½ÃÀ庸°í¼­
»óǰÄÚµå
1777939

¼¼°èÀÇ ÀüÇØ »êÈ­ ½ÃÀå : Àü±Ø Àç·áº°, À¯Çüº°, Àü±Ø Àç·áº°, ÃÖÁ¾ ÀÌ¿ë »ê¾÷º°, ¿ëµµº°, Áö¿ªº° - ¿¹Ãø(-2030³â)

Electro-Oxidation Market by Type, Electrode Material (Boron-Doped Diamond, Lead Dioxide, Stannic Oxide, Titanium Suboxides, Graphite, and Platinum), Application, End-Use Industry & Region - Forecast to 2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: MarketsandMarkets | ÆäÀÌÁö Á¤º¸: ¿µ¹® 216 Pages | ¹è¼Û¾È³» : Áï½Ã¹è¼Û

    
    
    




¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

ÀüÇØ »êÈ­ ½ÃÀå ±Ô¸ð´Â 2025³â 16¾ï ´Þ·¯¿¡¼­ 2030³â¿¡´Â 21¾ï ´Þ·¯·Î ¼ºÀåÇϰí, ¿¹Ãø ±â°£ Áß ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)Àº 6.0%¸¦ ±â·ÏÇÏ¸é ¿¹ÃøµË´Ï´Ù.

Á¶»ç ¹üÀ§
Á¶»ç ´ë»ó ¿¬µµ 2021-2030³â
±âÁØ¿¬µµ 2024³â
¿¹Ãø ±â°£ 2025-2030³â
°ËÅä ´ÜÀ§ ±Ý¾×( 100¸¸ ´Þ·¯/10¾ï ´Þ·¯)
ºÎ¹® Àü±Ø Àç·áº°, À¯Çüº°, Àü±Ø Àç·áº°, ÃÖÁ¾ ÀÌ¿ë »ê¾÷º°, ¿ëµµº°, Áö¿ªº°
´ë»ó Áö¿ª ºÏ¹Ì, À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«, ³²¹Ì

¼öÁú ¿À¿°°ú ¹° ºÎÁ·À̶ó´Â Áö¼ÓÀûÀÌ°í ±¤¹üÀ§ÇÑ ¹®Á¦¿¡ ´ëÀÀÇϱâ À§ÇØ Ä£È¯°æ ¼öó¸® ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ÀüÇØ »êÈ­ ½ÃÀåÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù. Àü ¼¼°èÀûÀ¸·Î ȯ°æ ±ÔÁ¦°¡ °­È­µÊ¿¡ µû¶ó »ê¾÷°è´Â Æó¼ö ±âÁØÀ» ÃæÁ·Çϱâ À§ÇØ »õ·Î¿î ó¸® ±â¼úÀ» äÅÃÇØ¾ß Çϸç, ÀüÇØ »êÈ­´Â ¿ÜºÎ ÅõÀÔÀ» ÃÖ¼ÒÈ­Çϸ鼭 ƯÈ÷ ±î´Ù·Î¿î ¿À¿° ¹°ÁúÀ» º¯È¯ÇÒ ¼ö ÀÖ´Â ¹æ¹ýÀ¸·Î °¢±¤¹Þ°í ÀÖ½À´Ï´Ù. ÀÇ·á½Ã¼³À̳ª °ø°ø ±Þ¼ö ½Ã½ºÅÛ µî ¹° ¾ÈÀüÀÌ Æ¯È÷ Áß¿äÇÑ ºÐ¾ß¿¡¼­´Â °øÁߺ¸°Ç¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ ¼ö°è Àü¿°º´°ú ½ÅÁ¾ ¿À¿°¹°Áú(CECs)¿¡ ´ëÇÑ ¿ì·Á°¡ Ä¿Áö°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, »ê¾÷ÀÇ Å»Åº¼ÒÈ­¿Í ½º¸¶Æ® ¹° °ü¸® ½Ã½ºÅÛÀÇ ¼ºÀå¿¡ µû¶ó, ÀüÇØ»êÈ­´Â Áö¼Ó°¡´É¼º¿¡ ±â¹ÝÇÑ Â÷¼¼´ë ¼öó¸® Á¢±Ù¹ýÀ¸·Î È®´ëµÉ ¼ö ÀÖ´Â Å« ÀáÀç·ÂÀ» °¡Áö°í ÀÖ½À´Ï´Ù.

Electro-Oxidation Market-IMG1

Á÷Á¢ ÀüÇØ»êÈ­´Â Á¶ÀÛÀÌ °£´ÜÇϰí ó¸® È¿À²ÀÌ ³ôÀ¸¸ç ½Ã¾à°ú Ã˸ſ¡ ´ëÇÑ Ãß°¡ ¼ö¿ä°¡ Àû±â ¶§¹®¿¡ ÀüÇØ»êÈ­ ½ÃÀå¿¡¼­ °¡Àå ºü¸£°Ô ¼ºÀåÇÏ´Â À¯ÇüÀÌ µÉ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¿À¿°¹°ÁúÀº ¾ç±Ø Ç¥¸é¿¡¼­ Á÷Á¢ »êÈ­µÇ¸ç, Áß°£ ´Ü°è³ª 2Â÷ »êÈ­Á¦ÀÇ »ý¼ºÀº ¾ø½À´Ï´Ù. Á÷Á¢ Àü±âºÐÇØ »êÈ­¸¦ ÅëÇØ È¿À²ÀûÀ̰í Àϰü¼º ÀÖ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â Æó¼ö ó¸® ¼Ö·ç¼ÇÀ» ¿øÇÏ´Â »ê¾÷ ¹× À¯Æ¿¸®Æ¼ °í°´µéÀº ½Ã½ºÅÛ ¼³°è, À¯Áöº¸¼ö ¹× ¸ð´ÏÅ͸µÀ» °£¼ÒÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. Á÷Á¢ Àü±âºÐÇØ »êÈ­°¡ ±Þ¼ºÀåÇÏ´Â ÁÖµÈ ÀÌÀ¯´Â À¯±â ¿À¿°¹°ÁúÀ» È¿°úÀûÀ¸·Î ºÐÇØÇÏ°í ³­ºÐÇØ¼º ºñ»ýºÐÇØ¼º ¹°ÁúÀ» ¹«±âÈ­ÇÒ ¼ö ÀÖ´Â ´É·Â¿¡ ÀÖ½À´Ï´Ù. Á÷Á¢ Àü±âºÐÇØ »êÈ­´Â Àü±Ø Ç¥¸é¿¡¼­ °­·ÂÇÑ »êÈ­ Á¶°ÇÀ» ¸¸µé¾î ±Ø¼º ¹× ºñ±Ø¼º ¿À¿°¹°ÁúÀ» ¹«ÇØÇÑ ÃÖÁ¾ Á¦Ç°À¸·Î ¿ÏÀüÈ÷ ¹«±âÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ´Â È­ÇÐ, Á¦¾à, ¿°·á, ¼®À¯È­ÇÐ µî »ê¾÷¿¡¼­ °í°­µµ Æó¼ö¸¦ ¹èÃâÇÏ´Â °í°´¿¡°Ô ƯÈ÷ ¸Å·ÂÀûÀ̸ç, ƯÈ÷ »ý¹°ÇÐÀû ó¸® ÇѰ迡 µµ´ÞÇ߰ųª ¿°¼Ò³ª ¿ÀÁ¸°ú °°Àº È­ÇÐÀû 󸮷Π¿À¿°¹°ÁúÀ» È¿°úÀûÀ¸·Î Á¦°ÅÇϰųª ÀüȯÇÒ ¼ö ¾ø´Â °æ¿ì¿¡ ƯÈ÷ È¿°úÀûÀÔ´Ï´Ù.

ÀÌ»êÈ­³³(PbO2)Àº ÀüÇØ »êÈ­ ½ÃÀå¿¡¼­ °¡Àå Àαâ ÀÖ´Â Àü±Ø Àç·á·Î ºü¸£°Ô ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â ¾ËÄ®¸® °íµµ »êÈ­ °øÁ¤¿¡¼­ °í¼º´É, È­ÇÐÀû ¾ÈÁ¤¼º ¹× ºñ¿ë È¿À²¼ºÀÇ Å¹¿ùÇÑ Á¶ÇÕÀ¸·Î ÀÎÇØ ¹ß»ýÇß½À´Ï´Ù. ÀÌ»êÈ­³³ÀÌ ºü¸£°Ô äÅÃµÈ ÁÖµÈ ÀÌÀ¯´Â Ç¥ÁØ Ä¡·á¹ýÀ¸·Î Á¦°ÅÇÒ ¼ö ¾ø´Â ¹Ì·® ¿À¿°¹°Áú°ú ºñ»ýºÐÇØ¼º ¿À¿°¹°ÁúÀ» Æ÷ÇÔÇÑ ±¤¹üÀ§ÇÑ À¯±â ¿À¿°¹°ÁúÀ» »êÈ­ÀûÀ¸·Î ºÐÇØÇÒ ¼ö Àֱ⠶§¹®ÀÔ´Ï´Ù. ¶ÇÇÑ, ÀÌ»êÈ­³³ Àü±ØÀº ³ôÀº »ê¼Ò ¹ß»ý ¿À¹ö °¡´É¼ºÀ» Ư¡À¸·Î Çϸç, ºÎ¹ÝÀÀ¿¡ ÀÇÇØ ºü¸£°Ô ¼Ò¸ðµÇÁö ¾Ê°í ÇÏÀ̵å·Ï½Ã¶óµðÄ®°ú °°Àº °­·ÂÇÑ »êÈ­ Á¾À» Çü¼ºÇÒ ¼ö ÀÖ¾î Ä¡·á È¿À²À» Çâ»ó½Ãŵ´Ï´Ù. »êÈ­·Â ¿Ü¿¡µµ PbO2´Â Àü±â È­ÇÐÀû Á¶°Ç¿¡¼­ ¿ì¼öÇÑ ¾ÈÁ¤¼ºÀ» º¸¿©ÁÝ´Ï´Ù. µû¶ó¼­ ´Ù¸¥ Àü±ØÀº ½Ã°£ÀÌ Áö³²¿¡ µû¶ó ¿­È­µÇ°Å³ª È¿°ú°¡ ¶³¾îÁú ¼ö ÀÖ´Â À¯±â¹°ÀÌ ¸¹ÀÌ ÇÔÀ¯µÈ °í³óµµ ¿À¿° »ê¾÷Æó¼ö 󸮿¡ ÀûÇÕÇÑ Àü±Ø Àç·áÀÔ´Ï´Ù. ÀÌ»êÈ­³³ Àü±ØÀÇ ³»±¸¼ºÀº °¡È¤ÇÑ ºÎ½Ä ȯ°æ¿¡¼­µµ »êÈ­ ´É·ÂÀ» ÀÒÁö ¾Ê°í Àå±â°£ »ç¿ëÇÒ ¼ö ÀÖ¾î ¼º´É°ú ½Å·Ú¼ºÀÌ Çâ»óµË´Ï´Ù. ÀÌ·¯ÇÑ Æ¯¼ºÀ¸·Î ÀÎÇØ ÀÌ»êÈ­³³ Àü±ØÀº ÁöÀÚü ¹× »ê¾÷ ÀÀ¿ë ºÐ¾ß¿¡¼­ ÀÚÁÖ »ç¿ëµÇ´Â ¿¬¼Ó È帧 ó¸® ½Ã½ºÅÛ¿¡¼­ ¿ìÀ§¸¦ Á¡Çϰí ÀÖ½À´Ï´Ù.

Á߱ݼÓ, Áú»ê¿° ¹× ±âŸ ¹«±â ¿À¿°¹°ÁúÀ» ó¸®ÇÒ Çʿ䰡 Àֱ⠶§¹®¿¡ ¹«±â ¿À¿°¹°ÁúÀº ÀüÇØ »êÈ­ ½ÃÀå¿¡¼­ °¡Àå ºü¸£°Ô ¼ºÀåÇÏ´Â ÀÀ¿ë ºÐ¾ßÀÔ´Ï´Ù. ÀüÇØ»êÈ­´Â Á÷Á¢ ÀüÀÚ À̵¿ ¶Ç´Â ¹ÝÀÀÁ¾ »ý¼º¿¡ ÀÇÇÑ »êÈ­ ¶Ç´Â ȯ¿ø¿¡ ÀÇÇØ ¹«±â¹°À» Á¦°ÅÇϸç, ¹«±â¹° 󸮴 ±âÁ¸ÀÇ ¹æ¹ýÀ¸·Î Á¦°Å ´ÏÁ ÃæÁ·½Ãų ¼ö ¾ø´Â °æ¿ì¿¡ ¸Å¿ì È¿°úÀûÀÔ´Ï´Ù. »ê¾÷ °üÇàÀÇ º¯È­¿Í ±ÔÁ¦ °­È­·Î ÀÎÇØ ÀüÇØ »êÈ­´Â ÁÖ·Î ¾Æ½Ã¾ÆÅÂÆò¾ç¿¡¼­ ¼±È£µÇ´Â ó¸® ±â¼ú·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ª¿¡¼­´Â ±¤¾÷, È­ÇÐ, ÀüÀÚ »ê¾÷ÀÌ ¿À¿°¹°Áú, ƯÈ÷ Á߱ݼÓÀÇ ¾ö°ÝÇÑ ¹èÃâ ±âÁØÀ» ÃæÁ·ÇØ¾ß ÇÕ´Ï´Ù. ºÏ¹Ì¿¡¼­´Â Áú»ê¿° ¿À¿°¿¡ ´ëÇÑ ³ó¾÷ ±ÔÁ¦°¡ ³ó¾÷ Æó¼ö ¹× ÁöÇϼö¸¦ ´ë»óÀ¸·Î º¯°æµÊ¿¡ µû¶ó È¿°úÀûÀ̰í È¿À²ÀûÀÎ Áú»ê¿° 󸮸¦ À§ÇØ ÀÌ»êÈ­ ³³°ú ƼŸ´½ Àü±ØÀ» »ç¿ëÇÑ Àü±âºÐÇØ »êÈ­ ÆÄÀÏ·µÀÇ »ç¿ëÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. À¯·´¿¡¼­´Â µµ½Ã Æó¼ö ó¸® Áöħ°ú »ê¾÷ Æó¼ö Áß ¹«±â ¿À¿° ¹°ÁúÀ» Æ÷ÇÔÇÑ ¿À¿° ¹æÁö¿¡ ´ëÇÑ ¿ä±¸ »çÇ×À¸·Î ÀÎÇØ È­ÇÐ °øÀå¿¡¼­ ÀüÇØ »êÈ­¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ¾ÆÇÁ¸®Ä«, ³²¹Ì, ¶óƾ¾Æ¸Þ¸®Ä« ±¹°¡µéÀÇ ±¤»ê Ȱµ¿ÀÇ ¼ºÀåµµ ¼¼°èÀºÇàÀÇ Áö¿øÀ» ¹Þ¾Æ Á߱ݼÓÀ» Æ÷ÇÔÇÑ »ê¼º ±¤»ê Æó¼ö¸¦ ó¸®ÇÒ ¼ö ÀÖ´Â ÀüÇØ »êÈ­ 󸮿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

»ê¾÷ Á¦Á¶ »ê¾÷Àº Æó¼ö ¹èÃâ ȯ°æ ±âÁØÀ» ÁؼöÇϰí Áö¼Ó°¡´É¼º ¸ñÇ¥¸¦ Áö¿øÇϱâ À§ÇÑ °íµµÀÇ Æó¼ö 󸮿¡ ´ëÇÑ ¼ö¿ä°¡ ¸Å¿ì ³ô±â ¶§¹®¿¡ Àü±âºÐÇØ »êÈ­(EO) ½ÃÀå¿¡¼­ °¡Àå ºü¸£°Ô ¼ºÀåÇÏ´Â ÃÖÁ¾ »ç¿ë ºÐ¾ß°¡ µÇ°í ÀÖ½À´Ï´Ù. Á¦Á¶ ºÎ¹®(È­Çй°Áú ¹× ÀǾàǰ Æ÷ÇÔ)Àº Á߱ݼÓ, °úºÒÈ­¾Ëų¹°Áú ¹× Æú¸®ºÒÈ­¾Ëų¹°Áú(PFAS·Î ±×·ìÈ­µÊ)°ú °°Àº ¹Ì·® ¿À¿°¹°Áú°ú ÇÔ²² ³­Ä¡¼º À¯±â¿À¿°¹°ÁúÀ» Æ÷ÇÔÇÑ º¹ÀâÇÑ Æó¼ö¸¦ »ý¼ºÇϸç, ±âÁ¸ÀÇ ¼ö󸮷δ Áö¼Ó °¡´ÉÇÑ Ã³¸®¿¡ ¾î·Á¿òÀ» °Þ°í ÀÖ½À´Ï´Ù. ÀüÇØ »êÈ­´Â Á÷Á¢ ¶Ç´Â °£Á¢ »êÈ­¸¦ ÅëÇØ ¿À¿°¹°ÁúÀ» ºÐÇØÇÒ ¼ö ÀÖÀ¸¸ç, ºØ¼Ò ´ÙÀ̾Ƹóµå³ª ÀÌ»êÈ­ ³³°ú °°Àº °­·ÂÇÑ Àü±ØÀ» À¯ÁöÇÒ ¼ö ÀÖ½À´Ï´Ù. Àü±âÈ­ÇÐÀû Æó¼öó¸® »óÇÑÀº ÀçÅõÀÔÀ» ¸ñÀûÀ¸·Î ÇÑ Æó¼öÀÇ ÀçÀÌ¿ëÀ» ÁÖ ¸ñÀûÀ¸·Î ÇÏ¿© ¿­¾ÇÇÑ ¹èÃâ±âÁØÀ» ´Þ¼ºÇÏ´Â °æ¿ì¿¡ ¹ß»ýÇÕ´Ï´Ù. Á¦Á¶¾÷ÀÇ Æó¼ö ¹«¹æ·ù(ZLD) ¸ñÇ¥´Â ÀüÇØ »êÈ­ ¹æ½ÄÀ» äÅÃÇϵµ·Ï Àå·ÁÇϰí, ¼øÈ¯ °æÁ¦¸¦ ½ÇõÇÏ°í ¸ðµç Æó±â¹°À» ¾ø¾Ö±â À§ÇØ Æó±â¹°À» ÁÙÀ̵µ·Ï °­¿äÇÕ´Ï´Ù. ÀüÇØ»êÈ­´Â Æó¼ö ó¸® °øÁ¤À» ¹ßÀü½ÃŰ´Â ÀüÇØ»êÈ­ÀÇ ¿¹¿¡¼­ º¼ ¶§, ÀüÇØ»êÈ­°¡ Æó¼öÀÇ º¹ÀâÇÑ ±âÁ¸ ¹èÃâ ±âÁØÀ» ÃæÁ·½Ã۱â À§ÇÑ ÀϺΠ»ê¾÷üÀÇ ³ë·Â¿¡ ´ëÀÀÇÏ´Â °³º°ÀûÀΠó¸® ¼Ö·ç¼ÇÀÌ µÉ °¡´É¼ºÀº ¸Å¿ì ³·½À´Ï´Ù. ÀüÇØ»êÈ­´Â ±¤¹üÀ§ÇÑ À¯±â ¹× ¹«±â ¿À¿°¹°ÁúÀ» ó¸®ÇÒ ¼ö ÀÖ´Â ´É·ÂÀÌ Àֱ⠶§¹®¿¡ °í³óµµ Æó¼ö¸¦ »ý¼ºÇÒ ¼ö ÀÖÀ¸¸ç, Á¦¾àȸ»ç ¹× º¹ÀâÇÑ »ê¾÷ Æó¼ö ±âÁØÀ» ÁؼöÇÏ·Á´Â È­ÇÐȸ»ç¿¡¼­ ¹ß»ýÇÏ´Â °íCOD, °íµ¶¼º Æó¼ö¿Íµµ Àß ÀÛµ¿ÇÕ´Ï´Ù.

¼¼°èÀÇ ÀüÇØ»êÈ­ ½ÃÀå¿¡ ´ëÇØ Á¶»çÇßÀ¸¸ç, Àü±Ø Àç·áº°/À¯Çüº°/Àü±Ø Àç·áº°/ÃÖÁ¾ ÀÌ¿ë »ê¾÷º°/¿ëµµº°/Áö¿ªº° µ¿Çâ, ½ÃÀå ÁøÃâ ±â¾÷ ÇÁ·ÎÆÄÀÏ µîÀÇ Á¤º¸¸¦ Á¤¸®ÇÏ¿© ÀüÇØµå¸³´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­·Ð

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ÇÁ¸®¹Ì¾ö ÀλçÀÌÆ®

Á¦5Àå ½ÃÀå °³¿ä

  • ¼­·Ð
  • ½ÃÀå ¿ªÇÐ
  • »ý¼ºÇü AI°¡ ÀüÇØ »êÈ­ ½ÃÀå¿¡ ¹ÌÄ¡´Â ¿µÇâ

Á¦6Àå ¾÷°è µ¿Çâ

  • ¼­·Ð
  • °í°´ÀÇ ºñÁî´Ï½º¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â µ¿Çâ/È¥¶õ
  • ¹ë·ùüÀÎ ºÐ¼®
  • 2025³â ¹Ì±¹ °ü¼¼ÀÇ ¿µÇâ-ÀüÇØ »êÈ­ ½ÃÀå
  • ÁöÇ¥ °¡°Ý ºÐ¼®
  • ÅõÀÚ ¹× ÀÚ±ÝÁ¶´Þ ½Ã³ª¸®¿À
  • »ýÅÂ°è ºÐ¼®
  • ±â¼ú ºÐ¼®
  • ƯÇ㠺м®
  • ¹«¿ª ºÐ¼®
  • 2025-2026³â ÁÖ¿ä ÄÁÆÛ·±½º ¹× À̺¥Æ®
  • °ü¼¼ ¹× ±ÔÁ¦ »óȲ
  • PorterÀÇ Five Forces ºÐ¼®
  • ÁÖ¿ä ÀÌÇØ°ü°èÀÚ¿Í ±¸ÀÔ ±âÁØ
  • °Å½Ã°æÁ¦ Àü¸Á
  • »ç·Ê ¿¬±¸ ºÐ¼®

Á¦7Àå ÀüÇØ »êÈ­ ½ÃÀå(Àü±Ø Àç·áº°)

  • ¼­·Ð
  • ºØ¼Ò µµÇÎ ´ÙÀ̾Ƹóµå
  • ÀÌ»êÈ­ ³³
  • »êÈ­ ÁÖ¼®
  • ƼŸ´½ ¼­ºê ¿Á»çÀ̵å
  • Èæ¿¬
  • ¹é±Ý

Á¦8Àå ÀüÇØ »êÈ­ ½ÃÀå(À¯Çüº°)

  • ¼­·Ð
  • Á÷Á¢ ÀüÇØ »êÈ­
  • °£Á¢ ÀüÇØ »êÈ­

Á¦9Àå ÀüÇØ »êÈ­ ½ÃÀå(ÃÖÁ¾ ÀÌ¿ë »ê¾÷º°)

  • ¼­·Ð
  • µµ½Ã »óÇϼöµµ ¹× Æó¼ö
  • »ê¾÷ Á¦Á¶¾÷
  • ¼¶À¯
  • ½Äǰ ¹× À½·á
  • ±¤¾÷
  • ±âŸ

Á¦10Àå ÀüÇØ »êÈ­ ½ÃÀå(¿ëµµº°)

  • ¼­·Ð
  • À¯±â ¹× ¹Ì·® ó¸® ºÎ¹®
  • ¹«±â ó¸®
  • ¼Òµ¶ ¹× Ư¼ö ó¸®

Á¦11Àå ÀüÇØ »êÈ­ ½ÃÀå(Áö¿ªº°)

  • ¼­·Ð
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • Áß±¹
    • ÀϺ»
    • Àεµ
    • Çѱ¹
    • ±âŸ
  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ¿µ±¹
    • ½ºÆäÀÎ
    • ±âŸ
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • GCC ±¹°¡
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • ±âŸ

Á¦12Àå °æÀï ±¸µµ

  • ¼­·Ð
  • ÁÖ¿ä ½ÃÀå ÁøÃâ±â¾÷ÀÇ Àü·«/°­Á¡
  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2024³â
  • ¸ÅÃ⠺м®
  • ºê·£µå/Á¦Ç° ºñ±³
  • ±â¾÷ Æò°¡ ¸ÅÆ®¸¯½º : ÁÖ¿ä ½ÃÀå ÁøÃâ±â¾÷, 2024³â
  • ±â¾÷ Æò°¡ ¸ÅÆ®¸¯½º : ½ºÅ¸Æ®¾÷/Áß¼Ò±â¾÷, 2024³â
  • ±â¾÷ Æò°¡¿Í À繫 ÁöÇ¥, 2024³â
  • °æÀï ½Ã³ª¸®¿À

Á¦13Àå ±â¾÷ °³¿ä

  • ÁÖ¿ä ½ÃÀå ÁøÃâ±â¾÷
    • LUMMUS TECHNOLOGY
    • OVIVO USA LLC
    • VALENCE WATER INC
    • HYDROLEAP
    • JIANGSU JINGYUAN ENVIRONMENTAL PROTECTION CO., LTD
    • GROUND EFFECTS ENVIRONMENTAL SERVICES INC
    • E-FLOC WASTEWATER SOLUTIONS
    • YASA ET(SHANGHAI) CO., LTD.
    • AQUA PULSAR
    • AXINE WATER TECHNOLOGIES
  • ±âŸ ±â¾÷
    • AEOLUS SUSTAINABLE BIOENERGY PVT. LTD
    • MAGNELI MATERIALS
    • HUNAN BOROMOND EPT CO. LTD.
    • VENTILAQUA
    • RT SAFEBALLAST PVT LTD.
    • MAGNETO SPECIAL ANODES(SUZHOU) CO., LTD.
    • AQUACARE SOLUTION ENVIRO ENGINEERS
    • GREEN ECOWATER SYSTEMS
    • BLUE EDEN CLEAN TECHNOLOGY
    • PPU UMWELTTECHNIK

Á¦14Àå ºÎ·Ï

LSH

The electro-oxidation market size is projected to grow from USD 1.6 billion in 2025 to USD 2.1 billion by 2030, registering a CAGR of 6.0% during the forecast period.

Scope of the Report
Years Considered for the Study2021-2030
Base Year2024
Forecast Period2025-2030
Units ConsideredValue (USD Million/Billion)
SegmentsType, Electrode Material, Application, End-Use Industry, and Region
Regions coveredNorth America, Europe, Middle East & Africa, South America

The market for electro-oxidation is expanding as it meets the rising demand for green water treatment solutions in response to ongoing and widespread issues of water pollution and scarcity. Stricter environmental regulations worldwide are encouraging industries to adopt new treatment technologies to meet effluent standards, and electro-oxidation stands out as a method capable of transforming pollutants that are particularly challenging with minimal external inputs. In sectors where water safety is especially critical, such as healthcare facilities and public water systems, there is increased focus on public health and concerns over waterborne diseases and emerging contaminants (CECs). Additionally, with the growth of industrial decarbonization and smart water management systems, electro-oxidation has significant potential for expansion as a next-generation water treatment approach rooted in sustainability.

Electro-Oxidation Market - IMG1

" Direct electro-oxidation is the fastest-growing type segment of the electro-oxidation market in terms of value."

Direct electro-oxidation is expected to be the fastest-growing type segment in the electro-oxidation market because it is simple to operate, efficient to treat, and has lower demands for additional reagents or catalysts. Pollutants are oxidized directly at the surface of the anode, with no intermediate steps and no secondary oxidants produced. This straightforward mechanism of direct electro-oxidation simplifies system design, maintenance, and monitoring for industrial or utility clients seeking an efficient, consistent, and reliable wastewater treatment solution. The primary reason for the rapid growth of direct electro-oxidation is its ability to effectively break down organic pollutants and help mineralize persistent, non-biodegradable substances. Direct electro-oxidation creates strong oxidizing conditions at the electrode surface, enabling the complete mineralization of polar and non-polar contaminants into harmless end products. This is particularly appealing to clients discharging high-strength effluents from industries such as chemicals, pharmaceuticals, dyes, and petrochemicals, especially when biological treatment limits are met or chemical treatments such as chlorine and ozone are ineffective in removing or transforming contaminants effectively.

"Lead oxidation is the fastest-growing electrode material segment of the electro-oxidation market in terms of value."

Lead dioxide (PbO2) is rapidly becoming the most popular electrode material in the electro-oxidation market. This trend is driven by its unmatched combination of high performance, chemical stability, and cost-effectiveness in alkaline advanced oxidation processes. A key reason for its quick adoption is its ability to oxidatively break down a wide range of organic pollutants, including micropollutants and non-biodegradable pollutants that standard treatment methods cannot remove. Additionally, lead dioxide electrodes feature a high oxygen evolution overpotential, which enables the formation of strong oxidizing species like hydroxyl radicals without being quickly consumed by side reactions, thus improving treatment efficiency. Besides its oxidizing power, PbO2 shows excellent stability under electrochemical conditions. This makes it a suitable electrode material for treating heavily contaminated industrial wastewater containing high levels of organics, where other electrode options may degrade or lose effectiveness over time. The durability of lead dioxide electrodes means they can operate for a long period in harsh, corrosive environments without losing their oxidizing capability, thereby enhancing performance and reliability. This characteristic gives PbO2 electrodes an advantage in continuous-flow treatment systems, often used in municipal or industrial applications.

"Inorganic pollutant treatment for the fastest-growing electrode material segment of the electro-oxidation market in terms of value."

Inorganic pollutants are the fastest-growing application segment in the electro-oxidation market due to the need to treat heavy metals, nitrates, and other inorganic contaminants. Electro-oxidation removes inorganics through oxidation or reduction by direct electron transfer or reactive species generation, and treatment of inorganics can be very effective when traditional methods cannot meet removal needs. Due to changes in industrial practices and stricter regulations, electro-oxidation is mainly emerging as a preferred treatment technology in the Asia-Pacific region, where industries in mining, chemicals, and electronics must meet stringent discharge standards for pollutants, especially heavy metals-as seen in pilots in China's industrial wastewater and mining industries and in India, where mining operations have a zero-liquid discharge component in wastewater standards. Changes in North America's agricultural regulations for nitrate contamination, which now target agricultural runoff and groundwater, have increased the use of electro-oxidation pilots using lead dioxide or titanium electrodes for effective and efficient nitrate treatment. In Europe, the Urban Waste Water Treatment Directive and its requirements for pollution prevention-including inorganic contaminants-in industrial discharges have generated interest in electro-oxidation applications in chemical plants. The growth of mining activities in countries across Africa, South America, and Latin America has also driven demand for electro-oxidation treatment, as it can treat acidic mine drainage with heavy metals, with support from the World Bank.

"Industrial manufacturing is expected to be the fastest-growing segment of the electro-oxidation market in terms of value."

Industrial manufacturing is becoming the fastest-growing end-use segment of the Electro-Oxidation (EO) market due to its highly intense demand for advanced wastewater treatment to comply with water discharge environmental standards and support sustainability goals. The manufacturing sectors (including chemicals and pharmaceuticals) produce complex effluents with recalcitrant organic contaminants along with heavy metals and micropollutants like per- and polyfluoroalkyl substances (completed grouped as PFAS) that conventional water treatments struggle to sustainably treat. Electro-oxidation is able to degrade contaminants through either direct or indirect oxidation which can preserve strong electrodes such as boron-doped diamond or lead dioxide. The upper limits of electrochemical wastewater treatment occur when poor discharge standards are being achieved with the primary goal of reclaiming wastewater for the purpose of reinjection. The zero-liquid discharge (ZLD) goals in manufacturing industries encourage the adoption of electro-oxidation, forcing the reduction of wastes with the intention of implementing circular economy practices and the elimination of any waste. In the instance of electro-oxidation producing advanced wastewater treatment processes, it is highly unlikely electro-oxidation will become a discrete treatment solution catered to some industrial companies' efforts to meet complex existing discharge standards in their rejected water. Electro-oxidation has the potential to generate advanced wastewater as it has the ability to treat a wide range of organic and inorganic contaminants, and works well with high-COD, highly toxic effluents from a pharmaceutical manufacturer or a chemical manufacturer trying to comply with their complex industry water discharge standards.

In-depth interviews were conducted with chief executive officers (CEOs), marketing directors, other innovation and technology directors, and executives from various key organizations operating in the Electro-Oxidation market, and information was gathered from secondary research to determine and verify the market size of several segments.

  • By Company Type: Tier 1 - 50%, Tier 2 - 30%, and Tier 3 - 20%
  • By Designation: Managers- 15%, Directors - 20%, and Others - 65%
  • By Region: North America - 25%, Europe - 15%, Asia Pacific - 45%, Middle East & Africa - 10%, South America - 5%.

Aqua Pulsar (US), Hydroleap (Singapore), Yasa ET (Shanghai) Co., Ltd. (China), OVIVO USA LLC (US), E-FLOC (US), Siemens (Germany), Valence Water Inc. (Colombia), PPU Umwelttechnik (Germany), Inc. (Canada), and Jiangsu Jingyuan Environmental Protection Co., Ltd (China) are the major companies in this market. The study includes an in-depth competitive analysis of these key players in the electro-oxidation market, with their company profiles, recent developments, and key market strategies.

Research Coverage

This report segments the electro-oxidation market based on type, electrode material, application, end-use industry, and region and provides estimates for the overall market value across different regions. It has also conducted a detailed analysis of key industry players to offer insights into their business overviews, products and services, key strategies, and expansions related to the electro-oxidation market.

Key benefits of buying this report

This research report focuses on various levels of analysis - industry analysis (industry trends), market ranking analysis of top players, and company profiles, which together provide an overall view of the competitive landscape; emerging and high-growth segments of the electro-oxidation market; high-growth regions; and market drivers, restraints, opportunities, and challenges.

The report provides insights on the following pointers:

  • Analysis of drivers (Rising Demand for PFAS and Micro-Pollutant Remediation), restraints (Limited Expertise and Supply Chain Vulnerabilities for Specialized Electrodes), opportunities (Integration of Renewable Energy Sources to Reduce Operational Costs), and challenges (Partial Oxidation of Ammonia and Ions Requiring Additional Processes).
  • Market Penetration: Comprehensive information on the Electro-Oxidation market offered by top players in the electro-oxidation market.
  • Product Development/Innovation: Detailed insights on upcoming technologies, research & development activities, partnership, agreement, joint venture, collaboration, announcement, awards, and expansion in the market.
  • Market Development: The report provides comprehensive information about lucrative emerging markets and analyzes the electro-oxidation market across regions.
  • Market Capacity: Production capacities of companies producing electro-oxidation are provided wherever available, with upcoming capacities for the electro-oxidation market.
  • Competitive Assessment: In-depth assessment of market shares, strategies, products, and manufacturing capabilities of leading players in the electro-oxidation market.

TABLE OF CONTENTS

1 INTRODUCTION

  • 1.1 STUDY OBJECTIVES
  • 1.2 MARKET DEFINITION
  • 1.3 STUDY SCOPE
    • 1.3.1 MARKETS COVERED AND REGIONAL SNAPSHOT
    • 1.3.2 INCLUSIONS & EXCLUSIONS
    • 1.3.3 YEARS CONSIDERED
    • 1.3.4 CURRENCY CONSIDERED
  • 1.4 LIMITATIONS
  • 1.5 STAKEHOLDERS

2 RESEARCH METHODOLOGY

  • 2.1 RESEARCH DATA
    • 2.1.1 SECONDARY DATA
      • 2.1.1.1 Key data from secondary sources
    • 2.1.2 PRIMARY DATA
      • 2.1.2.1 Key data from primary sources
      • 2.1.2.2 Key primary sources
      • 2.1.2.3 Key participants for primary interviews
      • 2.1.2.4 Breakdown of primary interviews
      • 2.1.2.5 Key industry insights
  • 2.2 BASE NUMBER CALCULATION
    • 2.2.1 SUPPLY-SIDE ANALYSIS
    • 2.2.2 DEMAND-SIDE ANALYSIS
  • 2.3 GROWTH FORECAST
    • 2.3.1 SUPPLY SIDE
    • 2.3.2 DEMAND SIDE
  • 2.4 MARKET SIZE ESTIMATION
    • 2.4.1 BOTTOM-UP APPROACH
    • 2.4.2 TOP-DOWN APPROACH
  • 2.5 DATA TRIANGULATION
  • 2.6 RESEARCH ASSUMPTIONS
  • 2.7 GROWTH FORECAST
  • 2.8 RISK ASSESSMENT
  • 2.9 FACTOR ANALYSIS

3 EXECUTIVE SUMMARY

4 PREMIUM INSIGHTS

  • 4.1 ATTRACTIVE OPPORTUNITIES FOR PLAYERS IN ELECTRO-OXIDATION MARKET
  • 4.2 ELECTRO-OXIDATION MARKET, BY TYPE
  • 4.3 ELECTRO-OXIDATION MARKET, BY ELECTRODE MATERIAL
  • 4.4 ELECTRO-OXIDATION MARKET, BY APPLICATION
  • 4.5 ELECTRO-OXIDATION MARKET, BY END-USE INDUSTRY
  • 4.6 ELECTRO-OXIDATION MARKET, BY COUNTRY

5 MARKET OVERVIEW

  • 5.1 INTRODUCTION
  • 5.2 MARKET DYNAMICS
    • 5.2.1 DRIVERS
      • 5.2.1.1 Rising demand for PFAS and micro-pollutant remediation
      • 5.2.1.2 Adoption in decentralized and modular wastewater treatment
    • 5.2.2 RESTRAINTS
      • 5.2.2.1 Limited expertise and supply chain vulnerabilities for specialized electrodes
    • 5.2.3 OPPORTUNITIES
      • 5.2.3.1 Integration of renewable energy sources to reduce operational costs
      • 5.2.3.2 Treatment of non-biodegradable organic compounds and nitrogen organisms
    • 5.2.4 CHALLENGES
      • 5.2.4.1 Partial oxidation of ammonia and ions requiring additional processes
  • 5.3 IMPACT OF GENERATIVE AI ON ELECTRO-OXIDATION MARKET
    • 5.3.1 INTRODUCTION
    • 5.3.2 IMPACT ON ELECTRO-OXIDATION MARKET

6 INDUSTRY TRENDS

  • 6.1 INTRODUCTION
  • 6.2 TRENDS/DISRUPTIONS IMPACTING CUSTOMER BUSINESS
  • 6.3 VALUE CHAIN ANALYSIS
    • 6.3.1 RAW MATERIAL PROCUREMENT
    • 6.3.2 TECHNOLOGY DEVELOPMENT & R&D
    • 6.3.3 COMPONENT MANUFACTURING & ASSEMBLY
    • 6.3.4 SYSTEM INTEGRATION & END-USE CUSTOMIZATION
    • 6.3.5 DISTRIBUTION, INSTALLATION & AFTER-SALES SERVICE
  • 6.4 IMPACT OF 2025 US TARIFFS-ELECTRO-OXIDATION MARKET
    • 6.4.1 INTRODUCTION
    • 6.4.2 KEY TARIFF RATES
    • 6.4.3 PRICE IMPACT ANALYSIS
    • 6.4.4 KEY IMPACT ON VARIOUS REGIONS
      • 6.4.4.1 US
      • 6.4.4.2 Europe
      • 6.4.4.3 Asia Pacific
    • 6.4.5 END-USE INDUSTRY IMPACT
  • 6.5 INDICATIVE PRICING ANALYSIS
    • 6.5.1 INTRODUCTION
    • 6.5.2 INDICATIVE PRICING OF ELECTRO-OXIDATION AMONG KEY PLAYERS, BY TYPE, 2021-2024
    • 6.5.3 INDICATIVE PRICE, BY TYPE, 2021-2024
  • 6.6 INVESTMENT AND FUNDING SCENARIO
  • 6.7 ECOSYSTEM ANALYSIS
  • 6.8 TECHNOLOGY ANALYSIS
    • 6.8.1 KEY TECHNOLOGIES
    • 6.8.2 COMPLEMENTARY TECHNOLOGIES
  • 6.9 PATENT ANALYSIS
    • 6.9.1 METHODOLOGY
    • 6.9.2 PATENTS GRANTED, 2015-2024
    • 6.9.3 PATENT PUBLICATION TRENDS
    • 6.9.4 INSIGHTS
    • 6.9.5 LEGAL STATUS OF PATENTS
    • 6.9.6 JURISDICTION ANALYSIS
    • 6.9.7 TOP APPLICANTS
    • 6.9.8 LIST OF MAJOR PATENTS
  • 6.10 TRADE ANALYSIS
    • 6.10.1 EXPORT SCENARIO (HS CODE 842121)
    • 6.10.2 IMPORT SCENARIO (HS CODE 842121)
  • 6.11 KEY CONFERENCES AND EVENTS, 2025-2026
  • 6.12 TARIFF AND REGULATORY LANDSCAPE
    • 6.12.1 TARIFF, 2024
    • 6.12.2 REGULATORY BODIES, GOVERNMENT AGENCIES, AND OTHER ORGANIZATIONS
    • 6.12.3 REGULATIONS RELATED TO ELECTRO-OXIDATION MARKET
  • 6.13 PORTER'S FIVE FORCES ANALYSIS
    • 6.13.1 THREAT OF NEW ENTRANTS
    • 6.13.2 THREAT OF SUBSTITUTES
    • 6.13.3 BARGAINING POWER OF SUPPLIERS
    • 6.13.4 BARGAINING POWER OF BUYERS
    • 6.13.5 INTENSITY OF COMPETITIVE RIVALRY
  • 6.14 KEY STAKEHOLDERS AND BUYING CRITERIA
    • 6.14.1 KEY STAKEHOLDERS IN BUYING PROCESS
    • 6.14.2 BUYING CRITERIA
  • 6.15 MACROECONOMIC OUTLOOK
    • 6.15.1 GDP TRENDS AND FORECASTS, BY COUNTRY
  • 6.16 CASE STUDY ANALYSIS
    • 6.16.1 APPLICATION OF ELECTRO-OXIDATION TECHNOLOGY FOR EFFECTIVE TREATMENT OF MUNICIPAL LANDFILL LEACHATE
    • 6.16.2 OX TREATMENT OF MUNICIPAL WASTEWATER FOR DISCHARGE TO WATERSHED

7 ELECTRO-OXIDATION MARKET, BY ELECTRODE MATERIAL

  • 7.1 INTRODUCTION
  • 7.2 BORON-DOPED DIAMOND
    • 7.2.1 ENABLING HIGH-EFFICIENCY POLLUTANT MINERALIZATION
  • 7.3 LEAD DIOXIDE
    • 7.3.1 PROVIDING COST-EFFECTIVE OXIDATION OF CONTAMINANTS
  • 7.4 STANNIC OXIDE
    • 7.4.1 FACILITATING EFFICIENT DEGRADATION WITH STABLE PERFORMANCE
  • 7.5 TITANIUM SUBOXIDE
    • 7.5.1 DELIVERING CORROSION-RESISTANT OXIDATION SOLUTIONS
  • 7.6 GRAPHITE
    • 7.6.1 SUPPORTING ECONOMIC ELECTROCHEMICAL TREATMENT
  • 7.7 PLATINUM
    • 7.7.1 ENHANCING CATALYTIC OXIDATION WITH NOBLE METAL PRECISION

8 ELECTRO-OXIDATION MARKET, BY TYPE

  • 8.1 INTRODUCTION
  • 8.2 DIRECT ELECTRO-OXIDATION
    • 8.2.1 OXIDIZING POLLUTANTS DIRECTLY AT ANODE
  • 8.3 INDIRECT ELECTRO-OXIDATION
    • 8.3.1 GENERATING INTERMEDIATE OXIDANTS FOR POLLUTANT DEGRADATION

9 ELECTRO-OXIDATION MARKET, BY END-USE INDUSTRY

  • 9.1 INTRODUCTION
  • 9.2 MUNICIPAL WATER & WASTEWATER
    • 9.2.1 ENSURING PUBLIC WATER SAFETY AND COMPLIANCE
  • 9.3 INDUSTRIAL MANUFACTURING
    • 9.3.1 TREATING ORGANIC POLLUTANTS IN INDUSTRIAL WASTEWATER
  • 9.4 TEXTILES
    • 9.4.1 REMOVING DYES FROM WASTEWATER FOR COMPLIANCE
  • 9.5 FOOD & BEVERAGE
    • 9.5.1 BALANCING ORGANIC WASTE TREATMENT AND HYGIENE STANDARDS
  • 9.6 MINING
    • 9.6.1 MITIGATING ENVIRONMENTAL IMPACT OF INORGANIC POLLUTANTS
  • 9.7 OTHERS
    • 9.7.1 ELECTRONIC & SEMICONDUCTOR
    • 9.7.2 AQUACULTURE

10 ELECTRO-OXIDATION MARKET, BY APPLICATION

  • 10.1 INTRODUCTION
  • 10.2 ORGANIC & MICROPOLLUTANT TREATMENT SEGMENT
    • 10.2.1 DEGRADING ORGANIC POLLUTANTS AND EMERGING CONTAMINANTS
  • 10.3 INORGANIC TREATMENT
    • 10.3.1 REMOVING HEAVY METALS AND INORGANIC CONTAMINANTS
  • 10.4 DISINFECTION & SPECIALIZED TREATMENT
    • 10.4.1 ENSURING MICROBIAL SAFETY AND ENHANCING WATER QUALITY

11 ELECTRO-OXIDATION MARKET, BY REGION

  • 11.1 INTRODUCTION
  • 11.2 ASIA PACIFIC
    • 11.2.1 CHINA
      • 11.2.1.1 Stricter industrial effluent control driving electro-oxidation adoption in textile and chemical sectors
    • 11.2.2 JAPAN
      • 11.2.2.1 Focus on emerging contaminants in electronics and pharmaceutical industries
    • 11.2.3 INDIA
      • 11.2.3.1 Urban wastewater management driving electro-oxidation adoption in municipal and agricultural sectors
    • 11.2.4 SOUTH KOREA
      • 11.2.4.1 Water reuse mandates boosting electro-oxidation in semiconductor and municipal sectors
    • 11.2.5 REST OF ASIA PACIFIC
  • 11.3 NORTH AMERICA
    • 11.3.1 US
      • 11.3.1.1 PFAS remediation to drive electro-oxidation adoption in municipal and chemical sectors
    • 11.3.2 CANADA
      • 11.3.2.1 Mining effluent management boosting electro-oxidation in mining and forestry sectors
    • 11.3.3 MEXICO
      • 11.3.3.1 Industrial water reuse to drive electro-oxidation in manufacturing and textile sectors
  • 11.4 EUROPE
    • 11.4.1 GERMANY
      • 11.4.1.1 Industrial Compliance Driving Electro-Oxidation adoption in Chemical Sector
    • 11.4.2 ITALY
      • 11.4.2.1 Water Scarcity Mitigation Driving Electro-oxidation in Agricultural and Aquaculture Sectors
    • 11.4.3 FRANCE
      • 11.4.3.1 Pharmaceutical Residue Control Boosting Electro-oxidation in Healthcare and Biotech Sectors
    • 11.4.4 UK
      • 11.4.4.1 Decentralized Demand and Regulatory Shift Fueling Electro-oxidation Uptake
    • 11.4.5 SPAIN
      • 11.4.5.1 Drought and Industrial Agriculture Demanding Advanced Wastewater Solutions
    • 11.4.6 REST OF EUROPE
  • 11.5 MIDDLE EAST & AFRICA
    • 11.5.1 GCC COUNTRIES
      • 11.5.1.1 Saudi Arabia
        • 11.5.1.1.1 Industrial diversification and water sustainability mandates fueling market expansion
      • 11.5.1.2 UAE
        • 11.5.1.2.1 Water stress and smart infrastructure agenda driving electro-oxidation deployment
      • 11.5.1.3 Rest of GCC countries
    • 11.5.2 SOUTH AFRICA
      • 11.5.2.1 Industrial contamination and urban infrastructure gaps propelling electro-oxidation adoption
    • 11.5.3 REST OF MIDDLE EAST & AFRICA
  • 11.6 SOUTH AMERICA
    • 11.6.1 ARGENTINA
      • 11.6.1.1 Aging infrastructure and food processing demand prompt electro-oxidation integration
    • 11.6.2 BRAZIL
      • 11.6.2.1 Industrial hubs and water scarcity driving electro-oxidation expansion in urban and semi-urban zones
    • 11.6.3 REST OF SOUTH AMERICA

12 COMPETITIVE LANDSCAPE

  • 12.1 INTRODUCTION
  • 12.2 KEY PLAYER STRATEGIES/RIGHT TO WIN
  • 12.3 MARKET SHARE ANALYSIS, 2024
  • 12.4 REVENUE ANALYSIS
  • 12.5 BRAND/PRODUCT COMPARISON
  • 12.6 COMPANY EVALUATION MATRIX: KEY PLAYERS, 2024
    • 12.6.1 STARS
    • 12.6.2 EMERGING LEADERS
    • 12.6.3 PERVASIVE PLAYERS
    • 12.6.4 PARTICIPANTS
    • 12.6.5 COMPANY FOOTPRINT: KEY PLAYERS, 2024
      • 12.6.5.1 Company footprint
      • 12.6.5.2 Region footprint
      • 12.6.5.3 Product type footprint
      • 12.6.5.4 Application footprint
      • 12.6.5.5 End-use industry footprint
  • 12.7 COMPANY EVALUATION MATRIX: STARTUPS/SMES, 2024
    • 12.7.1 PROGRESSIVE COMPANIES
    • 12.7.2 RESPONSIVE COMPANIES
    • 12.7.3 DYNAMIC COMPANIES
    • 12.7.4 STARTING BLOCKS
    • 12.7.5 COMPETITIVE BENCHMARKING: STARTUPS/SMES, 2024
      • 12.7.5.1 Detailed list of key startups/SMEs
      • 12.7.5.2 Competitive benchmarking of key startups/SMEs
  • 12.8 COMPANY VALUATION AND FINANCIAL METRICS, 2024
  • 12.9 COMPETITIVE SCENARIO
    • 12.9.1 DEALS
    • 12.9.2 OTHER DEVELOPMENTS

13 COMPANY PROFILES

  • 13.1 KEY PLAYERS
    • 13.1.1 LUMMUS TECHNOLOGY
      • 13.1.1.1 Business overview
      • 13.1.1.2 Products/Solutions/Services offered
      • 13.1.1.3 Recent developments
        • 13.1.1.3.1 Deals
      • 13.1.1.4 MnM view
        • 13.1.1.4.1 Right to win
        • 13.1.1.4.2 Strategic choices
        • 13.1.1.4.3 Weaknesses and competitive threats
    • 13.1.2 OVIVO USA LLC
      • 13.1.2.1 Business overview
      • 13.1.2.2 Products/Solutions/Services offered
      • 13.1.2.3 Recent developments
        • 13.1.2.3.1 Deals
        • 13.1.2.3.2 Other developments
      • 13.1.2.4 MnM view
        • 13.1.2.4.1 Right to win
        • 13.1.2.4.2 Strategic choices
        • 13.1.2.4.3 Weaknesses and competitive threats
    • 13.1.3 VALENCE WATER INC
      • 13.1.3.1 Business overview
      • 13.1.3.2 Products/Solutions/Services offered
      • 13.1.3.3 Recent developments
        • 13.1.3.3.1 Other developments
      • 13.1.3.4 MnM view
        • 13.1.3.4.1 Right to win
        • 13.1.3.4.2 Strategic choices
        • 13.1.3.4.3 Weaknesses and competitive threats
    • 13.1.4 HYDROLEAP
      • 13.1.4.1 Business overview
      • 13.1.4.2 Products/Solutions/Services offered
      • 13.1.4.3 Recent developments
        • 13.1.4.3.1 Other developments
      • 13.1.4.4 MnM view
        • 13.1.4.4.1 Right to win
        • 13.1.4.4.2 Strategic choices
        • 13.1.4.4.3 Weaknesses and competitive threats
    • 13.1.5 JIANGSU JINGYUAN ENVIRONMENTAL PROTECTION CO., LTD
      • 13.1.5.1 Business overview
      • 13.1.5.2 Products/Solutions/Services offered
      • 13.1.5.3 MnM view
        • 13.1.5.3.1 Right to win
        • 13.1.5.3.2 Strategic choices
        • 13.1.5.3.3 Weaknesses and competitive threats
    • 13.1.6 GROUND EFFECTS ENVIRONMENTAL SERVICES INC
      • 13.1.6.1 Business overview
      • 13.1.6.2 Products/Solutions/Services offered
    • 13.1.7 E-FLOC WASTEWATER SOLUTIONS
      • 13.1.7.1 Business overview
      • 13.1.7.2 Products/Solutions/Services offered
    • 13.1.8 YASA ET (SHANGHAI) CO., LTD.
      • 13.1.8.1 Business overview
      • 13.1.8.2 Products/Solutions/Services offered
    • 13.1.9 AQUA PULSAR
      • 13.1.9.1 Business overview
      • 13.1.9.2 Products/Solutions/Services offered
    • 13.1.10 AXINE WATER TECHNOLOGIES
      • 13.1.10.1 Business overview
      • 13.1.10.2 Products/Solutions/Services offered
      • 13.1.10.3 Recent developments
        • 13.1.10.3.1 Deals
        • 13.1.10.3.2 Other developments
  • 13.2 OTHER PLAYERS
    • 13.2.1 AEOLUS SUSTAINABLE BIOENERGY PVT. LTD
    • 13.2.2 MAGNELI MATERIALS
    • 13.2.3 HUNAN BOROMOND EPT CO. LTD.
    • 13.2.4 VENTILAQUA
    • 13.2.5 RT SAFEBALLAST PVT LTD.
    • 13.2.6 MAGNETO SPECIAL ANODES (SUZHOU) CO., LTD.
    • 13.2.7 AQUACARE SOLUTION ENVIRO ENGINEERS
    • 13.2.8 GREEN ECOWATER SYSTEMS
    • 13.2.9 BLUE EDEN CLEAN TECHNOLOGY
    • 13.2.10 PPU UMWELTTECHNIK

14 APPENDIX

  • 14.1 DISCUSSION GUIDE
  • 14.2 KNOWLEDGESTORE: MARKETSANDMARKETS' SUBSCRIPTION PORTAL
  • 14.3 CUSTOMIZATION OPTIONS
  • 14.4 RELATED REPORTS
  • 14.5 AUTHOR DETAILS
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦