![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1782042
¼¼°èÀÇ 3D Á÷¹° ½ÃÀå ¿¹Ãø(-2030³â) : Á¦Ç° À¯Çü(À¯¸®¼¶À¯, º¹ÇÕ¼¶À¯, ½ºÆäÀ̼, ź¼Ò¼¶À¯, Ä¿½ºÅ͸¶ÀÌÁîµå 3D ¹æÁ÷±â), ¿ëµµº°(±¸Á¶ ºÎǰ, º¸È£ Àç·á, º¸°Àç, ´Ü¿ ¹× ¹æÀ½Àç, ¿º¸È£)3D Weaving Market by Glass Fiber, Composite Textile, Spacer, Carbon Fiber, Customized 3D Weaving, Structural Components, Protective Materials, Reinforcements, Insulation, Thermal Protective Applications - Global Forecast to 2030 |
3D Á÷¹° ½ÃÀå ±Ô¸ð´Â 2025³â 3,280¸¸ ´Þ·¯¿¡¼ ¿¹Ãø ±â°£ Áß 12.7%ÀÇ CAGR·Î ÃßÀÌÇϸç, 2030³â¿¡´Â 5,970¸¸ ´Þ·¯·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
°¡º±°í °í°µµ ¼ÒÀç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡°¡ 3D Á÷±â µµÀÔÀ» ÃËÁøÇÏ´Â ÁÖ¿ä ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. Ç×°ø¿ìÁÖ, ±¹¹æ, ÀÚµ¿Â÷ ºÐ¾ß¿¡¼´Â ±â°èÀû °µµ¸¦ À¯ÁöÇϰųª Çâ»ó½ÃŰ¸é¼ ±¸Á¶¹°ÀÇ °æ·®È¸¦ µµ¸ðÇÏ´Â °ÍÀÌ ¿¬ºñ Çâ»ó, ÀûÀç·® Áõ°¡, ½Ã½ºÅÛ Àüü ¼º´É Çâ»óÀ» À§ÇØ ÇʼöÀûÀÔ´Ï´Ù. ±âÁ¸ÀÇ º¹ÇÕÀç·á Á¦Á¶ ±â¼ú·Î´Â º¹ÀâÇÏ°í ´Ù¹æÇâ¿¡¼ º¸° ±¸Á¶¸¦ ¸¸µå´Â °ÍÀÌ ¾î·Æ´Ù´Â ¹®Á¦Á¡ÀÌ ÀÖ½À´Ï´Ù.
Á¶»ç ¹üÀ§ | |
---|---|
Á¶»ç ´ë»ó¿¬µµ | 2021-2030³â |
±âÁØ¿¬µµ | 2024³â |
¿¹Ãø ±â°£ | 2025-2030³â |
´ÜÀ§ | ±Ý¾×(´Þ·¯) |
ºÎ¹®º° | Á¦Ç° À¯Çü¡¤ÃÖÁ¾»ç¿ëÀÚ »ê¾÷¡¤¿ëµµ¡¤Áö¿ªº° |
´ë»ó Áö¿ª | ºÏ¹Ì¡¤À¯·´¡¤¾Æ½Ã¾ÆÅÂÆò¾ç¡¤±âŸ Áö¿ª |
±×·¯³ª 3D Á÷Á¶±â´Â ¿ÏÀüÈ÷ ÅëÇÕµÈ ´ÙÃþ Á÷Á¶ ±¸Á¶¸¦ ¸¸µé ¼ö ÀÖÀ¸¸ç, ¿ì¼öÇÑ °µµ ´ë Áß·®ºñ, ¹Ú¸® ÀúÇ×¼º, ³ôÀº ÇÏÁß ÁöÁö·ÂÀ» ½ÇÇöÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Æ¯¼ºÀº Ç×°ø±â ³¯°³ ½ºÆÛ ¹× ±âü ±¸Á¶, ±º¿ë Àå°© ½Ã½ºÅÛ, ÀÚµ¿Â÷ Â÷ü ±¸Á¶¿Í °°Àº ¿ëµµ¿¡¼ ƯÈ÷ Áß¿äÇÕ´Ï´Ù. ÀÌ·¯ÇÑ »ê¾÷µéÀÌ ¼º´É Çâ»ó°ú Áö¼Ó°¡´É¼ºÀ» Á¡Á¡ ´õ Áß¿ä½ÃÇÏ´Â °¡¿îµ¥, 3D Á÷Á¶±â´Â ¿Ï¼ºÇü¿¡ °¡±î¿î ÷´Ü ÇÁ¸®ÆûÀ» È¿À²ÀûÀÌ°í ºñ¿ë È¿À²ÀûÀ¸·Î Á¦Á¶ÇÒ ¼ö ÀÖ´Ù´Â ÀåÁ¡À¸·Î Â÷¼¼´ë ¼ÒÀç Á¦Á¶¿¡ ÀÖÀ¸¸ç, ¸Å¿ì Áß¿äÇÑ ±â¼ú·Î Æò°¡¹Þ°í ÀÖ½À´Ï´Ù.
"À¯¸®¼¶À¯ Á÷Á¶±â ºÎ¹®ÀÌ 2024³â°¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀÔ´Ï´Ù. "
2024³â, À¯¸®¼¶À¯ Á÷Á¶±â´Â ±¤¹üÀ§ÇÑ »ê¾÷ ÀÀ¿ë, ³ôÀº ºñ¿ë È¿À²¼º ¹× Àç·á·Î¼ÀÇ ¿ì¼öÇÑ Æ¯¼ºÀ¸·Î ÀÎÇØ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇß½À´Ï´Ù. À¯¸®¼¶À¯´Â °µµ, ³»±¸¼º, ¿ ¾ÈÁ¤¼º, °æ·®¼ºÀ» °âºñÇÏ¿© ÀÚµ¿Â÷, °Ç¼³, ÇØ¾ç, Àç»ý¿¡³ÊÁö µîÀÇ ºÐ¾ß¿¡ ÀÌ»óÀûÀÎ ¼ÒÀçÀÔ´Ï´Ù. ź¼Ò¼¶À¯³ª ¾Æ¶ó¹Ìµå ¼¶À¯¿¡ ºñÇØ Àú·ÅÇÑ ºñ¿ëÀ¸·Î º¹ÀâÇÏ°í °í¼º´ÉÀÇ º¹ÇÕÀç·á¸¦ Á¦Á¶ÇÒ ¼ö ÀÖÀ¸¸ç, äÅÃÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ´ÙÃà Á¦¾î, ÀÚµ¿È, Á¤È®µµ Çâ»ó°ú °°Àº ±â¼ú Çõ½ÅÀ» ÅëÇØ È¿À²¼º°ú »ý»ê È®À强À» ³ô¿© °¡º±°í Áö¼Ó°¡´ÉÇÑ ¼ÒÀç¿¡ ´ëÇÑ Àü ¼¼°èÀûÀÎ ¼ö¿ä¿¡ ´ëÀÀÇϰí ÀÖ½À´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾ç°ú °°ÀÌ »ê¾÷°ú ÀÎÇÁ¶ó°¡ ºü¸£°Ô ¼ºÀåÇÏ´Â Áö¿ª¿¡¼´Â Àú·ÅÇÑ °¡°ÝÀÇ º¹ÇÕÀç·á ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ À¯¸®¼¶À¯ Á÷Á¶±âÀÇ ¿ìÀ§¸¦ Áö¿øÇϰí ÀÖ½À´Ï´Ù.
"ÃÖÁ¾»ç¿ëÀÚ »ê¾÷º°·Î´Â Ç×°ø¿ìÁÖ ¹× ¹æÀ§ ºÎ¹®ÀÌ ¿¹Ãø ±â°£ Áß °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. "
Ç×°ø¿ìÁÖ ¹× ¹æÀ§ »ê¾÷Àº ¿¹Ãø ±â°£ Áß °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ´Â µ¿ ºÐ¾ß¿¡¼ °í¼º´É°ú ¾ÈÀü¼ºÀÌ Á߽õǴ ¿ëµµ¿¡ ´ëÇØ ÷´Ü º¹ÇÕ¼ÒÀç¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁö°í Àֱ⠶§¹®ÀÔ´Ï´Ù. Ç×°ø±â Á¦Á¶¾÷ü ¹× ¹æ»ê °ü·Ã ±â¾÷ÀÌ ±¸Á¶ È¿À² Çâ»ó, °æ·®È, ¿¬ºñ °³¼±À» À§ÇØ 3D ¼¶À¯º¹ÇÕÀç¿¡ ´ëÇÑ ¼ö¿ä°¡ Å©°Ô Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ ¼ÒÀçµéÀº ³ôÀº °µµ ´ë Áß·®ºñ, ³»Ãæ°Ý¼º, ¹Ú¸® °¨¼Ò¿Í °°Àº ¿ì¼öÇÑ ±â°èÀû Ư¼ºÀ» °¡Áö°í ÀÖÀ¸¸ç, ±âü ÆÐ³Î, ³¯°³ ´ëµéº¸, Åͺó ºí·¹À̵å, ¹æÅºº¹°ú °°Àº ºÎǰ¿¡ ÀûÇÕÇÕ´Ï´Ù.
3D Á÷Á¶±â´Â Á¤¹ÐÇϰí ÀϰüµÈ º¹ÀâÇÑ ´Ù¹æÇâ ¼¶À¯ ±¸Á¶ÀÇ Á¦Á¶¿¡ ÇʼöÀûÀ̸ç, ´Ï¾î ³×Æ® ¸ð¾ç ¼ºÇü ¹× Àç·á Æó±â¹°À» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ±¹¹æ ÀåºñÀÇ °íµµÈ¿¡ ´ëÇÑ ÅõÀÚ È®´ë, Â÷¼¼´ë Ç×°ø±â »ý»ê Áõ°¡, °æ·® ±º Àåºñ¿¡ ´ëÇÑ Àü ¼¼°èÀûÀÎ °ü½É Áõ°¡´Â Àü¹® 3D ¼¶À¯ ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¾ÕÀ¸·Îµµ Ç×°ø¿ìÁÖ ¹× ±¹¹æ ºÐ¾ß´Â ¼ÒÀç±â¼úÀÇ ¹ßÀü°ú ÇÔ²² °¡Àå ¿ªµ¿ÀûÀÌ°í ¼ºÀ强ÀÌ ³ôÀº 3D Á÷Á¶±â µµÀÔ ºÐ¾ß°¡ µÉ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
¼¼°èÀÇ 3D Á÷¹° ½ÃÀåÀ» Á¶»çÇßÀ¸¸ç, ½ÃÀå °³¿ä, ½ÃÀå ¼ºÀå¿¡ ´ëÇÑ °¢Á¾ ¿µÇâ¿äÀÎÀÇ ºÐ¼®, ±â¼ú¡¤Æ¯ÇãÀÇ µ¿Çâ, ¹ý±ÔÁ¦ ȯ°æ, »ç·Ê ¿¬±¸, ½ÃÀå ±Ô¸ð ÃßÀÌ¡¤¿¹Ãø, °¢Á¾ ±¸ºÐ¡¤Áö¿ª/ÁÖ¿ä ±¹°¡º° »ó¼¼ ºÐ¼®, °æÀï ±¸µµ, ÁÖ¿ä ±â¾÷ÀÇ °³¿ä µîÀ» Á¤¸®ÇÏ¿© ÀüÇØµå¸³´Ï´Ù.
The 3D weaving market is projected to grow from USD 32.8 million in 2025 to USD 59.7 million by 2030, at a CAGR of 12.7%. The increasing demand for lightweight and high-strength materials is a major factor driving the adoption of 3D weaving machines. In aerospace, defense, and automotive sectors, reducing structural weight while maintaining or improving mechanical strength is essential for better fuel efficiency, higher payload capacity, and improved overall system performance. Traditional composite manufacturing approaches often face challenges in producing complex, multi-directional reinforcements.
Scope of the Report | |
---|---|
Years Considered for the Study | 2021-2030 |
Base Year | 2024 |
Forecast Period | 2025-2030 |
Units Considered | Value (USD Billion) |
Segments | By product type, end-use industry, application, and region |
Regions covered | North America, Europe, APAC, RoW |
However, 3D weaving machines enable the creation of fully integrated, multilayer woven structures that offer excellent strength-to-weight ratios, delamination resistance, and load-bearing capabilities. These features are especially valuable in aerospace components like wing spars, fuselage sections, military armor systems, and automotive body structures. As these industries continue to focus on performance and sustainability, the ability of 3D weaving machines to produce advanced, near-net-shape preforms efficiently and cost-effectively makes them a crucial technology for next-generation material manufacturing.
"Glass fiber weaving machines accounted for the largest market share in 2024"
In 2024, glass fiber weaving machines held the largest market share, driven by their wide industrial use, cost efficiency, and favorable material qualities. Glass fiber combines strength, durability, thermal stability, and lightness, making it ideal for automotive, construction, marine, and renewable energy sectors. Its ability to produce complex, high-performance composites at lower costs than carbon or aramid fibers has boosted adoption. Technological advances, like multi-axis control, automation, and improved precision, have increased efficiency and scalability, meeting the global demand for lightweight, sustainable materials. In regions like the Asia Pacific, with rapid industrial and infrastructure growth, the demand for affordable composite solutions sustains the dominance of glass fiber weaving machines.
"Aerospace & defense end-use industry is projected to register the highest CAGR during the forecast period."
The aerospace and defense end-use industry is expected to see the highest CAGR during the forecast period in the 3D weaving market, driven by the sector's increasing dependence on advanced composite materials for high-performance and safety-critical applications. As aircraft manufacturers and defense contractors aim to improve structural efficiency, reduce weight, and enhance fuel economy, the demand for 3D woven composites has risen significantly. These materials provide superior mechanical properties, such as high strength-to-weight ratios, impact resistance, and reduced delamination, making them ideal for components like fuselage panels, wing spars, turbine blades, and ballistic armor.
3D weaving machines are essential for creating complex, multi-directional fiber structures with high precision and consistency. They support near-net-shape manufacturing and help reduce material waste. Additionally, increased investments in defense upgrades, growing production of next-generation aircraft, and a rising global focus on lightweight military gear further boost demand for specialized 3D weaving technology. As aerospace and defense fields expand material capabilities, the industry is expected to remain the most dynamic and fastest-growing segment for 3D weaving machine adoption in the coming years.
"China is estimated to lead growth in the Asia Pacific 3D weaving market during the forecast period."
China is expected to dominate the growth of the Asia Pacific 3D weaving market during the forecast period, thanks to its robust industrial foundation, cost-effective manufacturing, and strategic investments in advanced sectors like aerospace, defense, automotive, and energy. Government initiatives such as "Made in China 2025" are boosting domestic innovation and the adoption of high-performance composite technologies. With increasing demand for lightweight, durable materials and a growing emphasis on R&D in material science and textile engineering, China remains well-positioned to be the leading force behind regional market growth.
Breakdown of Primaries
Various executives from key organizations operating in the 3D weaving market, including CEOs, marketing directors, and innovation and technology directors, were interviewed.
The 3D weaving market is led by globally established players such as Lindauer DORNIER GmbH (Germany), Staubli International AG (Switzerland), Unspun (US), Dashmesh Jacquard and Powerloom Pvt. Ltd. (India), VUTS a.s. (Czech Republic), Hefei Fanyuan Instrument Co., Ltd. (China), Sino Textile Machinery (China), Optima 3D Ltd (UK), Kale Texnique (India), Marjan Polymer Industries (Pakistan), Albany International Corp. (US), Tex Tech Industries (US), Texonic (Canada), Textum OPCO, LLC (US), Spirit AeroSystems, Inc. (US), Bally Ribbon Mills (US), Tantra Composite Technologies Pvt. Ltd. (India), Cetriko (Spain), EAT GmbH (Germany), and 3D Weaving (Belgium). The study provides an in-depth competitive analysis of these key players in the 3D weaving market, including their company profiles, recent developments, and major market strategies.
Study Coverage
The report segments the 3D weaving market and forecasts its size by product type, end-use industries, application, and region. It also discusses the drivers, restraints, opportunities, and challenges related to the market. Additionally, it provides a detailed view of the market across four main regions-North America, Europe, Asia Pacific, and RoW. A supply chain analysis is included, along with key players and their competitive analysis of the 3D weaving ecosystem.
Key Benefits of Buying the Report