½ÃÀ庸°í¼­
»óǰÄÚµå
1596040

¼¼°èÀÇ µ¥ÀÌÅÍ ¼öÁý ¹× ¶óº§¸µ ½ÃÀå : µ¥ÀÌÅÍ À¯Çüº°, »ê¾÷º°, Áö¿ªº° ¿¹Ãø(-2032³â)

Global Data Collection and Labelling Market Research Report By Data Type, by Vertical, and By Region Forecast Till 2032

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Market Research Future | ÆäÀÌÁö Á¤º¸: ¿µ¹® 132 Pages | ¹è¼Û¾È³» : Áï½Ã¹è¼Û

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

µ¥ÀÌÅÍ ¼öÁý ¹× ¶óº§¸µ ½ÃÀå ±Ô¸ð´Â 2023³â 27¾ï 180¸¸ ´Þ·¯, 2024³â 29¾ï 8,410¸¸ ´Þ·¯¿¡¼­ ¿¹Ãø ±â°£ µ¿¾È 29.4%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î ¼ºÀåÇÏ¿© 2032³â¿¡´Â 234¾ï 7,680¸¸ ´Þ·¯ ±Ô¸ð¿¡ ´ÞÇÒ Àü¸ÁÀÔ´Ï´Ù.

ÀÚÀ²ÁÖÇàÂ÷ ÈÆ·Ã¿¡¼­ µ¥ÀÌÅÍ ¾î³ëÅ×À̼ÇÀÇ Ç°ÁúÀº ¸Å¿ì Áß¿äÇÑ ¿ä¼ÒÀÔ´Ï´Ù. ÀÚÀ²ÁÖÇàÂ÷ÀÇ ½Å·Ú¼º°ú ¾ÈÀü¼ºÀ» º¸ÀåÇϱâ À§Çؼ­´Â ÃÖ°í ǰÁúÀÇ ¾î³ëÅ×À̼ÇÀÌ ÇÊ¿äÇÕ´Ï´Ù. Á¤È®ÇÑ µ¥ÀÌÅÍ ¾î³ëÅ×À̼ÇÀº µµ·ÎÀÇ Ç׸ñ°ú Ư¡À» Á¤È®ÇÏ°Ô ½Äº°ÇÏ¿© ÀÚµ¿Â÷°¡ ¾ÈÀüÇÏ°Ô ÁÖÇàÇÒ ¼ö ÀÖµµ·Ï µµ¿ÍÁֱ⠶§¹®¿¡ ÀÚÀ²ÁÖÇàÀÇ ¼º°ø¿¡ ÇʼöÀûÀÔ´Ï´Ù. ºÎÀûÀýÇÑ µ¥ÀÌÅÍ ¶óº§¸µÀº ¿¬±¸ ¹× Á¦Á¶ ´Ü°è¿¡ ½É°¢ÇÑ ¿µÇâÀ» ¹ÌÃÄ º´¸ñÇö»óÀ» À¯¹ßÇϰí ÀÚÀ²ÁÖÇàÂ÷ÀÇ ±â´É°ú ¾ÈÀü¼ºÀ» À§Çè¿¡ ºü¶ß¸± ¼ö ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍ °ËÁõÀº ÀÚÀ²ÁÖÇàÂ÷ µ¥ÀÌÅÍ ¾î³ëÅ×ÀÌ¼Ç ÇÁ·Î¼¼½º¿¡¼­ Áß¿äÇÑ ´Ü°èÀÔ´Ï´Ù. ÀÌ´Â ÁÖ¼®ÀÌ ´Þ¸° µ¥ÀÌÅͰ¡ Á¤È®ÇÏ°í ¿ÏÀüÇϸç ÇнÀÇÒ ¾Ë°í¸®Áò°ú °ü·Ã¼ºÀÌ ÀÖ´ÂÁö È®ÀÎÇÕ´Ï´Ù. ÀÚÀ²ÁÖÇàÂ÷ÀÇ µ¥ÀÌÅÍ ÁÖ¼® ǰÁú¿¡ ´ëÇÑ Àü¸ÁÀº ÷´Ü ÁÖ¼® ±â¼ú°ú ÀÚµ¿È­µÈ ÇÁ·Î¼¼½º¸¦ »ç¿ëÇÏ¿© ¾ÈÀü¼º°ú Á¤È®¼ºÀ» Çâ»ó½ÃŰ´Â °ÍÀÔ´Ï´Ù. ½ÃÀå ºÎ¹®¿¡ ´ëÇÑ »õ·Î¿î ÅëÂû·ÂÀ» È®º¸ÇÔÀ¸·Î½á ÀÚÀ²ÁÖÇà ½Ã½ºÅÛÀÇ ¾ÈÀü¼º°ú ½Å·Ú¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù.

Áö¿ªº° ÀλçÀÌÆ®

ºÏ¹Ì¿¡´Â ¹Ì±¹, ij³ª´Ù, ¸ß½ÃÄÚ°¡ Æ÷ÇԵ˴ϴÙ. ºÏ¹Ì¿¡¼­´Â µ¥ÀÌÅÍ ¼öÁý°ú űëÀÌ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. ´ë±â¾÷ÀÌ ¸¹°í »õ·Î¿î ±â¼úÀ» ºü¸£°Ô µµÀÔÇϰí ÀÖ´Â ÀÌ »ê¾÷¿¡¼­ µ¥ÀÌÅÍ ÁÖ¼® ¹× ÅÂ±× ÁöÁ¤Àº ºü¸£°Ô È®»êµÇ°í ÀÖ½À´Ï´Ù. ±¸ÃàµÇ´Â AI ¹× ¸Ó½Å·¯´× ¸ðµ¨ÀÇ º¹À⼺ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ±â¾÷Àº µ¥ÀÌÅÍ Ã³¸® ¿ä±¸ »çÇ×À» ÃæÁ·Çϱâ À§ÇØ ÀÌ·¯ÇÑ ¼­ºñ½º¸¦ ¾Æ¿ô¼Ò½ÌÇØ¾ß ÇÕ´Ï´Ù.

¾Æ½Ã¾ÆÅÂÆò¾ç, ƯÈ÷ Áß±¹, ÀϺ», Àεµ µî ¾Æ½Ã¾ÆÅÂÆò¾ç¿¡¼­´Â ÃÖ±Ù ¸î ³âµ¿¾È AI¿Í ¸Ó½Å·¯´×(ML)ÀÇ È°¿ëÀÌ »ê¾÷ Àü¹Ý¿¡ °ÉÃÄ ±Þ°ÝÈ÷ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀÌ ±¸ÇöµÇ¸é¼­ µ¥ÀÌÅÍ Ä¸Ã³ ¹× ¾î³ëÅ×À̼ǿ¡ ´ëÇÑ ¼ö¿ä´Â ±âÇϱ޼öÀûÀ¸·Î Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

¼¼°è µ¥ÀÌÅÍ ¼öÁý ¹× ¶óº§¸µ(Data Collection and Labeling) ½ÃÀåÀ» Á¶»çÇßÀ¸¸ç, ½ÃÀå Á¤ÀÇ¿Í °³¿ä, ½ÃÀå ¼ºÀå¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â °¢Á¾ ¿µÇâ¿äÀÎ ºÐ¼®, ½ÃÀå ±Ô¸ð ÃßÀÌ ¹× ¿¹Ãø, °¢Á¾ ºÎ¹®º°/Áö¿ªº°/ÁÖ¿ä ±¹°¡º° ºÐ¼®, °æÀï ȯ°æ, ÁÖ¿ä ±â¾÷ ÇÁ·ÎÆÄÀÏ µîÀÇ Á¤º¸¸¦ Á¤¸®ÇÏ¿© ÀüÇØµå¸³´Ï´Ù.

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ½ÃÀå °³¿ä

Á¦3Àå Á¶»ç ¹æ¹ý

Á¦4Àå ½ÃÀå ¿ªÇÐ

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ

Á¦5Àå ½ÃÀå ¿äÀÎ ºÐ¼®

  • ¹ë·ùüÀÎ ºÐ¼®
  • PorterÀÇ Five Forces ºÐ¼®
  • COVID-19ÀÇ ¿µÇ⠺м®

Á¦6Àå ¼¼°è µ¥ÀÌÅÍ ¼öÁý ¹× ¶óº§¸µ ½ÃÀå : µ¥ÀÌÅÍ À¯Çüº°

  • °³¿ä
  • ÅØ½ºÆ®
  • ¿µ»ó/ºñµð¿À
  • ¿Àµð¿À

Á¦7Àå ¼¼°è µ¥ÀÌÅÍ ¼öÁý ¹× ¶óº§¸µ ½ÃÀå : »ê¾÷º°

  • IT
  • ÀÚµ¿Â÷
  • Á¤ºÎ
  • ÇコÄɾî
  • ÀºÇà/±ÝÀ¶¼­ºñ½º/º¸Çè(BFSI)
  • ¼Ò¸Å ¹× E-Commerce
  • ±âŸ

Á¦8Àå ¼¼°è µ¥ÀÌÅÍ ¼öÁý ¹× ¶óº§¸µ ½ÃÀå : Áö¿ªº°

  • °³¿ä
  • ºÏ¹Ì
  • À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ±âŸ Áö¿ª

Á¦9Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®
  • °æÀï ´ë½Ãº¸µå
  • ÁÖ¿ä ±â¾÷ÀÇ À繫 ¸ÅÆ®¸¯½º
  • ÁÖ¿ä Àü°³ ¹× ¼ºÀå Àü·«

Á¦10Àå ±â¾÷ °³¿ä

  • APPEN LIMITED
  • TELUS INTERNATIONAL
  • GLOBAL TECHNOLOGY SOLUTIONS
  • ALEGION
  • LABELBOX, INC
  • RENESAS ELECTRONICS CORPORATION
  • SUMMA LINGUAE TECHNOLOGIES
  • DOBILITY INC.
  • SCALE AI INC.
  • IBM CORPORATION
LSH 24.12.04

Global Data Collection and Labelling Market Research Report By Data Type (Text, Image/ Video and Audio), by Vertical (IT, Automotive, Government, Healthcare, BFSI, Retail & E-commerce, and Others), and By Region (North America, Europe, Asia-Pacific, Middle East and Africa, South America) Forecast Till 2032

Market Overview

In 2023, the data collection and labelling market was estimated at USD 2,701.8 million. The Data Collection and Labelling Market is expected to expand from USD 2,984.1 million in 2024 to USD 23,476.8 million by 2032, with a compound yearly growth rate (CAGR) of 29.4% over the forecast period (2024-2032). The Data Collection and Labeling market has numerous potentials for both established players and growing entrepreneurs.

The quality of data annotations is an important aspect of self-driving car training. Annotations of the highest quality are required to ensure the dependability and safety of autonomous vehicles. Accurate data annotation is critical to the success of autonomous driving because it allows automobiles to navigate safely by correctly identifying roadside items and features. Inadequate data labeling methods can have a severe impact on the research and manufacturing stages, causing bottlenecks and jeopardizing the functioning and security of self-driving automobiles. Data validation is an important step in the data annotation process for self-driving cars since it ensures accurate and reliable algorithm training. It ensures that the annotated data is accurate, complete, and relevant to the algorithms being trained. The future of data annotation quality in self-driving cars is to improve safety and accuracy using sophisticated annotation techniques and automated processes. Developing fresh insights into market segments can improve the safety and reliability of autonomous driving systems.

Market Segmentation

The Data Collection and Labelling Market is divided into three segments based on data type: text, image/video, and audio.

The Data Collection and Labelling Market is divided into the following verticals: IT, Automotive, Government, Healthcare, BFSI, Retail & E-commerce, and Others.

Regional insights

North America includes the United States, Canada, and Mexico. North America has seen an upsurge in data collection and tagging. This industry, which has a significant number of large firms and a rapid adoption of novel technology, is where data annotation and tagging have quickly gained traction. The rising complexity of AI and machine learning models being built necessitates organizations outsourcing these services to meet their data processing requirements.

In the Asia-Pacific area, particularly in China, Japan, India, and other nations, the usage of Artificial Intelligence (AI) and Machine Learning (ML) has grown dramatically in recent years across industries. As these technologies are implemented in the real world, the demand for data capture and annotation is increasing at an exponential rate.

For this study, the Europe region includes the United Kingdom, Germany, France, and the rest of Europe. The key drive is projected to be the growing use of AI and ML technologies in Europe, as well as the strong demand for data collecting and labelling services. The region's sectors are gradually adopting AI and ML solutions as advancements in generative AI make the technology more deployable.

Major Players

The market's leading vendors include Appen Limited, Telcus International, Global Technology Solutions, Alegion, Labelbox, Inc, Reality AI, Globalme Localization Inc, Dobility Inc, Scale AI, and Trilldata Technologies PVT LTD.

TABLE OF CONTENTS

1 EXECUTIVE SUMMARY

2 MARKET INTRODUCTION

  • 2.1 DEFINITION
  • 2.2 SCOPE OF THE STUDY
  • 2.3 RESEARCH OBJECTIVE
  • 2.4 MARKET STRUCTURE

3 RESEARCH METHODOLOGY

  • 3.1 OVERVIEW
  • 3.2 DATA FLOW
    • 3.2.1 DATA MINING PROCESS
  • 3.3 PURCHASED DATABASE:
  • 3.4 SECONDARY SOURCES:
    • 3.4.1 SECONDARY RESEARCH DATA FLOW:
  • 3.5 PRIMARY RESEARCH:
    • 3.5.1 PRIMARY RESEARCH DATA FLOW:
    • 3.5.2 PRIMARY RESEARCH: NUMBER OF INTERVIEWS CONDUCTED
  • 3.6 APPROACHES FOR MARKET SIZE ESTIMATION:
    • 3.6.1 CONSUMPTION & NET TRADE APPROACH
    • 3.6.2 REVENUE ANALYSIS APPROACH
  • 3.7 DATA FORECASTING
    • 3.7.1 DATA FORECASTING TYPE
  • 3.8 DATA MODELING
    • 3.8.1 MICROECONOMIC FACTOR ANALYSIS:
    • 3.8.2 DATA MODELING:

4 MARKET DYNAMICS

  • 4.1 INTRODUCTION
  • 4.2 DRIVERS
    • 4.2.1 RISE IN HEALTHCARE AI APPLICATION
    • 4.2.2 RAPIDLY INCREASING IN E COMMERCE
  • 4.3 RESTRAINTS
    • 4.3.1 DATA PRIVACY AND SECURITY CONCERNS
    • 4.3.2 PROBLEMS RELATED TO INADEQUATE TRAINING DATA QUALITY
  • 4.4 OPPORTUNITY
    • 4.4.1 GROWTH OF AUTONOMOUS TECHNOLOGY
    • 4.4.2 GROWING POPULARITY OF LABELLING CROWDSOURCED DATA

5 MARKET FACTOR ANALYSIS

  • 5.1 VALUE CHAIN ANALYSIS
    • 5.1.1 DATA COLLECTION
    • 5.1.2 DATA PREPROCESSING
    • 5.1.3 SELECT THE RIGHT VENDOR OR TOOL
    • 5.1.4 ANNOTATION GUIDELINES
    • 5.1.5 ANNOTATION
    • 5.1.6 QUALITY ASSURANCE (QA)
    • 5.1.7 DATA EXPORT
  • 5.2 PORTER'S FIVE FORCES MODEL
    • 5.2.1 THREAT OF NEW ENTRANTS
    • 5.2.2 BARGAINING POWER OF SUPPLIERS
    • 5.2.3 THREAT OF SUBSTITUTES
    • 5.2.4 BARGAINING POWER OF BUYERS
    • 5.2.5 INTENSITY OF RIVALRY
  • 5.3 COVID-19 IMPACT ANALYSIS
    • 5.3.1 MARKET IMPACT ANALYSIS
    • 5.3.2 REGIONAL IMPACT
    • 5.3.3 OPPORTUNITY AND THREAT ANALYSIS

6 GLOBAL DATA COLLECTION AND LABELLING MARKET, BY DATA TYPE

  • 6.1 OVERVIEW
  • 6.2 TEXT
  • 6.3 IMAGE/ VIDEO
  • 6.4 AUDIO

7 GLOBAL DATA COLLECTION AND LABELLING MARKET, BY VERTICAL

  • 7.1 INTRODUCTION
  • 7.2 IT
  • 7.3 AUTOMOTIVE
  • 7.4 GOVERNMENT
  • 7.5 HEALTHCARE
  • 7.6 BFSI
  • 7.7 RETAIL & E-COMMERCE
  • 7.8 OTHERS

8 GLOBAL DATA COLLECTION AND LABELLING MARKET, BY REGION

  • 8.1 OVERVIEW

GLOBAL DATA COLLECTION AND LABELLING MARKET, BY REGION, 2023 VS 2032 (USD MILLION) 59

  • 8.2 NORTH AMERICA
    • 8.2.1 US
    • 8.2.2 CANADA
  • 8.3 EUROPE
    • 8.3.1 UK
    • 8.3.2 GERMANY
    • 8.3.3 FRANCE
    • 8.3.4 ITALY
    • 8.3.5 SPAIN
    • 8.3.6 REST OF EUROPE
  • 8.4 ASIA-PACIFIC
    • 8.4.1 CHINA
    • 8.4.2 JAPAN
    • 8.4.3 INDIA
    • 8.4.4 SOUTH KOREA
    • 8.4.5 AUSTRALIA
    • 8.4.6 REST OF ASIA-PACIFIC
  • 8.5 REST OF THE WORLD
    • 8.5.1 MIDDLE EAST
    • 8.5.2 AFRICA
    • 8.5.3 LATIN AMERICA

9 COMPETITIVE LANDSCAPE

  • 9.1 INTRODUCTION
  • 9.2 MARKET SHARE ANALYSIS, 2023
  • 9.3 COMPETITOR DASHBOARD

SUMMA LINGUAE TECHNOLOGIES 92

5

APPEN 92

4

IBM 92

5

LABELBOX 92

4

TELUS INTERNATIONAL 92

4

  • 9.4 MAJOR PLAYERS FINANCIAL MATRIX
  • 9.5 KEY DEVELOPMENTS & GROWTH STRATEGIES
    • 9.5.1 PRODUCT DEVELOPMENT
    • 9.5.2 PARTNERSHIPS/AGREEMENTS/CONTRACTS/COLLABORATIONS

10 COMPANY PROFILE

  • 10.1 APPEN LIMITED
    • 10.1.1 COMPANY OVERVIEW
    • 10.1.2 FINANCIAL OVERVIEW
    • 10.1.3 PRODUCTS OFFERED
    • 10.1.4 KEY DEVELOPMENTS
    • 10.1.5 SWOT ANALYSIS
    • 10.1.6 KEY STRATEGIES
  • 10.2 TELUS INTERNATIONAL
    • 10.2.1 COMPANY OVERVIEW
    • 10.2.2 FINANCIAL OVERVIEW
    • 10.2.3 PRODUCTS OFFERED
    • 10.2.4 KEY DEVELOPMENTS
    • 10.2.5 SWOT ANALYSIS
    • 10.2.6 KEY STRATEGIES
  • 10.3 GLOBAL TECHNOLOGY SOLUTIONS
    • 10.3.1 COMPANY OVERVIEW
    • 10.3.2 FINANCIAL OVERVIEW
    • 10.3.3 PRODUCTS OFFERED
  • 10.4 ALEGION
    • 10.4.1 COMPANY OVERVIEW
    • 10.4.2 FINANCIAL OVERVIEW
    • 10.4.3 PRODUCTS OFFERED
    • 10.4.4 KEY DEVELOPMENTS
    • 10.4.5 SWOT ANALYSIS
    • 10.4.6 KEY STRATEGIES
  • 10.5 LABELBOX, INC
    • 10.5.1 COMPANY OVERVIEW
    • 10.5.2 FINANCIAL OVERVIEW
    • 10.5.3 PRODUCTS OFFERED
    • 10.5.4 KEY DEVELOPMENTS
    • 10.5.5 SWOT ANALYSIS
    • 10.5.6 KEY STRATEGIES
  • 10.6 RENESAS ELECTRONICS CORPORATION
    • 10.6.1 COMPANY OVERVIEW
    • 10.6.2 FINANCIAL OVERVIEW
    • 10.6.3 PRODUCTS OFFERED
    • 10.6.4 KEY DEVELOPMENTS
    • 10.6.5 SWOT ANALYSIS
    • 10.6.6 KEY STRATEGIES
  • 10.7 SUMMA LINGUAE TECHNOLOGIES
    • 10.7.1 COMPANY OVERVIEW
    • 10.7.2 FINANCIAL OVERVIEW
    • 10.7.3 PRODUCTS OFFERED
    • 10.7.4 KEY DEVELOPMENTS
    • 10.7.5 SWOT ANALYSIS
    • 10.7.6 KEY STRATEGIES
  • 10.8 DOBILITY INC.
    • 10.8.1 COMPANY OVERVIEW
    • 10.8.2 FINANCIAL OVERVIEW
    • 10.8.3 PRODUCTS OFFERED
    • 10.8.4 KEY DEVELOPMENTS
    • 10.8.5 SWOT ANALYSIS
    • 10.8.6 KEY STRATEGIES
  • 10.9 SCALE AI INC.
    • 10.9.1 COMPANY OVERVIEW
    • 10.9.2 FINANCIAL OVERVIEW
    • 10.9.3 PRODUCTS OFFERED
    • 10.9.4 KEY DEVELOPMENTS
    • 10.9.5 SWOT ANALYSIS
    • 10.9.6 KEY STRATEGIES
  • 10.10 IBM CORPORATION
    • 10.10.1 COMPANY OVERVIEW
    • 10.10.2 FINANCIAL OVERVIEW
    • 10.10.3 PRODUCTS OFFERED
    • 10.10.4 KEY DEVELOPMENTS
    • 10.10.5 SWOT ANALYSIS
    • 10.10.6 KEY STRATEGIES
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦