½ÃÀ庸°í¼­
»óǰÄÚµå
1808971

¼¼°èÀÇ Æ÷Åä´Ð½º ½ÃÀå : Á¦Ç° À¯Çüº°, ÆÄÀ庰, ¿ëµµº°, Àç·áº°, ÃÖÁ¾ ÀÌ¿ë »ê¾÷º°, Áö¿ªº° ¿¹Ãø(-2030³â)

Photonics Market by Product Type (LED), Wavelength (Infrared, Visible), Material (Silicon, Glass), Application (Information & Communication Technology), End-use Industry (Industrial, Media & Telecommunication), & Region - Global Forecast to 2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: MarketsandMarkets | ÆäÀÌÁö Á¤º¸: ¿µ¹® 228 Pages | ¹è¼Û¾È³» : Áï½Ã¹è¼Û

    
    
    




¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Æ÷Åä´Ð½º ½ÃÀå ±Ô¸ð´Â ¿¹Ãø ±â°£ µ¿¾È 6.3%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î È®´ëµÉ Àü¸ÁÀ̸ç, 2025³â 1Á¶ 939¾ï 6,000¸¸ ´Þ·¯¿¡¼­ 2030³â¿¡´Â 1Á¶ 4,818¾ï ´Þ·¯·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

Æ÷Åä´Ð½º ½ÃÀåÀº ƯÈ÷ 5G ±â¼ú, Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ, »ç¹°ÀÎÅͳÝ(IoT) ÇÁ·ÎÅäÄÝ Áõ°¡·Î ÀÎÇÑ ±¤´ë¿ª Åë½Å ¼Ö·ç¼ÇÀÇ ¿ä±¸ Áõ°¡°¡ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀü¿¡´Â µ¥ÀÌÅÍ Àü¼Û ¼Óµµ¸¦ Çâ»ó½ÃŰ´Â ±¤¼¶À¯ ¹× ¼Û¼ö½Å±â°¡ ÇÊ¿äÇÕ´Ï´Ù.

Á¶»ç ¹üÀ§
Á¶»ç ´ë»ó ¿¬µµ 2021-2030³â
±âÁØ ¿¬µµ 2024³â
¿¹Ãø ±â°£ 2025-2030³â
°ËÅä ´ÜÀ§ ±Ý¾×(100¸¸ ´Þ·¯/10¾ï ´Þ·¯)
ºÎ¹® Á¦Ç° À¯Çüº°, ÆÄÀ庰, ¿ëµµº°, Àç·áº°, ÃÖÁ¾ ¿ëµµ »ê¾÷º°, Áö¿ªº°
´ë»ó Áö¿ª ºÏ¹Ì, À¯·´, Áßµ¿, ¾ÆÇÁ¸®Ä«, ³²¹Ì

»ê¾÷ Á¦Á¶ ºÐ¾ß¿¡¼­ ·¹ÀÌÀú ¹× ±¤ÇÐ ¼¾¼­´Â Àý´Ü, ¿ëÁ¢, ǰÁú °ü¸® ÇÁ·Î¼¼½ºÀÇ Á¤È®¼ºÀ» Çâ»ó½Ã۰í Industry 4.0ÀÇ ¿µÇâ°ú ¸¶Âù°¡Áö·Î ÀÚµ¿ Á¶¸³ ¶óÀÎÀÇ »ó½Â¿¡ ±â¿©ÇÕ´Ï´Ù. ÇコÄɾ¼­´Â Àû¿Ü¼± ºÐ±¤¹ý ¹× ¹ÙÀÌ¿ÀÆ÷Åä´Ð½º¿Í °°Àº ºñħ½ÀÀû Áø´Ü ±â¼úÀÇ ÀÌ¿ëÀÌ Áõ°¡Çϰí ÀÖÀ¸¸ç, °í·ÉÈ­ »çȸ¸¦ Áö¿øÇÏ´Â ½ÃÀå ¼ºÀåÀ» ÀÚ±ØÇϰí ÀÖ½À´Ï´Ù. °Ô´Ù°¡ ¼ÒºñÀÚ¿ë ÀüÀÚ±â±â´Â ½º¸¶Æ®Æù, Áõ°­Çö½Ç(AR), °¡»óÇö½Ç(VR) ±â±â µîÀÇ Á¦Ç°¿¡ ´ëÇÑ ¼ö¿ä°¡ ³ô½À´Ï´Ù. ÀÌ ¼ö¿ä´Â °¡½Ã ÆÄÀå LED¿Í ¸¶ÀÌÅ©·Î LED µð½ºÇ÷¹ÀÌÀÇ Çʿ伺À» ³ôÀ̰í ÀÖ½À´Ï´Ù.

Æ÷Åä´Ð½º ¸¶ÄÏ-IMG1

°¨Áö±â, ¼¾¼­ ¹× À̹Ì¡ ÀåÄ¡ ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È Æ÷Åä´Ð½º ½ÃÀå¿¡¼­ °¡Àå ºü¸¥ ¼ºÀåÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¼ºÀåÀÇ ¿øµ¿·ÂÀº ÀÚµ¿Â÷, ÇコÄɾî, °¡Àü, ¹æÀ§, »ê¾÷ ÀÚµ¿È­ µî ´Ù¾çÇÑ °í¼ºÀå »ê¾÷¿¡¼­ ³Î¸® ä¿ëµÇ°í ÀÖ´Â °ÍÀÔ´Ï´Ù. °íÁ¤¹Ð ½º¸¶Æ® ½Ã½ºÅÛÀ» À§ÇÑ Æ÷Åä´Ð ¼¾¼­¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁö°í ÀÖ´Â °ÍÀº ´Ù¾çÇÑ ¿ëµµ·Î ½Ç½Ã°£ µ¥ÀÌÅÍ Ãëµæ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î ÀÚµ¿Â÷ ºÐ¾ß¿¡¼­´Â ADAS(¼±Áø¿îÀüÁö¿ø½Ã½ºÅÛ)¿Í ¿ÏÀü ÀÚÀ²ÁÖÇàÂ÷ÀÇ ÃâÇöÀ¸·Î LiDAR ½Ã½ºÅÛ, Àû¿Ü¼± °ËÃâ±â, 3D À̹Ì¡ ¼¾¼­ÀÇ »ý»ê·®ÀÌ ´ëÆø Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀº Àå¾Ö¹°À» °¨ÁöÇϰí ÁöÇüÀ» ½ºÄµÇÏ¸ç ¸ðµç ±â»ó Á¶°Ç¿¡¼­ ¾ÈÀü¼ºÀ» ³ôÀ̱â À§ÇØ Æ÷Åä´Ð½º¿¡ ÀÇÁ¸ÇÕ´Ï´Ù. ÇコÄɾ¼­´Â ±¤ Àϰü¼º Á¶¿µ¼ú(OCT), Çü±¤ À̹Ì¡, ¹ÙÀÌ¿ÀÆ÷Åä´Ð ¼¾¼­ µîÀÇ Æ÷Åä´Ð À̹Ì¡ ÀåÄ¡°¡ ÀÌÀüº¸´Ù ´õ ºü¸£°í Á¤È®ÇÑ Áúº´À» Áø´ÜÇÒ ¼ö ÀÖ½À´Ï´Ù. ±ÙÀû¿Ü¼±(NIR)°ú °¡½Ã±¤¼± ¸ð´Þ¸®Æ¼ ¸ðµÎ¸¦ ÀÌ¿ëÇÑ ºñħ½ÀÀû À̹Ì¡ ¹× ½Ç½Ã°£ ¸ð´ÏÅ͸µÀº ¼ö¼ú ¹× Áø´Ü¿ë Æ÷ÀÎÆ® ¿Àºê Äɾî ȯ°æ¿¡¼­ ÇʼöÀûÀÔ´Ï´Ù. ¼¼°è Àα¸ÀÇ °í·ÉÈ­¿Í ¸¸¼º Áúȯ Áõ°¡¿¡ µû¶ó °í±Þ Áø´Ü ±â´É¿¡ ´ëÇÑ ¼ö¿ä°¡ È®´ëµÉ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

À¯¸®´Â ¶Ù¾î³­ ±¤ÇРƯ¼º, È­ÇÐÀû ³»±¸¼º ¹× ±¤¹üÀ§ÇÑ ¿ëµµ ºÐ¾ß¿¡¼­ ´Ù¿ëµµ·Î Æ÷Åä´Ð½º ½ÃÀå¿¡¼­ °¡Àå ºü¸£°Ô ¼ºÀåÇÏ´Â Àç·á ºÐ¾ßÀÔ´Ï´Ù. ±× ¼ºÀåÀº ÁÖ·Î °í¼Ó ÀÎÅÍ³Ý ¼­ºñ½º, 5G ³×Æ®¿öÅ©, Àå°Å¸® µ¥ÀÌÅÍ Àü¼Û ÀÎÇÁ¶ó¸¦ °¡´ÉÇÏ°Ô ÇÏ´Â ±¤¼¶À¯ Á¦Á¶¿¡ »ç¿ë¿¡ ÀÇÇØ ÃÊ·¡µË´Ï´Ù. ¼¼°è µ¥ÀÌÅÍ Àü¼Û°ú Ŭ¶ó¿ìµå ÄÄÇ»ÆÃÀÌ ±Þ¼ÓÈ÷ È®´ëµÇ°í ÀÖ´Â °¡¿îµ¥, Åë½Å»ç´Â ½Ç¸®Ä« ±â¹Ý À¯¸®ÀÇ ³·Àº ±¤ °¨¼è¿Í ³ôÀº Àü¼Û È¿À²ÀÇ ÇýÅÃÀ» ¹Þ´Â ±¤¼¶À¯ ³×Æ®¿öÅ©¿¡ ¸¹Àº ÅõÀÚ¸¦ ÇØ¿Ô½À´Ï´Ù. ¶ÇÇÑ, À¯¸®´Â À̹Ì¡(¾È¿ë), ¼¾½Ì(Æ÷Åä´Ð), ·¹ÀÌÀú ¿ëµµÀÇ °í¼º´É ·»Áî, ±âÆÇ, ÇÁ¸®Áò, µµÆÄ·Î¿¡ Á¡Á¡ ÀÌ¿ëµÇ°í ÀÖ½À´Ï´Ù. ºØ±Ô»ê À¯¸®, ¼®¿µ À¯¸®, Ä®ÄÚ°Ô³ªÀ̵å À¯¸® µîÀÇ Æ¯¼ö À¯¸®´Â ³ôÀº ³»¿­¼º, Àڿܼ± ¹× Àû¿Ü¼± Åõ°ú¼º, ÀúºÐ»ê¼º µî ´Ù¾çÇÑ ±¤ÇРƯ¼ºÀ» °®Ãß°í ÀÖÀ¸¸ç, Ç×°ø¿ìÁÖ, ¹æÀ§, ÇコÄɾî, »ê¾÷¿ë ·¹ÀÌÀú µî ´Ù¾çÇÑ Æ¯¼ö ¿ëµµ¿¡ ÀûÇÕÇÕ´Ï´Ù. À¯¸® ºÎǰÀÌ ³Î¸® ¹Þ¾Æµé¿©Áö´Â ¹è°æÀº À̹Ì¡ ½Ã½ºÅÛ ¹× ¼ö¼ú ±â±¸¿Í °°Àº °íÁ¤¹Ð ÀÇ·á±â±âÀÇ »ó½ÂÀ» Æ÷ÇÔÇÕ´Ï´Ù. À¯¸®´Â »ýü ÀûÇÕ¼º ¹× Ä¡¼ö ¾ÈÁ¤¼ºÀ¸·Î ÀÎÇØ Á¦Á¶¾÷ü¿¡°Ô ÇʼöÀûÀÔ´Ï´Ù.

°¡½Ã ÆÄÀå ºÎ¹®Àº À̹Ì¡, µð½ºÇ÷¹ÀÌ, Á¶¸í, ¼ÒºñÀÚ¿ë ÀüÀÚ±â±â µî Æø³ÐÀº ¿ëµµ°¡ Àֱ⠶§¹®¿¡ Æ÷Åä´Ð½º ½ÃÀå¿¡¼­ °¡Àå ºü¸¥ ¼ºÀåÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù. ÆÄÀåÀÌ ¾à 400-700³ª³ë¹ÌÅÍÀÎ °¡½Ã±¤¼±Àº Àΰ£ÀÇ »óÈ£ÀÛ¿ëÀ» ÃËÁøÇÏ´Â °¡Àå °ü·Ã¼ºÀÌ ³ôÀº ½ºÆåÆ®·³À̸ç, »ç¶÷µéÀÇ ÀÏ»ó»ýȰ¿¡ »ç¿ëµÇ´Â ¸ðµç ¿ëµµ ±â¼ú¿¡ ´ëÇÑ ÅëÇÕÀ» °¡´ÉÇÏ°Ô Çϱ⠽±½À´Ï´Ù. OLED, ¸¶ÀÌÅ©·Î LED, ¾çÀÚÁ¡ µð½ºÇ÷¹ÀÌ´Â ÀüÈ­, TV, ¸ð´ÏÅÍ, AR/VR µð½ºÇ÷¹À̸¦ °ßÀÎÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µð½ºÇ÷¹ÀÌ ½ºÅ©¸° ±â¼ú¿¡ ´ëÇÑ È®¸³µÈ ¼ö¿ä°¡ °¡½Ã±¤ Æ÷Åä´Ð ±â¼úÀÇ Ã¤¿ëÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. Çѱ¹, Áß±¹, ÀϺ» µî ÀÏ·ºÆ®·Î´Ð½º¿Í µð½ºÇ÷¹ÀÌ ½ÃÀå¿¡ Àͼ÷ÇÑ ±¹°¡ÀÇ ±â¾÷µéÀº »õ·Î¿î µð½ºÇ÷¹ÀÌ ±â¼úÀÇ °¡½Ã±¤ Æ÷Åä´Ð½º¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. Á¤ºÎ°¡ ¿¡³ÊÁö È¿À² ÁöÇ¥¸¦ ¿ä±¸ÇÏ°í »ó¾÷, ÁÖÅÃ, °ø°ø ÀÎÇÁ¶ó ÇÁ·ÎÁ§Æ®¿¡ LED¸¦ ´ë·® µµÀÔÇϰí Àֱ⠶§¹®¿¡ LED(ÁÖ·Î °¡½Ã±¤°ú ÀϺΠÀû¿Ü±¤¿¡ ¿µÇâÀ» ÁÖ´Â)¸¦ Æ÷ÇÔÇÑ °íü Á¶¸í(SSL) ±â¼úµµ ¼ºÀåÀÇ Å« ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù.

Á¶¸íÀº Æ÷Åä´Ð½º ½ÃÀå¿¡¼­ °¡Àå ºü¸£°Ô ¼ºÀåÇÏ´Â ¿ëµµ ºÐ¾ß·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. À̰ÍÀº ¿¡³ÊÁö È¿À²ÀûÀÎ Á¶¸í ±¤¿øÀÇ Ã¤¿ë Áõ°¡, ±Þ¼ÓÇÑ µµ½ÃÈ­, ź¼Ò Á߸³À» ¸ñÇ¥·Î ÇÏ´Â ¼¼°èÀûÀÎ ¸ñÇ¥ ¶§¹®ÀÔ´Ï´Ù. ±âÁ¸ÀÇ ¹é¿­µî°ú Çü±¤µî¿¡¼­ °íü Á¶¸í(SSL), ƯÈ÷ LED¿Í OLED·ÎÀÇ ÀüȯÀº Æ÷Åä´Ð½º ±â¼ú¿¡ ´ëÇÑ Å« ¼ö¿ä¸¦ ¾ß±âÇϰí ÀÖ½À´Ï´Ù. Æ÷Åä´Ð ±â¼úÀº ±âÁ¸ÀÇ ´ëü ±¤¿øÀ» ÈξÀ ´É°¡ÇÏ´Â ¹ß±¤ È¿À², »ó´çÇÑ ±ä ¼ö¸í, ¿¡³ÊÁö ¼Òºñ Àý°¨À» ½ÇÇöÇÏ¿© »ó¾÷, ÁÖÅÃ, »ê¾÷, °ø°ø ÀÎÇÁ¶ó µîÀÇ ¿ëµµ·Î ½ÇÇà °¡´ÉÇÑ ¼Ö·ç¼ÇÀÌ µÇ°í ÀÖ½À´Ï´Ù. °¢±¹ Á¤ºÎ´Â ¾Æ½Ã¾ÆÅÂÆò¾ç, À¯·´, ºÏ¹Ì¿¡¼­ LED ±â¹Ý Á¶¸í ¼Ö·ç¼ÇÀÇ Ã¤ÅÃÀ» Àå·ÁÇϱâ À§ÇØ ¾ö°ÝÇÑ ¿¡³ÊÁö È¿À² ±ÔÁ¦¿Í º¸Á¶±Ý ¹× ¸í·ÉÀ» Á¦Á¤Çϰí ÀÖÀ¸¸ç, ÀÌ´Â ¶ÇÇÑ ½ÃÀå ¿¹Ãø ¼ºÀå¿¡ ¿µÇâÀ» ¹ÌĨ´Ï´Ù. Æ÷Åä´Ð½º ±â¹ÝÀÇ Á¦¾î ¹× ¼¾¼­¸¦ ä¿ëÇÑ ¸®¾ó¸®Æ¼ ĸó ½º¸¶Æ® Á¶¸í ½Ã½ºÅÛÀº ½º¸¶Æ® Ȩ°ú ½º¸¶Æ® ½ÃƼ¿¡¼­ Á¡Á¡ ´õ ¿ä±¸µÇ°í ¼ÒºñµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½º¸¶Æ® Á¶¸í ½Ã½ºÅÛÀº ±¤¼¾¼­, ±¤°ËÃâ±â, Á¦¾î ÀåÄ¡ µîÀÇ Æ÷Åä´Ð½º ±â¹Ý ÄÄÆ÷³ÍÆ®¸¦ Ȱ¿ëÇÏ¿© Á¡À¯À²°ú ÁÖº¯ º¯È­(¿ªÇÐ)¿¡ µû¶ó Á¶Á¤ °¡´ÉÇÏ¸ç ¹à±â ¹× »ö¿Âµµ¸¦ °¢°¢ º¯°æÇÕ´Ï´Ù.

¹Ìµð¾î ¹× Åë½Å ºÎ¹®Àº Æ÷Åä´Ð½º ½ÃÀå¿¡¼­ °¡Àå ±Þ¼ºÀåÇϰí ÀÖ´Â ÃÖÁ¾ ¿ëµµ ºÎ¹®À̸ç, ¿ø°Ý °í¼Ó µ¥ÀÌÅÍ Àü¼Û, 5G ÀÎÇÁ¶ó½ºÆ®·°Ã³, ±¤Åë½Å ½Ã½ºÅÛ °³Ã´ÀÇ ¿ä±¸ Áõ°¡°¡ Å« ¿äÀÎÀÌ µÇ°í ÀÖ½À´Ï´Ù. Æ÷Åä´Ð½º ±â¼ú, ƯÈ÷ ±¤¼¶À¯ ±â¼ú°ú ±¤Æ®·£½Ã¹ö´Â ¿À´Ã³¯ÀÇ Åë½Å ³×Æ®¿öÅ©¸¦ º¸´Ù ºü¸£°í ¾ÈÀüÇÏ¸ç ´ë¿ªÆøÀÌ Àû°í ¼Õ½ÇÀÌ Àû°í Àå°Å¸®¿¡ °ÉÃÄ ¿î¿µÇÏ´Â ÃÖ÷´Ü Åë½Å ¼Ö·ç¼ÇÀÔ´Ï´Ù. ¼¼°è ÀÎÅÍ³Ý »ç¿ë·®ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó µ¥ÀÌÅÍ Æ®·¡ÇÈÀÇ ¼Óµµ¿Í ¾çµµ Áõ°¡Çϰí ÀÖÀ¸¸ç, Åë½Å »ç¾÷ÀÚ´Â ÇöÀç ±¸¸®¼± ÀÎÇÁ¶ó¿¡¼­ ±¤¼¶À¯ ³×Æ®¿öÅ©·Î ÀüȯÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¸¶À̱׷¹À̼ÇÀº Åë½Å Æ÷Åä´Ð ÄÄÆ÷³ÍÆ®¿¡ ´ëÇÑ Å« ¿ä±¸¸¦ ¾ß±âÇÕ´Ï´Ù. 5G »ó¿ë ³×Æ®¿öÅ©ÀÇ °³¹ß°ú 6G·ÎÀÇ ¹ßÀüÀÌ ¿¹»óµÇ¹Ç·Î, ³×Æ®¿öÅ©¿¡ Á¢¼ÓµÇ´Â µð¹ÙÀ̽ºÀÇ ¼ö¿¡ ´ëÀÀÇÏ´Â Æ÷Åä´Ð ¼Ö·ç¼Çµµ ÇÊ¿äÇÕ´Ï´Ù. Áõ°­Çö½Ç(AR), °¡»óÇö½Ç(VR), Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ°ú °°Àº ¿ëµµÀÇ °æ¿ì, ÄÁÅÙÃ÷¸¦ ½ºÆ®¸®¹ÖÇÏ´Â ÀåºñÀÇ ¼ö¿Í Áö¿¬¿¡ ´ëÇÑ ¿ä±¸ »çÇ×Àº ´õ ³ÐÀº ´ë¿ªÆø°ú ³·Àº Áö¿¬ÀÇ Åë½Å ÀÎÇÁ¶ó¸¦ ÇÊ¿ä·Î ÇÕ´Ï´Ù. ±¤ ÁýÀû ȸ·Î(PIC), ·¹ÀÌÀú ¹× ±¤ °ËÃâ±â´Â ´ë¿ªÆø°ú Áö¿¬ÀÇ ÇâÈÄ ¿ä±¸¸¦ ÃæÁ·½Ã۱â À§ÇØ ÃÖ÷´Ü µ¥ÀÌÅͼ¾ÅÍ ¹× ¹«¼± Åë½Å Çãºê¿¡ ÅëÇյǰí ÀÖ½À´Ï´Ù. ÆÄÀå ºÐÇÒ ´ÙÁßÈ­(WDM)¿Í ÄÚÈ÷·±Æ® ±¤ ½Ã½ºÅÛÀÇ »õ·Î¿î °³¹ßÀº ±¤Åë½Å ½Ã½ºÅÛÀÇ È¿À²¼ºÀ» Å©°Ô Çâ»ó½ÃÄÑ ¹Ìµð¾î ¹× Åë½Å¿¡ À־ Æ÷Åä´Ð ±â¼úÀÇ Çʿ伺À» ´õ¿í Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù.

º» º¸°í¼­¿¡¼­´Â ¼¼°èÀÇ Æ÷Åä´Ð½º ½ÃÀå¿¡ ´ëÇØ Á¶»çÇßÀ¸¸ç, Á¦Ç° À¯Çüº°, ÆÄÀ庰, ¿ëµµº°, Àç·áº°, ÃÖÁ¾ ¿ëµµ »ê¾÷º°, Áö¿ªº° µ¿Çâ ¹× ½ÃÀå ÁøÃâ±â¾÷ ÇÁ·ÎÆÄÀÏ µîÀ» Á¤¸®Çß½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­·Ð

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå Áß¿ä ÀλçÀÌÆ®

Á¦5Àå ½ÃÀå °³¿ä

  • ¼­¹®
  • ½ÃÀå ¿ªÇÐ
  • Æ÷Åä´Ð½º ½ÃÀå¿¡¼­ÀÇ »ý¼ºÇü AIÀÇ ¿µÇâ

Á¦6Àå ¾÷°è µ¿Çâ

  • ¼­¹®
  • °í°´»ç¾÷¿¡ ¿µÇâÀ» ÁÖ´Â µ¿Çâ ¹× È¥¶õ
  • ¹ë·ùüÀÎ ºÐ¼®
  • ÅõÀÚ ¹× ÀÚ±ÝÁ¶´Þ ½Ã³ª¸®¿À
  • »ýÅÂ°è ºÐ¼®
  • °¡°Ý ºÐ¼®
  • ±â¼ú ºÐ¼®
  • ƯÇ㠺м®
  • ¹«¿ª ºÐ¼®
  • ÁÖµÈ È¸ÀÇ ¹× À̺¥Æ®(2024-2025³â)
  • °ü¼¼ ¹× ±ÔÁ¦ »óȲ
  • Porter's Five Forces ºÐ¼®
  • ÁÖ¿ä ÀÌÇØ°ü°èÀÚ ¹× ±¸¸Å ±âÁØ
  • °Å½Ã°æÁ¦ Àü¸Á
  • »ç·Ê ¿¬±¸ ºÐ¼®

Á¦7Àå Æ÷Åä´Ð½º ½ÃÀå : Á¦Ç° À¯Çüº°

  • ¼­¹®
  • ±¤¿ø
  • ·¹ÀÌÀú ¹× ·¹ÀÌÀú ½Ã½ºÅÛ
  • °ËÃâ±â, ¼¾¼­, À̹Ì¡ µð¹ÙÀ̽º
  • ±¤Åë½Å ¹× ³×Æ®¿öÅ©
  • ±¤ÇÐ ºÎǰ ¹× ½Ã½ºÅÛ
  • ±¤ÀüÀÚ ¹× ÁýÀû ±¤ÀÚ È¸·Î

Á¦8Àå Æ÷Åä´Ð½º ½ÃÀå : ÆÄÀ庰

  • ¼­¹®
  • Àڿܼ±
  • °¡½Ã
  • Àû¿Ü¼±

Á¦9Àå Æ÷Åä´Ð½º ½ÃÀå : ¿ëµµº°

  • ¼­¹®
  • µð½ºÇ÷¹ÀÌ
  • Á¤º¸Åë½Å±â¼ú
  • ž籤 ¹ßÀü
  • ÀÇ·á±â¼ú ¹× »ý¸í°úÇÐ
  • ÃøÁ¤ ¹× ÀÚµ¿ ºñÀü
  • Á¶¸í
  • ±âŸ

Á¦10Àå Æ÷Åä´Ð½º ½ÃÀå : Àç·áº°

  • ¼­¹®
  • ½Ç¸®ÄÜ
  • À¯¸®
  • ÀÎÈ­Àεã(INP)
  • °¥·ýºñ¼Ò
  • ÁúÈ­°¥·ý
  • ´Ï¿Àºê»ê¸®Æ¬
  • ±âŸ

Á¦11Àå Æ÷Åä´Ð½º ½ÃÀå : ÃÖÁ¾ ÀÌ¿ë »ê¾÷º°

  • ¼­¹®
  • °Ç¼³
  • ¹Ìµð¾î ¹× Åë½Å
  • ÀÇ·á
  • º¸¾È ¹× ¹æÀ§
  • °ø¾÷
  • ±âŸ

Á¦12Àå Æ÷Åä´Ð½º ½ÃÀå : Áö¿ªº°

  • ¼­¹®
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • Áß±¹
    • ÀϺ»
    • Àεµ
    • Çѱ¹
    • ´ë¸¸
    • ±âŸ
  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ¿µ±¹
    • ³×´ú¶õµå
    • ±âŸ
  • ±âŸ Áö¿ª
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • ¿À¸¸
    • ÀÌÁýÆ®
    • ³²¾ÆÇÁ¸®Ä«
    • ±âŸ

Á¦13Àå °æÀï ±¸µµ

  • ¼­¹®
  • ÁÖ¿ä ÁøÀÔ±â¾÷ÀÇ Àü·« ¹× °­Á¡
  • ½ÃÀå Á¡À¯À² ºÐ¼®
  • ¼öÀÍ ºÐ¼®
  • ºê·£µå ¹× Á¦Ç° ºñ±³
  • ±â¾÷ Æò°¡ ¸ÅÆ®¸¯½º : ÁÖ¿ä ÁøÀÔ±â¾÷(2024³â)
  • ±â¾÷ Æò°¡ ¸ÅÆ®¸¯½º : ½ºÅ¸Æ®¾÷ ¹× Áß¼Ò±â¾÷(2024³â)
  • ±â¾÷ Æò°¡ ¹× À繫ÁöÇ¥(2024³â)
  • °æÀï ½Ã³ª¸®¿À

Á¦14Àå ±â¾÷ ÇÁ·ÎÆÄÀÏ

  • ÁÖ¿ä ÁøÃâ±â¾÷
    • THORALABS, INC.
    • AMS-OSRAM
    • HAMAMATSU PHOTONICS KK
    • LUMENTUM OPERATIONS LLC
    • IPG PHOTONICS CORPORATION
    • SIGNIFY HOLDING
    • CORNING INCORPORATED
    • ON SEMICONDUCTOR CORPORATION
    • OFS FITEL, LLC
    • COHERENT CORP.
    • NICHIA CORPORATION
  • ±âŸ ±â¾÷
    • TOPTICA PHOTONICS
    • M SQUARED LASERS LIMITED
    • FREEDOM PHOTONICS LLC
    • SCINTIL PHOTONICS
    • PHOTONICS INDUSTRIES INTERNATIONAL. INC.
    • LUMILEDS HOLDINGS BV
    • EXCELITAS TECHNOLOGIES CORP.
    • TRUMPF
    • EMERSON ELECTRIC CO
    • SAMSUNG ELECTRONICS

Á¦15Àå ºÎ·Ï

AJY 25.09.16

The photonics market is projected to grow from USD 1,093.96 billion in 2025 to USD 1,481.80 billion by 2030, at a CAGR of 6.3% during the forecast period. The photonics market is driven by the growing need for high-bandwidth communication solutions, particularly due to advancements in 5G technology, cloud computing, and the increasing number of Internet of Things (IoT) protocols. These advancements require optical fibers and transceivers to enhance data transmission speeds.

Scope of the Report
Years Considered for the Study2021-2030
Base Year2024
Forecast Period2025-2030
Units ConsideredValue (USD Million/Billion)
SegmentsProduct Type, Material, Wavelength, Application, and End-use Industry, and Region
Regions coveredNorth America, Europe, the Middle East & Africa, and South America

In the realm of industrial manufacturing, lasers and optical sensors are improving the precision of cutting, welding, and quality control processes, contributing to the rise of automated assembly lines, much like the impact of Industry 4.0. In healthcare, the rising use of non-invasive diagnostic techniques, such as infrared spectroscopy and biophotonics, is stimulating market growth to support an aging population. Additionally, in consumer electronics, there is a high demand for products like smartphones, as well as augmented reality (AR) and virtual reality (VR) devices. This demand is driving the need for visible-wavelength LEDs and micro-LED displays.

Photonics Market - IMG1

"Detectors, sensors, and imaging devices segment to register the fastest growth during the forecast period ."

The detectors, sensors, and imaging devices segment is projected to register the fastest growth in the photonics market during the forecast period. This growth is driven by their widespread adoption in diverse, high-growth industries such as automotive, healthcare, consumer electronics, defense, and industrial automation. The increasing reliance on photonic sensors for high-precision smart systems is fueling the demand for real-time data acquisition across various applications. In the automotive sector, for example, the emergence of advanced driver-assistance systems (ADAS) and fully autonomous vehicles has significantly increased the production volumes of LiDAR systems, infrared detectors, and 3D imaging sensors. These technologies depend on photonics to detect obstacles, scan terrain, and enhance safety in all weather conditions. In healthcare, photonic imaging devices such as optical coherence tomography (OCT), fluorescence imaging, and bio-photonic sensors are enabling earlier and more accurate disease diagnoses than ever before. Non-invasive imaging and real-time monitoring, using both near-infrared (NIR) and visible light modalities, have become essential in surgical applications and diagnostic point-of-care settings. As the global population ages and the prevalence of chronic conditions rises, the demand for advanced diagnostic capabilities is expected to grow.

"Glass segment to register the fastest growth in the photonics market in terms of value."

Glass is the fastest-growing material segment in the photonics market due to its excellent optical properties, chemical durability, and versatility across a wide range of applications. Its growth is primarily driven by its use in the manufacture of optical fibers, which enable high-speed internet services, 5G networks, and long-haul data transmission infrastructures. As global data transfer and cloud computing continue to expand rapidly, telecom companies have made significant investments in fiber optic networks that benefit from the low optical attenuation and high transmission efficiency of silica-based glass. Additionally, glass is increasingly utilized in high-performance lenses, substrates, prisms, and waveguides for imaging (ocular), sensing (photonic), and laser applications. Specialty glasses, such as borosilicate, fused silica, and chalcogenide glass, offer a diverse range of optical properties like high thermal resistance, UV or IR transparency, and low dispersion, making them suitable for various specialized applications in aerospace, defense, healthcare, and industrial lasers. The growing acceptance of glass components is also fueled by the rise of high-precision medical devices, including diagnostic imaging systems and surgical tools. Glass is becoming indispensable for manufacturers due to its biocompatibility and dimensional stability.

"Visible wavelength segment to register the fastest growth in the photonics market in terms of value."

The visible wavelength segment is projected to register the fastest growth in the photonics market due to its wide applications in imaging, display, lighting, and consumer electronics. With wavelengths ranging from roughly 400 to 700 nanometers, visible light is the most relevant spectrum to drive human interactions, making it easier to permit possible integration into any applicable technology that would be used in the daily lives of people. The drive for high-resolution display panels has grown significantly over the past few years, with OLED, micro-LED, and quantum dot displays driving displays in phones, TVs, monitors, and AR/VR. This established demand for display screen technology has driven the adoption of visible light photonic technologies. Companies in countries like South Korea, China, and Japan, familiar with the electronics and display market, are investing heavily in visible-light photonics in new display technologies. Another major driver of growth is solid-state lighting (SSL) technologies, including LEDs (which mostly impact visible light and some IR), as governments are requiring energy efficiency metrics and mass LED adoption in commercial, residential, and public infrastructure projects.

"Lighting segment to register the fastest growth in the photonics market in terms of value."

Lighting is emerging as the fastest-growing application segment of the photonics market, owing to the increased adoption of energy-efficient lighting sources, rapid urbanization, and global goals aimed at carbon neutrality. The conversion from traditional incandescent and fluorescent lighting to solid-state lighting (SSL)-specifically light-emitting diodes (LEDs) and organic LEDs (OLEDs)-has triggered a considerable demand for photonic technologies. Photonic technologies have luminous efficacy that far exceeds traditional light source alternatives, significantly longer operating lives, and reduce energy consumption to become a viable solution in commercial, residential, industrial, and public infrastructure applications. Governments have been instituting stringent energy-efficiency regulations and subsidies/mandates to encourage the adoption of LED-based lighting solutions in the Asia Pacific, Europe, and North America, also impacting the projected growth of the market. Reality capture smart lighting systems that employ photonics-based controls and sensors are becoming increasingly desirable and consumed in smart homes and smart cities. These smart lighting systems are adjustable based on occupancy or ambient changes (dynamics) and modify their brightness and color temperature, respectively, utilizing photonics-based components such as light sensors, photodetectors, and controls.

Media & telecommunication segment to register the fastest growth in the photonics market in terms of value."

The media and telecommunication segment is the fastest-growing end-use segment in the photonics market, largely fueled by the increasing need for remote high-speed data transmission, 5G infrastructure, and the development of optical communication systems. Photonics technologies, particularly fiber optic technologies and optical transceivers, represent the most advanced telecommunications solutions that make today's telecommunications networks operate faster, more securely, and with more bandwidth and less loss, all over long distances. As the quantity of global internet usage increases, along with the speed and quantity of data traffic, telecoms are currently transitioning away from copper infrastructures and toward fiber optic networks. This transition is creating a great need for telecommunication photonic components. The development of 5G commercial networks and the anticipated development towards 6G will also require photonic solutions to accommodate the number of devices connected to the networks. The number of devices streaming content and the latency requirements for applications such as augmented reality (AR), virtual reality (VR), and cloud computing will also require greater bandwidth and a lower latency telecommunication infrastructure. Photonic integrated circuits (PICs), lasers, and photodetectors are being integrated into state-of-the-art data centers and wireless communications hubs in order to meet upcoming demands in bandwidth and latency. New developments in wavelength division multiplexing (WDM) and coherent optical systems significantly increase the efficiency of optical communications systems, furthering the need for photonic technologies in media and telecommunications.

In-depth interviews were conducted with chief executive officers (CEOs), marketing directors, other innovation and technology directors, and executives from various key organizations operating in the photonics market, and information was gathered from secondary research to determine and verify the market size of several segments.

  • By Company Type: Tier 1 - 50%, Tier 2 - 30%, and Tier 3 - 20%
  • By Designation: Managers- 15%, Directors - 20%, and Others - 65%
  • By Region: North America - 14%, Europe - 16%, Asia Pacific - 58%, and the Rest of the World - 12%.

The photonics market comprises Thorlabs, Inc. (US), IPG Photonics Corporation (US), Lumentum Operations LLC (US), ams-OSRAM AG (Austria), Hamamatsu Photonics K.K. (Japan), Corning Incorporated (US), Coherent Corp(US), OFS Fitel, LLC (US), ON SEMICONDUCTOR CORPORATION (US), and Signify Holding (Netherlands). The study includes an in-depth competitive analysis of these key players in the photonics market, with their company profiles, recent developments, and key market strategies.

Research Coverage

This report segments the photonics market on the basis of product type, material, wavelength, application, end-use industry, and region, and provides estimations for the overall value of the market across various regions. A detailed analysis of key industry players has been conducted to provide insights into their business overviews, products & services, key strategies, and expansions associated with the photonics market.

Key benefits of buying this report

This research report is focused on various levels of analysis - industry analysis (industry trends), market ranking analysis of top players, and company profiles, which together provide an overall view of the competitive landscape; emerging and high-growth segments of the photonics market; high-growth regions; and market drivers, restraints, opportunities, and challenges.

The report provides insights on the following pointers:

  • Analysis of drivers: (advancements in photonic-integrated circuits enabling miniaturization and cost-effective high-performance solutions), restraints (high optical losses in silicon nitride and SOI (silicon-on-insulator) waveguide fabrication), opportunities (integration of photonics with artificial intelligence and Internet of things to enable smart cities, precision agriculture, and industrial automation), and challenges (signal distortion from non-linear effects in high-power photonic systems).
  • Market Penetration: Comprehensive information on the photonics market offered by top players in the photonics market.
  • Product Development/Innovation: Detailed insights on upcoming technologies, research & development activities, partnerships, agreements, and collaboration in the market.
  • Market Development: This report provides comprehensive information about lucrative emerging markets and analyzes the photonics market across regions.
  • Market Capacity: Production capacities of companies producing photonics are provided wherever available with upcoming capacities for the photonics market.
  • Competitive Assessment: In-depth assessment of market shares, strategies, products, and manufacturing capabilities of leading players in the photonics market.

TABLE OF CONTENTS

1 INTRODUCTION

  • 1.1 STUDY OBJECTIVES
  • 1.2 MARKET DEFINITION
  • 1.3 STUDY SCOPE
    • 1.3.1 MARKETS COVERED AND REGIONAL SNAPSHOT
    • 1.3.2 INCLUSIONS AND EXCLUSIONS
    • 1.3.3 YEARS CONSIDERED
    • 1.3.4 CURRENCY CONSIDERED
  • 1.4 RESEARCH LIMITATIONS
  • 1.5 STAKEHOLDERS
  • 1.6 SUMMARY OF CHANGES

2 RESEARCH METHODOLOGY

  • 2.1 RESEARCH DATA
    • 2.1.1 SECONDARY DATA
      • 2.1.1.1 Key data from secondary sources
    • 2.1.2 PRIMARY DATA
      • 2.1.2.1 Key data from primary sources
      • 2.1.2.2 Key primary sources
      • 2.1.2.3 Key participants for primary interviews
      • 2.1.2.4 Breakdown of primary interviews
      • 2.1.2.5 Key industry insights
  • 2.2 BASE NUMBER CALCULATION
    • 2.2.1 SUPPLY-SIDE ANALYSIS
    • 2.2.2 DEMAND-SIDE ANALYSIS
  • 2.3 GROWTH FORECAST
    • 2.3.1 SUPPLY SIDE
    • 2.3.2 DEMAND SIDE
  • 2.4 MARKET SIZE ESTIMATION
    • 2.4.1 BOTTOM-UP APPROACH
    • 2.4.2 TOP-DOWN APPROACH
  • 2.5 DATA TRIANGULATION
  • 2.6 RESEARCH ASSUMPTIONS
  • 2.7 GROWTH FORECAST
  • 2.8 RISK ASSESSMENT
  • 2.9 FACTOR ANALYSIS

3 EXECUTIVE SUMMARY

4 PREMIUM INSIGHTS

  • 4.1 ATTRACTIVE OPPORTUNITIES FOR PLAYERS IN PHOTONICS MARKET
  • 4.2 PHOTONICS MARKET, BY TYPE
  • 4.3 PHOTONICS MARKET, BY MATERIAL
  • 4.4 PHOTONICS MARKET, BY APPLICATION
  • 4.5 PHOTONICS MARKET, BY WAVELENGTH
  • 4.6 PHOTONICS MARKET, BY END-USE INDUSTRY
  • 4.7 PHOTONICS MARKET, BY COUNTRY

5 MARKET OVERVIEW

  • 5.1 INTRODUCTION
  • 5.2 MARKET DYNAMICS
    • 5.2.1 DRIVERS
      • 5.2.1.1 Advancements in photonic-integrated circuits (PICs)
      • 5.2.1.2 Rising demand for high-speed optical communication
      • 5.2.1.3 Growth of data-driven economies
    • 5.2.2 RESTRAINTS
      • 5.2.2.1 High optical losses in silicon nitride and silicon-on-insulator (SOI) waveguide fabrication
      • 5.2.2.2 Lack of unified design standards for photonics devices
    • 5.2.3 OPPORTUNITIES
      • 5.2.3.1 Commercialization and innovation in quantum technologies
      • 5.2.3.2 Integration of photonics with artificial intelligence and Internet of Things (IoT)
      • 5.2.3.3 Expansion of next-generation data centers and telecommunication networks
    • 5.2.4 CHALLENGES
      • 5.2.4.1 Signal distortion from non-linear effects in high-power photonic systems
      • 5.2.4.2 Complexity in integration of photonic sensors into industrial IoT systems
  • 5.3 IMPACT OF GENRATIVE AI ON PHOTONICS MARKET
    • 5.3.1 INTRODUCTION

6 INDUSTRY TRENDS

  • 6.1 INTRODUCTION
  • 6.2 TRENDS/DISRUPTIONS IMPACTING CUSTOMER BUSINESS
  • 6.3 VALUE CHAIN ANALYSIS
  • 6.4 INVESTMENT AND FUNDING SCENARIO
  • 6.5 ECOSYSTEM ANALYSIS
  • 6.6 PRICING ANALYSIS
    • 6.6.1 INDICATIVE PRICING ANALYSIS, BY REGION, 2024
    • 6.6.2 INDICATIVE PRICING ANALYSIS, BY PRODUCT TYPE, 2024
  • 6.7 TECHNOLOGY ANALYSIS
    • 6.7.1 KEY TECHNOLOGIES
    • 6.7.2 COMPLEMENTARY TECHNOLOGIES
    • 6.7.3 ADJACENT TECHNOLOGIES
  • 6.8 PATENT ANALYSIS
    • 6.8.1 METHODOLOGY
    • 6.8.2 PATENTS GRANTED WORLDWIDE
    • 6.8.3 PATENT PUBLICATION TRENDS
    • 6.8.4 INSIGHTS
    • 6.8.5 LEGAL STATUS OF PATENTS
    • 6.8.6 JURISDICTION ANALYSIS
    • 6.8.7 TOP APPLICANTS
    • 6.8.8 LIST OF MAJOR PATENTS
  • 6.9 TRADE ANALYSIS
    • 6.9.1 IMPORT SCENARIO (HS CODE 854140)
    • 6.9.2 EXPORT SCENARIO (HS CODE 854140)
  • 6.10 KEY CONFERENCES AND EVENTS, 2024-2025
  • 6.11 TARIFF AND REGULATORY LANDSCAPE
    • 6.11.1 TARIFFS RELATED TO PHOTONICS
    • 6.11.2 REGULATORY BODIES, GOVERNMENT AGENCIES, AND OTHER ORGANIZATIONS
    • 6.11.3 REGULATIONS AND STANDARDS
  • 6.12 PORTER'S FIVE FORCES ANALYSIS
    • 6.12.1 THREAT OF NEW ENTRANTS
    • 6.12.2 THREAT OF SUBSTITUTES
    • 6.12.3 BARGAINING POWER OF SUPPLIERS
    • 6.12.4 BARGAINING POWER OF BUYERS
    • 6.12.5 INTENSITY OF COMPETITIVE RIVALRY
  • 6.13 KEY STAKEHOLDERS AND BUYING CRITERIA
    • 6.13.1 KEY STAKEHOLDERS IN BUYING PROCESS
    • 6.13.2 BUYING CRITERIA
  • 6.14 MACROECONOMIC OUTLOOK
    • 6.14.1 GDP TRENDS AND FORECASTS, BY COUNTRY
  • 6.15 CASE STUDY ANALYSIS
    • 6.15.1 ACCELERATING 5G AND IOT DEPLOYMENT: ACP'S CUSTOMIZED GAIN FLATTENING FILTER SOLUTION FOR A TELECOM LEADER
    • 6.15.2 SMART VEHICLES AND SAFER ROADS: HAMAMATSU'S OPTICAL SENSORS POWER AUTOMOTIVE INNOVATION
    • 6.15.3 ORCA-QUEST QCMOS CAMERA BY HAMAMATSU PHOTONICS - ENABLING PRECISION IMAGING ACROSS SCIENTIFIC FRONTIERS

7 PHOTONICS MARKET, BY PRODUCT TYPE

  • 7.1 INTRODUCTION
  • 7.2 LIGHT SOURCES
    • 7.2.1 SHIFT TOWARD LED-BASED EFFICIENCY AND SMART ILLUMINATION TO DRIVE MARKET
  • 7.3 LASERS AND LASER SYSTEMS
    • 7.3.1 HIGH PRECISION, POWER, AND VERSATILITY TO DRIVE DEMAND
  • 7.4 DETECTORS, SENSORS & IMAGING DEVICES
    • 7.4.1 FOCUS ON ENHANCEMENT OF VISIBILITY, SENSING ACCURACY, AND DATA ACQUISITION ACROSS INDUSTRIES TO DRIVE MARKET
  • 7.5 OPTICAL COMMUNICATION & NETWORKING
    • 7.5.1 GROWING INTERNET PENETRATION AND 5G EXPANSION TO FUEL DEMAND
  • 7.6 OPTICAL COMPONENTS & SYSTEMS
    • 7.6.1 INCREASING ADOPTION OF PHOTONIC SYSTEMS IN LIDAR FOR AUTONOMOUS VEHICLES AND ADVANCED DRIVER-ASSISTANCE SYSTEMS TO DRIVE MARKET
  • 7.7 OPTOELECTRONICS & INTEGRATED PHOTONIC CIRCUITS
    • 7.7.1 MINIATURIZATION AND HIGH-SPEED FUNCTIONALITY IN NEXT-GEN PHOTONIC APPLICATIONS TO PROPEL MARKET

8 PHOTONICS MARKET, BY WAVELENGTH

  • 8.1 INTRODUCTION
  • 8.2 ULTRAVIOLET
    • 8.2.1 RISING DEMAND FOR STERILIZATION AND NANOLITHOGRAPHY TO ACCELERATE ADOPTION
  • 8.3 VISIBLE
    • 8.3.1 TECHNOLOGICAL ADVANCEMENTS IN DISPLAYS, EXCELLENT LIGHTING EFFICIENCY, AND BOOMING CONSUMER ELECTRONICS INDUSTRY TO DRIVE MARKET
  • 8.4 INFRARED
    • 8.4.1 RISING SECURITY & SURVEILLANCE REQUIREMENTS, AUTONOMOUS VEHICLE INTEGRATION, AND ENVIRONMENTAL MONITORING NEEDS TO PROPEL MARKET

9 PHOTONICS MARKET, BY APPLICATION

  • 9.1 INTRODUCTION
  • 9.2 DISPLAY
    • 9.2.1 RISING DEMAND FOR HIGH-RESOLUTION PANELS IN CONSUMER AND INDUSTRIAL INTERFACES TO DRIVE MARKET
  • 9.3 INFORMATION & COMMUNICATION TECHNOLOGY
    • 9.3.1 RISING OPTICAL DATA TRANSMISSION DEMANDS TO ACCELERATE ADOPTION
  • 9.4 PHOTOVOLTAICS
    • 9.4.1 ENERGY TRANSITION GOALS AND OFF-GRID ELECTRIFICATION TO DRIVE DEMAND
  • 9.5 MEDICAL TECHNOLOGY & LIFE SCIENCES
    • 9.5.1 USE IN PRECISION DIAGNOSTICS AND NEXT-GEN MEDICAL TREATMENTS TO DRIVE MARKET
  • 9.6 MEASUREMENT & AUTOMATED VISION
    • 9.6.1 NEED FOR INDUSTRIAL ACCURACY AND ROBOTICS INTEGRATION TO FUEL DEMAND
  • 9.7 LIGHTING
    • 9.7.1 GROWTH OF SMART AND HUMAN-CENTRIC LIGHTING TO DRIVE MARKET
  • 9.8 OTHER APPLICATIONS
    • 9.8.1 ASTRONOMY
    • 9.8.2 SEMICONDUCTOR MANUFACTURING

10 PHOTONICS MARKET, BY MATERIAL

  • 10.1 INTRODUCTION
  • 10.2 SILICON
    • 10.2.1 CMOS INTEGRATION, DATA CENTER GROWTH, AND INTEGRATED PHOTONICS DEMAND TO DRIVE MARKET
  • 10.3 GLASS
    • 10.3.1 RISING OPTICAL FIBER DEMAND, INFRARED TECHNOLOGY GROWTH, AND TELECOM INFRASTRUCTURE NEEDS TO PROPEL MARKET
  • 10.4 INDIUM PHOSPHIDE (INP)
    • 10.4.1 HIGH-SPEED OPTICAL COMMUNICATION AND QUANTUM ADVANCEMENTS TO DRIVE DEMAND
  • 10.5 GALLIUM ARSENIDE
    • 10.5.1 ONGOING ADVANCES IN OPTOELECTRONICS DRIVEN BY TELECOM AND AUTOMOTIVE NEEDS TO DRIVE MARKET
  • 10.6 GALLIUM NITRIDE
    • 10.6.1 RISING DEMAND FOR LIGHTING EFFICIENCY, SUPPORTED BY GLOBAL SUSTAINABILITY GOALS, TO DRIVE MARKET
  • 10.7 LITHIUM NIOBATE
    • 10.7.1 USE FOR ADVANCING MODULATION, NON-LINEAR OPTICS, AND HIGH-SPEED COMMUNICATION TO PROPEL MARKET
  • 10.8 OTHER MATERIALS
    • 10.8.1 GALLIUM ALUMINIUM ARSENIDE
    • 10.8.2 GERMANIUM

11 PHOTONICS MARKET, BY END-USE INDUSTRY

  • 11.1 INTRODUCTION
  • 11.2 CONSTRUCTION
    • 11.2.1 GREEN BUILDING PRACTICES AND RISING USE IN STRUCTURAL HEALTH MONITORING TO DRIVE MARKET
  • 11.3 MEDIA & TELECOMMUNICATION
    • 11.3.1 5G NETWORK ROLLOUT, STREAMING SERVICE GROWTH, AND DIGITAL TRANSFORMATION TO DRIVE DEMAND
  • 11.4 MEDICAL
    • 11.4.1 DIOGNOSTIC IMAGING DEMAND AND MINIMALLY INVASIVE SURGERY TRENDS TO FUEL MARKET GROWTH
  • 11.5 SECURITY & DEFENSE
    • 11.5.1 ADVANCING DIRECTED ENERGY AND SECURE COMMUNICATIONS THROUGH PHOTONICS TO PROPEL MARKET
  • 11.6 INDUSTRIAL
    • 11.6.1 FOCUS ON PRECISION MANUFACTURING AND PROCESS OPTIMIZATION TO DRIVE MARKET
  • 11.7 OTHER END-USE INDUSTRIES
    • 11.7.1 CONSUMER ELECTRONICS
    • 11.7.2 AGRICULTURE

12 PHOTONICS MARKET, BY REGION

  • 12.1 INTRODUCTION
  • 12.2 ASIA PACIFIC
    • 12.2.1 CHINA
      • 12.2.1.1 High investments in telecommunications and artificial intelligence (AI) to drive demand
    • 12.2.2 JAPAN
      • 12.2.2.1 Increased semiconductor manufacturing to propel demand
    • 12.2.3 INDIA
      • 12.2.3.1 Government-backed digitalization and growth in medical diagnostics to drive market
    • 12.2.4 SOUTH KOREA
      • 12.2.4.1 High R&D investments in high-quality materials to fuel demand
    • 12.2.5 TAIWAN
      • 12.2.5.1 Leadership in semiconductor fabrication to drive adoption
    • 12.2.6 REST OF ASIA PACIFIC
  • 12.3 NORTH AMERICA
    • 12.3.1 US
      • 12.3.1.1 Strong federal and private sector R&D funding to drive market
    • 12.3.2 CANADA
      • 12.3.2.1 Expansion of optical communication networks to boost market growth
    • 12.3.3 MEXICO
      • 12.3.3.1 Rising electronics manufacturing and demand for LED lighting to propel market
  • 12.4 EUROPE
    • 12.4.1 GERMANY
      • 12.4.1.1 Industrial automation, smart manufacturing, and automotive LiDAR to drive demand
    • 12.4.2 ITALY
      • 12.4.2.1 Growing medical imaging and smart lighting needs to drive adoption
    • 12.4.3 FRANCE
      • 12.4.3.1 Rising demand from aerospace & defense industry to drive market
    • 12.4.4 UK
      • 12.4.4.1 Government-led funding in quantum technologies to drive market
    • 12.4.5 NETHERLANDS
      • 12.4.5.1 Growing integrated photonics startups due to strong R&D support and innovation-driven policies to boost market
    • 12.4.6 REST OF EUROPE
  • 12.5 ROW
    • 12.5.1 SAUDI ARABIA
      • 12.5.1.1 High focus on diversification under Vision 2030 initiative to drive market
    • 12.5.2 UAE
      • 12.5.2.1 Digitalization and smart governance to accelerate market growth
    • 12.5.3 OMAN
      • 12.5.3.1 Industrial diversification and maritime security demands to accelerate adoption
    • 12.5.4 EGYPT
      • 12.5.4.1 Local solar film production and bio-photonics adoption to accelerate market growth
    • 12.5.5 SOUTH AFRICA
      • 12.5.5.1 Growing use in mining and astronomy applications to drive market
    • 12.5.6 OTHERS IN ROW

13 COMPETITIVE LANDSCAPE

  • 13.1 INTRODUCTION
  • 13.2 KEY PLAYER STRATEGIES/RIGHT TO WIN
  • 13.3 MARKET SHARE ANALYSIS
  • 13.4 REVENUE ANALYSIS
  • 13.5 BRAND/PRODUCT COMPARISON
  • 13.6 COMPANY EVALUATION MATRIX: KEY PLAYERS, 2024
    • 13.6.1 STARS
    • 13.6.2 EMERGING LEADERS
    • 13.6.3 PERVASIVE PLAYERS
    • 13.6.4 PARTICIPANTS
    • 13.6.5 COMPANY FOOTPRINT: KEY PLAYERS, 2024
      • 13.6.5.1 Company footprint
      • 13.6.5.2 Product type footprint
      • 13.6.5.3 Application footprint
      • 13.6.5.4 End-use industry footprint
      • 13.6.5.5 Region footprint
  • 13.7 COMPANY EVALUATION MATRIX: STARTUPS/SMES, 2024
    • 13.7.1 PROGRESSIVE COMPANIES
    • 13.7.2 RESPONSIVE COMPANIES
    • 13.7.3 DYNAMIC COMPANIES
    • 13.7.4 STARTING BLOCKS
    • 13.7.5 COMPETITIVE BENCHMARKING: STARTUPS/SMES, 2024
      • 13.7.5.1 Detailed list of key startups/SMEs
      • 13.7.5.2 Competitive benchmarking of key startups/SMEs
  • 13.8 COMPANY VALUATION AND FINANCIAL METRICS, 2024
  • 13.9 COMPETITIVE SCENARIO
    • 13.9.1 DEALS
    • 13.9.2 PRODUCT LAUNCHES

14 COMPANY PROFILES

  • 14.1 KEY PLAYERS
    • 14.1.1 THORALABS, INC.
      • 14.1.1.1 Business overview
      • 14.1.1.2 Products/Solutions/Services offered
      • 14.1.1.3 MnM view
        • 14.1.1.3.1 Key strengths/Right to win
        • 14.1.1.3.2 Strategic choices
        • 14.1.1.3.3 Weaknesses/Competitive threats
    • 14.1.2 AMS-OSRAM
      • 14.1.2.1 Business overview
      • 14.1.2.2 Products/Solutions/Services offered
      • 14.1.2.3 MnM view
        • 14.1.2.3.1 Key strengths/Right to win
        • 14.1.2.3.2 Strategic choices
        • 14.1.2.3.3 Weaknesses/Competitive threats
    • 14.1.3 HAMAMATSU PHOTONICS K.K.
      • 14.1.3.1 Business overview
      • 14.1.3.2 Products/Solutions/Services offered
      • 14.1.3.3 MnM view
        • 14.1.3.3.1 Key strengths/Right to win
        • 14.1.3.3.2 Strategic choices
        • 14.1.3.3.3 Weaknesses/Competitive threats
    • 14.1.4 LUMENTUM OPERATIONS LLC
      • 14.1.4.1 Business overview
      • 14.1.4.2 Products/Solutions/Services offered
      • 14.1.4.3 MnM view
        • 14.1.4.3.1 Key strengths/Right to win
        • 14.1.4.3.2 Strategic choices
        • 14.1.4.3.3 Weaknesses/Competitive threats
    • 14.1.5 IPG PHOTONICS CORPORATION
      • 14.1.5.1 Business overview
      • 14.1.5.2 Products/Solutions/Services offered
      • 14.1.5.3 MnM view
        • 14.1.5.3.1 Key strengths/Right to win
        • 14.1.5.3.2 Strategic choices
        • 14.1.5.3.3 Weaknesses/Competitive threats
    • 14.1.6 SIGNIFY HOLDING
      • 14.1.6.1 Business overview
      • 14.1.6.2 Products/Solutions/Services offered
    • 14.1.7 CORNING INCORPORATED
      • 14.1.7.1 Business overview
      • 14.1.7.2 Products/Solutions/Services offered
      • 14.1.7.3 Recent developments
        • 14.1.7.3.1 Product launches
        • 14.1.7.3.2 Deals
      • 14.1.7.4 MnM view
        • 14.1.7.4.1 Key strengths/Right to win
        • 14.1.7.4.2 Strategic choices
        • 14.1.7.4.3 Weaknesses/Competitive threats
    • 14.1.8 ON SEMICONDUCTOR CORPORATION
      • 14.1.8.1 Business overview
      • 14.1.8.2 Products/Solutions/Services offered
      • 14.1.8.3 Recent developments
        • 14.1.8.3.1 Deals
    • 14.1.9 OFS FITEL, LLC
      • 14.1.9.1 Business overview
      • 14.1.9.2 Products/Solutions/Services offered
      • 14.1.9.3 Recent developments
        • 14.1.9.3.1 Product launches
    • 14.1.10 COHERENT CORP.
      • 14.1.10.1 Business overview
      • 14.1.10.2 Products/Solutions/Services offered
    • 14.1.11 NICHIA CORPORATION
      • 14.1.11.1 Business overview
      • 14.1.11.2 Products/Solutions/Services offered
      • 14.1.11.3 Recent developments
        • 14.1.11.3.1 Product launches
  • 14.2 OTHER PLAYERS
    • 14.2.1 TOPTICA PHOTONICS
    • 14.2.2 M SQUARED LASERS LIMITED
    • 14.2.3 FREEDOM PHOTONICS LLC
    • 14.2.4 SCINTIL PHOTONICS
    • 14.2.5 PHOTONICS INDUSTRIES INTERNATIONAL. INC.
    • 14.2.6 LUMILEDS HOLDINGS B.V.
    • 14.2.7 EXCELITAS TECHNOLOGIES CORP.
    • 14.2.8 TRUMPF
    • 14.2.9 EMERSON ELECTRIC CO
    • 14.2.10 SAMSUNG ELECTRONICS

15 APPENDIX

  • 15.1 DISCUSSION GUIDE
  • 15.2 KNOWLEDGESTORE: MARKETSANDMARKETS' SUBSCRIPTION PORTAL
  • 15.3 CUSTOMIZATION OPTIONS
  • 15.4 RELATED REPORTS
  • 15.5 AUTHOR DETAILS
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦