLE OF CONTENTS

1 INTRODUCTION

  • 1.1 STUDY OBJECTIVES
  • 1.2 MARKET DEFINITION
  • 1.3 STUDY SCOPE
    • 1.3.1 MARKETS COVERED AND REGIONAL SCOPE
    • 1.3.2 INCLUSIONS AND EXCLUSIONS
    • 1.3.3 YEARS CONSIDERED
    • 1.3.4 CURRENCY CONSIDERED
    • 1.3.5 UNIT CONSIDERED
  • 1.4 STAKEHOLDERS

2 RESEARCH METHODOLOGY

  • 2.1 RESEARCH DATA
    • 2.1.1 SECONDARY DATA
      • 2.1.1.1 Key data from secondary sources
    • 2.1.2 PRIMARY DATA
      • 2.1.2.1 Key data from primary sources
      • 2.1.2.2 Key primary participants
      • 2.1.2.3 Breakdown of primary interviews
      • 2.1.2.4 Key industry insights
  • 2.2 MARKET SIZE ESTIMATION
    • 2.2.1 BOTTOM-UP APPROACH
    • 2.2.2 TOP-DOWN APPROACH
  • 2.3 BASE NUMBER CALCULATION
    • 2.3.1 APPROACH 1: SUPPLY-SIDE ANALYSIS
    • 2.3.2 APPROACH 2: DEMAND-SIDE ANALYSIS
  • 2.4 MARKET FORECAST APPROACH
    • 2.4.1 SUPPLY SIDE
    • 2.4.2 DEMAND SIDE
  • 2.5 DATA TRIANGULATION
  • 2.6 FACTOR ANALYSIS
  • 2.7 RESEARCH ASSUMPTIONS
  • 2.8 RESEARCH LIMITATIONS AND RISK ASSESSMENT

3 EXECUTIVE SUMMARY

4 PREMIUM INSIGHTS

  • 4.1 ATTRACTIVE OPPORTUNITIES FOR PLAYERS IN WIND BLADE COMPOSITES MARKET
  • 4.2 WIND BLADE COMPOSITES MARKET, BY FIBER TYPE AND REGION
  • 4.3 WIND BLADE COMPOSITES MARKET, BY FIBER TYPE
  • 4.4 WIND BLADE COMPOSITES MARKET, BY RESIN TYPE
  • 4.5 WIND BLADE COMPOSITES MARKET, BY BLADE SIZE
  • 4.6 WIND BLADE COMPOSITES MARKET, BY APPLICATION
  • 4.7 WIND BLADE COMPOSITES MARKET, BY KEY COUNTRY

5 MARKET OVERVIEW

  • 5.1 INTRODUCTION
  • 5.2 MARKET DYNAMICS
    • 5.2.1 DRIVERS
      • 5.2.1.1 Increasing new installations of wind turbines
      • 5.2.1.2 Increasing turbine size
    • 5.2.2 RESTRAINTS
      • 5.2.2.1 High raw material costs
      • 5.2.2.2 Limited blade recycling technology
    • 5.2.3 OPPORTUNITIES
      • 5.2.3.1 Development of recyclable resin
      • 5.2.3.2 Increasing offshore wind turbine installations
    • 5.2.4 CHALLENGES
      • 5.2.4.1 Geopolitical instability
      • 5.2.4.2 High capital investments
  • 5.3 PORTER'S FIVE FORCES ANALYSIS
    • 5.3.1 THREAT OF NEW ENTRANTS
    • 5.3.2 THREAT OF SUBSTITUTES
    • 5.3.3 BARGAINING POWER OF SUPPLIERS
    • 5.3.4 BARGAINING POWER OF BUYERS
    • 5.3.5 INTENSITY OF COMPETITIVE RIVALRY
  • 5.4 KEY STAKEHOLDERS AND BUYING CRITERIA
    • 5.4.1 KEY STAKEHOLDERS IN BUYING PROCESS
    • 5.4.2 BUYING CRITERIA
  • 5.5 PRICING ANALYSIS
    • 5.5.1 AVERAGE SELLING PRICE TREND FOR KEY PLAYERS, BY APPLICATION, 2024
    • 5.5.2 AVERAGE SELLING PRICE TREND, BY FIBER TYPE, 2021-2024
    • 5.5.3 AVERAGE SELLING PRICE TREND, BY RESIN TYPE, 2021-2024
    • 5.5.4 AVERAGE SELLING PRICE TREND, BY BLADE SIZE, 2021-2024
    • 5.5.5 AVERAGE SELLING PRICE TREND, BY APPLICATION, 2021-2024
    • 5.5.6 AVERAGE SELLING PRICE TREND, BY REGION, 2021-2024
  • 5.6 MACROECONOMIC OUTLOOK
    • 5.6.1 INTRODUCTION
    • 5.6.2 GDP TRENDS AND FORECAST
    • 5.6.3 TRENDS IN WIND INDUSTRY
  • 5.7 VALUE CHAIN ANALYSIS
  • 5.8 SUPPLY CHAIN ANALYSIS
  • 5.9 ECOSYSTEM ANALYSIS
  • 5.10 TRADE ANALYSIS
    • 5.10.1 EXPORT SCENARIO (HS CODE 7019)
    • 5.10.2 IMPORT SCENARIO (HS CODE 7019)
    • 5.10.3 EXPORT SCENARIO (HS CODE 681511)
    • 5.10.4 IMPORT SCENARIO (HS CODE 681511)
  • 5.11 TECHNOLOGY ANALYSIS
    • 5.11.1 KEY TECHNOLOGIES
      • 5.11.1.1 Vacuum infusion
      • 5.11.1.2 Traditional molding
    • 5.11.2 COMPLEMENTARY TECHNOLOGIES
      • 5.11.2.1 Additive manufacturing and robotics
  • 5.12 PATENT ANALYSIS
    • 5.12.1 INTRODUCTION
    • 5.12.2 METHODOLOGY
    • 5.12.3 DOCUMENT TYPES
    • 5.12.4 INSIGHTS
    • 5.12.5 LEGAL STATUS
    • 5.12.6 JURISDICTION ANALYSIS
    • 5.12.7 TOP APPLICANTS
    • 5.12.8 TOP 10 PATENT OWNERS (US) IN LAST 10 YEARS, 2015-2025
  • 5.13 REGULATORY LANDSCAPE
    • 5.13.1 REGULATORY BODIES, GOVERNMENT AGENCIES, AND OTHER ORGANIZATIONS
  • 5.14 KEY CONFERENCES AND EVENTS, 2025-2026
  • 5.15 CASE STUDY ANALYSIS
    • 5.15.1 ENHANCEMENT OF OFFSHORE WIND TURBINE EFFICIENCY WITH CARBON FIBER-REINFORCED PLASTICS (CFRP) IN SPAR CAPS
    • 5.15.2 GURIT - COMPREHENSIVE SOLUTIONS DRIVING INNOVATION IN WIND BLADE MANUFACTURING
    • 5.15.3 OWENS CORNING ULTRABLADE HE - BOOSTING EFFICIENCY IN WIND BLADE MANUFACTURING
  • 5.16 TRENDS/DISRUPTIONS IMPACTING CUSTOMER BUSINESS
  • 5.17 IMPACT OF GEN AI/AI ON WIND BLADE COMPOSITES MARKET
    • 5.17.1 TOP USE CASES AND MARKET POTENTIAL
    • 5.17.2 CASE STUDIES OF AI IMPLEMENTATION IN WIND BLADE COMPOSITES MARKET
  • 5.18 INVESTMENT AND FUNDING SCENARIO
  • 5.19 IMPACT OF 2025 US TARIFF ON WIND BLADE COMPOSITES MARKET
    • 5.19.1 INTRODUCTION
    • 5.19.2 KEY TARIFF RATES
    • 5.19.3 PRICE IMPACT ANALYSIS
    • 5.19.4 KEY IMPACTS ON VARIOUS COUNTRIES/REGIONS
      • 5.19.4.1 US
      • 5.19.4.2 Europe
      • 5.19.4.3 Asia Pacific
    • 5.19.5 END-USE INDUSTRY-LEVEL IMPACT

6 WIND BLADE COMPOSITES MARKET, BY FIBER TYPE

  • 6.1 INTRODUCTION
  • 6.2 CARBON FIBER
    • 6.2.1 HIGH TENSILE STRENGTH AND LIGHTWEIGHT TO FUEL DEMAND
  • 6.3 GLASS FIBER
    • 6.3.1 HIGH PERFORMANCE AND COST-EFFECTIVENESS TO PROPEL MARKET
  • 6.4 OTHER FIBER TYPES

7 WIND BLADE COMPOSITES MARKET, BY RESIN TYPE

  • 7.1 INTRODUCTION
  • 7.2 EPOXY
    • 7.2.1 EXCELLENT ADHESION AND RESISTANCE TO FATIGUE TO FUEL DEMAND
  • 7.3 POLYURETHANE
    • 7.3.1 LOW VISCOSITY AND COST EFFICIENCY TO DRIVE DEMAND
  • 7.4 OTHER RESIN TYPES

8 WIND BLADE COMPOSITES MARKET, BY BLADE SIZE

  • 8.1 INTRODUCTION
  • 8.2 UP TO 50 METERS
    • 8.2.1 INCREASING DEMAND FROM ONSHORE WIND FARMS TO DRIVE MARKET
  • 8.3 OVER 50 METERS
    • 8.3.1 GROWING INSTALLATION IN OFFSHORE WIND TURBINE FARMS TO DRIVE MARKET

9 WIND BLADE COMPOSITES MARKET, BY APPLICATION

  • 9.1 INTRODUCTION
  • 9.2 ONSHORE WIND TURBINES
    • 9.2.1 GROWING DEMAND FOR LIGHTWEIGHT YET DURABLE WIND BLADES FOR GENERATING ELECTRICITY TO DRIVE MARKET
  • 9.3 OFFSHORE WIND TURBINES
    • 9.3.1 LARGER AND ROBUST WIND BLADES DESIGNED FOR HARSH ENVIRONMENTS TO FUEL DEMAND

10 WIND BLADE COMPOSITES MARKET, BY REGION

  • 10.1 INTRODUCTION
  • 10.2 NORTH AMERICA
    • 10.2.1 NORTH AMERICA: WIND BLADE COMPOSITES MARKET, BY FIBER TYPE
    • 10.2.2 NORTH AMERICA: WIND BLADE COMPOSITES MARKET, BY RESIN TYPE
    • 10.2.3 NORTH AMERICA: WIND BLADE COMPOSITES MARKET, BY BLADE SIZE
    • 10.2.4 NORTH AMERICA: WIND BLADE COMPOSITES MARKET, BY APPLICATION
    • 10.2.5 NORTH AMERICA: WIND BLADE COMPOSITES MARKET, BY COUNTRY
      • 10.2.5.1 US
        • 10.2.5.1.1 Presence of major manufacturers to drive market
      • 10.2.5.2 Canada
        • 10.2.5.2.1 Increased investments in wind energy sector and advancements in composite materials technology to drive market
      • 10.2.5.3 Mexico
        • 10.2.5.3.1 Strategic partnerships and expansions to drive market
  • 10.3 EUROPE
    • 10.3.1 EUROPE: WIND BLADE COMPOSITES MARKET, BY FIBER TYPE
    • 10.3.2 EUROPE: WIND BLADE COMPOSITES MARKET, BY RESIN TYPE
    • 10.3.3 EUROPE: WIND BLADE COMPOSITES MARKET, BY BLADE SIZE
    • 10.3.4 EUROPE: WIND BLADE COMPOSITES MARKET, BY APPLICATION
    • 10.3.5 EUROPE: WIND BLADE COMPOSITES MARKET, BY COUNTRY
      • 10.3.5.1 Germany
        • 10.3.5.1.1 Growing construction projects to drive market
      • 10.3.5.2 France
        • 10.3.5.2.1 Rising onshore and offshore wind turbine installations to increase demand
      • 10.3.5.3 Sweden
        • 10.3.5.3.1 Increasing shift toward recycling of wind blades to drive market
      • 10.3.5.4 Spain
        • 10.3.5.4.1 Growing demand from wind energy industry to drive market
      • 10.3.5.5 Finland
        • 10.3.5.5.1 Increasing number of recycling projects to propel market
      • 10.3.5.6 Netherlands
        • 10.3.5.6.1 High demand from onshore and offshore wind installations to fuel market growth
      • 10.3.5.7 UK
        • 10.3.5.7.1 Presence of well-established R&D centers and institutions to drive market
      • 10.3.5.8 Rest of Europe
  • 10.4 ASIA PACIFIC
    • 10.4.1 ASIA PACIFIC: WIND BLADE COMPOSITES MARKET, BY FIBER TYPE
    • 10.4.2 ASIA PACIFIC: WIND BLADE COMPOSITES MARKET, BY RESIN TYPE
    • 10.4.3 ASIA PACIFIC: WIND BLADE COMPOSITES MARKET, BY BLADE SIZE
    • 10.4.4 ASIA PACIFIC: WIND BLADE COMPOSITES MARKET, BY APPLICATION
    • 10.4.5 ASIA PACIFIC: WIND BLADE COMPOSITES MARKET, BY COUNTRY
      • 10.4.5.1 China
        • 10.4.5.1.1 High renewable energy production and investments in both onshore and offshore wind projects to drive demand
      • 10.4.5.2 India
        • 10.4.5.2.1 Rising investments in wind power projects to propel market
      • 10.4.5.3 Japan
        • 10.4.5.3.1 Strong renewable energy push and policy support to drive market
      • 10.4.5.4 Australia
        • 10.4.5.4.1 Expanding renewable energy sector to fuel market growth
      • 10.4.5.5 South Korea
        • 10.4.5.5.1 Expansion of wind power projects to drive market
      • 10.4.5.6 Rest of Asia Pacific
  • 10.5 SOUTH AMERICA
    • 10.5.1 SOUTH AMERICA: WIND BLADE COMPOSITES MARKET, BY FIBER TYPE
    • 10.5.2 SOUTH AMERICA: WIND BLADE COMPOSITES MARKET, BY RESIN TYPE
    • 10.5.3 SOUTH AMERICA: WIND BLADE COMPOSITES MARKET, BY BLADE SIZE
    • 10.5.4 SOUTH AMERICA: WIND BLADE COMPOSITES MARKET, BY APPLICATION
    • 10.5.5 SOUTH AMERICA: WIND BLADE COMPOSITES MARKET, BY COUNTRY
      • 10.5.5.1 Brazil
        • 10.5.5.1.1 Rapid expansion of wind energy capacity to drive market
      • 10.5.5.2 Argentina
        • 10.5.5.2.1 Increased private investments to drive demand
      • 10.5.5.3 Rest of South America
  • 10.6 MIDDLE EAST & AFRICA
    • 10.6.1 MIDDLE EAST & AFRICA: WIND BLADE COMPOSITES MARKET, BY FIBER TYPE
    • 10.6.2 MIDDLE EAST & AFRICA: WIND BLADE COMPOSITES MARKET, BY RESIN TYPE
    • 10.6.3 MIDDLE EAST & AFRICA: WIND BLADE COMPOSITES MARKET, BY BLADE SIZE
    • 10.6.4 MIDDLE EAST & AFRICA: WIND BLADE COMPOSITES MARKET, BY APPLICATION
    • 10.6.5 MIDDLE EAST & AFRICA: WIND BLADE COMPOSITES MARKET, BY COUNTRY
      • 10.6.5.1 Egypt
        • 10.6.5.1.1 Increasing investments in wind energy infrastructure to drive market
      • 10.6.5.2 Morocco
        • 10.6.5.2.1 Booming wind energy sector to drive market
      • 10.6.5.3 Rest of Middle East & Africa

11 COMPETITIVE LANDSCAPE

  • 11.1 OVERVIEW
  • 11.2 KEY PLAYER STRATEGIES/RIGHT TO WIN
  • 11.3 REVENUE ANALYSIS
  • 11.4 MARKET SHARE ANALYSIS
  • 11.5 BRAND/PRODUCT COMPARATIVE ANALYSIS
  • 11.6 COMPANY EVALUATION MATRIX: KEY PLAYERS, 2024
    • 11.6.1 STARS
    • 11.6.2 EMERGING LEADERS
    • 11.6.3 PERVASIVE PLAYERS
    • 11.6.4 PARTICIPANTS
    • 11.6.5 COMPANY FOOTPRINT: KEY PLAYERS, 2024
      • 11.6.5.1 Company footprint
      • 11.6.5.2 Fiber type footprint
      • 11.6.5.3 Resin type footprint
      • 11.6.5.4 Application footprint
      • 11.6.5.5 Region footprint
  • 11.7 COMPANY EVALUATION MATRIX: STARTUPS/SMES, 2024
    • 11.7.1 PROGRESSIVE COMPANIES
    • 11.7.2 RESPONSIVE COMPANIES
    • 11.7.3 DYNAMIC COMPANIES
    • 11.7.4 STARTING BLOCKS
    • 11.7.5 COMPETITIVE BENCHMARKING: STARTUPS/SMES, 2024
      • 11.7.5.1 Detailed list of key startups/SMEs
      • 11.7.5.2 Competitive benchmarking of key startups/SMEs
  • 11.8 COMPANY VALUATION AND FINANCIAL METRICS
  • 11.9 COMPETITIVE SCENARIO
    • 11.9.1 PRODUCT LAUNCHES
    • 11.9.2 DEALS
    • 11.9.3 EXPANSIONS
    • 11.9.4 OTHERS

12 COMPANY PROFILES

  • 12.1 KEY PLAYERS
    • 12.1.1 GURIT SERVICES AG
      • 12.1.1.1 Business overview
      • 12.1.1.2 Products offered
      • 12.1.1.3 Recent developments
        • 12.1.1.3.1 Deals
      • 12.1.1.4 MnM view
        • 12.1.1.4.1 Key strengths/Right to win
        • 12.1.1.4.2 Strategic choices
        • 12.1.1.4.3 Weaknesses/Competitive threats
    • 12.1.2 CHINA NATIONAL BUILDING MATERIAL GROUP CORPORATION
      • 12.1.2.1 Business overview
      • 12.1.2.2 Products offered
      • 12.1.2.3 MnM view
        • 12.1.2.3.1 Key strengths/Right to win
        • 12.1.2.3.2 Strategic choices
        • 12.1.2.3.3 Weaknesses/Competitive threats
    • 12.1.3 HEXCEL CORPORATION
      • 12.1.3.1 Business overview
      • 12.1.3.2 Products offered
      • 12.1.3.3 MnM view
        • 12.1.3.3.1 Key strengths/Right to win
        • 12.1.3.3.2 Strategic choices
        • 12.1.3.3.3 Weaknesses/Competitive threats
    • 12.1.4 TORAY INDUSTRIES, INC.
      • 12.1.4.1 Business overview
      • 12.1.4.2 Products offered
      • 12.1.4.3 MnM view
        • 12.1.4.3.1 Key strengths/Right to win
        • 12.1.4.3.2 Strategic choices
        • 12.1.4.3.3 Weaknesses/Competitive threats
    • 12.1.5 CHINA JUSHI CO., LTD.
      • 12.1.5.1 Business overview
      • 12.1.5.2 Products/Solutions/Services offered
      • 12.1.5.3 Recent developments
        • 12.1.5.3.1 Expansions
        • 12.1.5.3.2 Others
      • 12.1.5.4 MnM view
        • 12.1.5.4.1 Key strengths/Right to win
        • 12.1.5.4.2 Strategic choices
        • 12.1.5.4.3 Weaknesses/Competitive threats
    • 12.1.6 ROCHLING SE & CO. KG
      • 12.1.6.1 Business overview
      • 12.1.6.2 Products offered
      • 12.1.6.3 MnM view
        • 12.1.6.3.1 Key strengths/Right to win
        • 12.1.6.3.2 Strategic choices
        • 12.1.6.3.3 Weaknesses/Competitive threats
    • 12.1.7 SGL CARBON
      • 12.1.7.1 Business overview
      • 12.1.7.2 Products offered
      • 12.1.7.3 MnM view
        • 12.1.7.3.1 Key strengths/Right to win
        • 12.1.7.3.2 Strategic choices
        • 12.1.7.3.3 Weaknesses/Competitive threats
    • 12.1.8 DOWAKSA
      • 12.1.8.1 Business overview
      • 12.1.8.2 Products offered
      • 12.1.8.3 Recent developments
        • 12.1.8.3.1 Deals
      • 12.1.8.4 MnM view
        • 12.1.8.4.1 Key strengths/Right to win
        • 12.1.8.4.2 Strategic choices
        • 12.1.8.4.3 Weaknesses/Competitive threats
    • 12.1.9 EXEL COMPOSITES
      • 12.1.9.1 Business overview
      • 12.1.9.2 Products offered
      • 12.1.9.3 Recent developments
        • 12.1.9.3.1 Deals
        • 12.1.9.3.2 Others
      • 12.1.9.4 MnM view
        • 12.1.9.4.1 Key strengths/Right to win
        • 12.1.9.4.2 Strategic choices
        • 12.1.9.4.3 Weaknesses/Competitive threats
    • 12.1.10 EVONIK
      • 12.1.10.1 Business overview
      • 12.1.10.2 Products offered
      • 12.1.10.3 MnM view
        • 12.1.10.3.1 Key strengths/Right to win
        • 12.1.10.3.2 Strategic choices
        • 12.1.10.3.3 Weaknesses/Competitive threats
    • 12.1.11 ARKEMA
      • 12.1.11.1 Business overview
      • 12.1.11.2 Products offered
      • 12.1.11.3 Recent developments
        • 12.1.11.3.1 Others
      • 12.1.11.4 MnM view
        • 12.1.11.4.1 Key strengths/Right to win
        • 12.1.11.4.2 Strategic choices
        • 12.1.11.4.3 Weaknesses/Competitive threats
    • 12.1.12 TEIJIN LIMITED
      • 12.1.12.1 Business overview
      • 12.1.12.2 Products offered
      • 12.1.12.3 MnM view
        • 12.1.12.3.1 Key strengths/Right to win
        • 12.1.12.3.2 Strategic choices
        • 12.1.12.3.3 Weaknesses/Competitive threats
    • 12.1.13 OWENS CORNING
      • 12.1.13.1 Business overview
      • 12.1.13.2 Products offered
      • 12.1.13.3 MnM view
        • 12.1.13.3.1 Key strengths/Right to win
        • 12.1.13.3.2 Strategic choices
        • 12.1.13.3.3 Weaknesses/Competitive threats
    • 12.1.14 EXXON MOBIL CORPORATION
      • 12.1.14.1 Business overview
      • 12.1.14.2 Products offered
      • 12.1.14.3 MnM view
        • 12.1.14.3.1 Key strengths/Right to win
        • 12.1.14.3.2 Strategic choices
        • 12.1.14.3.3 Weaknesses/Competitive threats
    • 12.1.15 HUNTSMAN INTERNATIONAL LLC
      • 12.1.15.1 Business overview
      • 12.1.15.2 Products offered
      • 12.1.15.3 Recent developments
        • 12.1.15.3.1 Product launches
      • 12.1.15.4 MnM view
        • 12.1.15.4.1 Key strengths/Right to win
        • 12.1.15.4.2 Strategic choices
        • 12.1.15.4.3 Weaknesses/Competitive threats
  • 12.2 OTHER PLAYERS
    • 12.2.1 PULTREX LTD
    • 12.2.2 EPSILON COMPOSITE
    • 12.2.3 AERON COMPOSITE LIMITED
    • 12.2.4 WESTLAKE CORPORATION
    • 12.2.5 ELAN COMPOSITES
    • 12.2.6 NORTHERN LIGHT COMPOSITES
    • 12.2.7 JIUDING NEW MATERIAL CO., LTD.
    • 12.2.8 HS HYOSUNG ADVANCED MATERIALS
    • 12.2.9 INDORE COMPOSITE
    • 12.2.10 RELIANCE INDUSTRIES LTD.

13 APPENDIX

  • 13.1 DISCUSSION GUIDE
  • 13.2 KNOWLEDGESTORE: MARKETSANDMARKETS' SUBSCRIPTION PORTAL
  • 13.3 CUSTOMIZATION OPTIONS
  • 13.4 RELATED REPORTS
  • 13.5 AUTHOR DETAILS
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제