½ÃÀ庸°í¼­
»óǰÄÚµå
1327710

¼¼°èÀÇ ¼ö¼Ò »ý»ê ½ÃÀå : Á¦Ç° À¯Çüº°(ȸ»ö, ³ì»ö, û»ö), ÇÁ·Î¼¼½ºº°(¼ö¼Ò »ý»ê, ¼ö¼Ò ÀúÀå), °ø±Þ¿øº°(È­¼® ¿¬·á, ¿øÀÚ·Â, žçÀüÁö), ¿ëµµº°(¾Ï¸ð´Ï¾Æ Á¦Á¶, Á¤À¯, E¸ðºô¸®Æ¼, ¹ßÀü) - ¿¹Ãø(2030³â)

Hydrogen Generation Market by Type (Gray, Green, Blue), Process (Hydrogen Generation, Hydrogen Storage), Source (Fossil Fuels, Nuclear, Solar), Application (Ammonia Production, Petroleum Refinery, E-mobility, Power Generation)-Global Forecast to 2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Meticulous Research | ÆäÀÌÁö Á¤º¸: ¿µ¹® 331 Pages | ¹è¼Û¾È³» : Áï½Ã¹è¼Û

    
    
    




¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¼¼°èÀÇ ¼ö¼Ò »ý»ê(Hydrogen Generation) ½ÃÀåÀº 2023-2030³â ¿¹Ãø ±â°£ Áß 8.4%ÀÇ CAGR¿¡ ´ÞÇß½À´Ï´Ù. 2030³â 1,882¾ï ´Þ·¯ ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼ö¼Ò »ý»ê ½ÃÀå ¼ºÀåÀÇ ÁÖ¿ä ¿äÀÎÀº È­ÇÐ »ê¾÷ ¼ö¼Ò ¼ö¿ä Áõ°¡¿Í ±ú²ýÇÑ ¿¡³ÊÁö¿øÀ¸·ÎÀÇ ÀüȯÀ» ¸ñÇ¥·Î ÇÏ´Â Á¤ºÎ ±¸»ó Áõ°¡ÀÔ´Ï´Ù. ±×·¯³ª ¼ö¼Ò ÀúÀå ÀÚº» ºñ¿ëÀÌ ³ôÀº °ÍÀº ½ÃÀå ¼ºÀåÀ» ¾ïÁ¦ÇÕ´Ï´Ù. ³ì»ö ¼ö¼Ò Á¦Á¶ ±â¼ú °³Ã´ °ü½É Áõ°¡¿Í ¿¬·á ÀüÁö Àü±âÀÚµ¿Â÷(FCEV) ¼ö¼Ò ÀÌ¿ë Áõ°¡´Â ½ÃÀå¿¡ ÁøÀÔÇÏ´Â ±â¾÷¿¡°Ô ¼ºÀå ±âȸ¸¦ °¡Á®¿Ã °ÍÀ¸·Î ±â´ëµË´Ï´Ù. ±×·¯³ª ¼ö¼ÒÀÇ ¾ÈÀüÇÑ ¿î¼Û°ú ÀúÀå ÀÎÇÁ¶ó°¡ ¾ø´Â °ÍÀÌ ½ÃÀå ¼ºÀåÀÇ Å« °úÁ¦°¡ µË´Ï´Ù.

¶ÇÇÑ, ¼ö¼Ò Á¦Á¶¿¡ Àç»ý ¿¡³ÊÁö¿ø ÀÌ¿ëÀÌ Áõ°¡Çϰí ÀÖ´Â °ÍÀº ¼ö¼Ò »ý»ê ½ÃÀåÀÇ ÁÖ¿ä µ¿ÇâÀÔ´Ï´Ù. ¼ö¼Ò Á¦Á¶ ź¼Ò ȸ¼ö, ÀÌ¿ë, ÀúÀå(CCUS) ÀÌ¿ë Áõ°¡´Â ½ÃÀå ±â¼ú µ¿ÇâÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼Ò°³

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

  • ÁÖ¿ä ¿ä¾à
  • ½ÃÀå ºÐ¼® : À¯Çüº°
  • ½ÃÀå ºÐ¼® : ÇÁ·Î¼¼½ºº°
  • ½ÃÀå ºÐ¼® : ¼Ò½ºº°
  • ¿ëµµº° ½ÃÀå ºÐ¼®
  • Áö¿ªº° ½ÃÀå ºÐ¼®
  • °æÀï ºÐ¼®

Á¦4Àå ½ÃÀå ÅëÂû

  • ÁÖ¿ä ¿ä¾à
  • ½ÃÀå ¼ºÀå¿¡ ¹ÌÄ¡´Â ¿µÇâ ¿äÀÎ
    • È­Çлê¾÷ ¼ö¼Ò ¼ö¿ä Áõ°¡¿¡ µû¸¥ ¼ö¼Ò»ý»ê ¼­ºñ½º ÀÌ¿ë ÃËÁø
    • ±ú²ýÇÑ ¿¡³ÊÁö¿øÀ¸·Î À̵¿À» ¸ñÇ¥·Î ÇÏ´Â Á¤ºÎ ±¸»ó Áõ°¡

¼ö¼Ò¿Í °°Àº ´ëü ¿¬·á ¼ö¿ä Áõ°¡

    • ÀúÀå¿¡ µå´Â ³ôÀº ÀÚº» ºñ¿ëÀÌ ¼ö¼Ò Á¦Á¶¸¦ Á¦ÇÑ
    • ³ì»ö ¼ö¼ÒÁ¦Á¶±â¼ú °³Ã´ °ü½É Áõ°¡°¡ ½ÅÈï ±¹°¡ ½ÃÀå¿¡ ¼ºÀå ±âȸ Á¦°ø
    • ȯ°æ Áö¼Ó°¡´É¼ºÀ» ÃËÁøÇÏ´Â ¿¬·á ÀüÁö Àü±âÀÚµ¿Â÷(FCEVS) ¼ö¼Ò ÀÌ¿ë Áõ°¡
    • ¾ÈÀüÇÑ ¼ö¼Ò ¿î¼Û, ÀúÀå ÀÎÇÁ¶ó ºÎÁ· ¾ÈÀü¼º °úÁ¦
  • ½ÃÀå µ¿Çâ
    • ¼ö¼Ò Á¦Á¶ Àç»ý ¿¡³ÊÁö¿ø ÀÌ¿ë Áõ°¡
  • ±â¼ú µ¿Çâ
    • ¼ö¼Ò Á¦Á¶ ź¼Ò ȸ¼ö, ÀÌ¿ë, ÀúÀå(CCUS) ÀÌ¿ë Áõ°¡
  • °ø±Þ¸Á ºÐ¼®
    • ¼ö¼Ò Á¦Á¶
    • ¼ö¼Ò ÀúÀå
    • ¼ö¼Ò ¿î¼Û
    • ¼ö¼ÒÀÌ¿ë

Á¦5Àå À¯Çüº° ¼ö¼Ò »ý»ê ½ÃÀå Æò°¡

  • ÁÖ¿ä ¿ä¾à
  • ±×·¹ÀÌ ¼ö¼Ò
  • ºí·ç ¼ö¼Ò
  • ±×¸° ¼ö¼Ò
  • ±âŸ À¯Çü

Á¦6Àå °øÁ¤º° ¼ö¼Ò Á¦Á¶ ½ÃÀå Æò°¡

  • ÁÖ¿ä ¿ä¾à
  • ¼ö¼Ò »ý»ê °øÁ¤
    • ¿­È­ÇÐ °øÁ¤
      • ¼öÁõ±â ¸Þź °³Áú
      • °¡½ºÈ­
      • ¿ÀÅä ¼­¸Ö °³Áú
    • Àü±âºÐÇØ
    • »ý¹° ÇÁ·Î¼¼½º
    • Á÷Á¢ ž翭 ¼öºÐÇØ °øÁ¤
    • ¾Ð·Â ½ºÀ® ÈíÂø
  • ¼ö¼Ò ÀúÀå °øÁ¤
    • ½Ç¸°´õ
    • ÈÞ´ë¿ë ÀúÀå
    • ±âŸ ÀúÀå ÇÁ·Î¼¼½º

Á¦7Àå °ø±Þ¿øº° ½ÃÀå Æò°¡

  • ÁÖ¿ä ¿ä¾à
  • È­¼®¿¬·á
  • ¿øÀÚ·Â
  • ¹°
  • žç
  • ¹ÙÀÌ¿À¸Å½º
  • ±âŸ

Á¦8Àå ¿ëµµº° ¼ö¼Ò »ý»ê ½ÃÀå Æò°¡

  • ÁÖ¿ä ¿ä¾à
  • ¾Ï¸ð´Ï¾Æ Á¦Á¶
  • Á¤À¯
  • ¸Þź¿Ã Á¦Á¶
  • E¸ðºô¸®Æ¼
  • ÇÕ¼º¿¬·á Á¦Á¶
  • Áö¿ª³­¹æ
  • Á¦Á¶¾÷
  • ¹ßÀü

Á¦9Àå Áö¿ªº° ¼ö¼Ò »ý»ê ½ÃÀå Æò°¡

  • ÁÖ¿ä ¿ä¾à
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • Áß±¹
    • Àεµ
    • ÀϺ»
    • Çѱ¹
    • Àεµ³×½Ã¾Æ
    • ½Ì°¡Æ÷¸£
    • È£ÁÖ ´ºÁú·£µå
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • À¯·´
    • µ¶ÀÏ
    • ³×´ú¶õµå
    • ¿µ±¹
    • Æú¶õµå
    • ½ºÆäÀÎ
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ±âŸ À¯·´
  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • À̽º¶ó¿¤
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
  • ¶óƾ¾Æ¸Þ¸®Ä«
    • ¸ß½ÃÄÚ
    • ºê¶óÁú
    • ±âŸ ¶óƾ¾Æ¸Þ¸®Ä«

Á¦10Àå °æÀï ºÐ¼®

  • ÁÖ¿ä ¿ä¾à
  • ÁÖ¿ä ¼ºÀå Àü·«
  • °æÀï º¥Ä¡¸¶Å·
  • °æÀï ´ë½Ãº¸µå
    • ¾÷°è ¸®´õ
      • ÁÖ¿ä ±â¾÷º° ½ÃÀå ¼øÀ§
    • ½ÃÀåÂ÷º°È­ ¿äÀÎ
    • ¼±Çà±â¾÷
    • ½ÅÈï±â¾÷

Á¦11Àå ±â¾÷ ÁÖ¿ä ¿ä¾à(±â¾÷ ÁÖ¿ä ¿ä¾à, À繫 ÁÖ¿ä ¿ä¾à, Á¦Ç° Æ÷Æ®Æú¸®¿À, Àü·« µµÀÔ)

  • L"air Liquide SA
  • Air Products And Chemicals, Inc.
  • Cummins Inc.
  • Plug Power Inc.
  • Fuelcell Energy, Inc.
  • Linde Gmbh(A Subsidiary of Linde Plc)
  • Matheson Tri-Gas, Inc.(A Subsidiary of Nippon Sanso Holdings Corporation)
  • Sol Spa
  • Siemens Energy Ag
  • Shell Plc
  • Messer Se& Co. Kgaa
  • Ballard Power Systems Inc.
  • Iwatani Corporation
  • Enapter Ag
  • Caloric Anlagenbau Gmbh
  • Spg Hydrogen Co., Ltd.
  • Uniper Se
  • Nel Asa

(Âü°í : »óÀ§ 5°³ ȸ»ç SWOT ºÐ¼®À» Á¦°øÇÕ´Ï´Ù.)

Á¦12Àå ºÎ·Ï

NJH 23.09.04

The research report titled 'Hydrogen Generation Market by Type (Gray, Green, Blue), Process (Hydrogen Generation, Hydrogen Storage), Source (Fossil Fuels, Nuclear, Solar), Application (Ammonia Production, Petroleum Refinery, E-mobility, Power Generation)-Global Forecast to 2030', provides in-depth analysis of hydrogen generation market across five major geographies and emphasizes on the current market trends, market sizes, market shares, recent developments, and forecasts till 2030.

The global hydrogen generation market is expected to reach $188.2 billion by 2030, growing at a CAGR of 8.4% during the forecast period of 2023-2030.

The growth of the hydrogen generation market is mainly attributed to the rising demand for hydrogen in the chemicals industry and increasing government initiatives to transition to clean energy sources. However, the high capital cost of hydrogen storage restrains the growth of this market. The growing focus on developing green hydrogen production technologies and the increasing use of hydrogen in fuel cell electric vehicles (FCEVs) are expected to generate growth opportunities for the players operating in this market. However, the lack of secure hydrogen transport and storage infrastructure is a major challenge for market growth.

Additionally, the rising use of renewable energy sources for hydrogen production is a major market trend in the hydrogen generation market. Increasing use of carbon capture, utilization, and storage (CCUS) in hydrogen production are technology trends in the market.

Based on type, the global hydrogen generation market is segmented into gray hydrogen, blue hydrogen, green hydrogen, and other types. In 2023, the gray hydrogen segment is expected to account for the largest share of the global hydrogen generation market. The growth of this segment is attributed to the increasing demand for gray hydrogen to produce fertilizer and the growing use of gray hydrogen as fuel. However, the green hydrogen segment is expected to register the highest CAGR during the forecast period due to the increasing need to lower the cost of producing renewable energy, the emphasis by market players on the development of electrolysis technologies, and the high demand for green hydrogen by fuel cell electric vehicles (FCEVs) and the power industry.

Based on process, the global hydrogen generation market is segmented into the hydrogen generation process and hydrogen storage process. In 2023, the hydrogen generation process segment is expected to account for a larger share of the global hydrogen generation market. The growth of this segment is driven by the increasing demand for hydrogen in industrial applications, the rising need to decrease greenhouse gas emissions from hydrogen generation processes, the increasing use of renewable energy sources for hydrogen production, and the growing adoption of hydrogen generation technologies to achieve decarbonization. The segment is expected to register the highest CAGR during the forecast period.

Based on source, the global hydrogen generation market is segmented into fossil fuels, nuclear, water, solar, biomass, and other sources. In 2023, the fossil fuels segment is expected to account for the largest share of the global hydrogen generation market. The growth of this segment is attributed to the increasing need to reduce greenhouse gas emissions, government initiatives promoting the use of fossil-based hydrogen, and the adoption of renewable energy sources for hydrogen production. However, the solar segment is expected to register the highest CAGR during the forecast period due to the increasing demand for green hydrogen in industrial applications, the growing adoption of low-cost hydrogen production methods, and the rising use of solar energy for hydrogen production to reduce greenhouse gas emissions.

Based on application, the global hydrogen generation market is segmented into ammonia production, petroleum refinery, E-mobility, methanol production, district heating, power generation, manufacturing, and synfuel production. In 2023, the ammonia production segment is expected to account for the largest share of the global hydrogen generation market. The growth of this segment is driven by the increasing demand for ammonia as a low-carbon fuel and the growing use of ammonia to decarbonize industries.

However, the E-mobility segment is expected to register the highest CAGR during the forecast period due to the increasing adoption of fuel-cell electric vehicles (FCEVs), the growing demand for hydrogen to curb carbon emissions and promote sustainable mobility solutions, and the expanding range of fueling infrastructure for various transportation and motive power applications.

Based on geography, the hydrogen generation market is segmented into North America, Asia-Pacific, Europe, Latin America, and the Middle East & Africa. In 2022, the Asia-Pacific region is expected to account for the largest share of the hydrogen generation market. The region is also expected to witness rapid growth during the forecast period. The large market share of Asia-Pacific is mainly attributed to the growing potential to produce carbon-free hydrogen in the region, the growing focus of Australia to generate hydrogen using carbon capture, usage, and storage (CCUS) technology, increasing production and consumption of lower-emission hydrogen. Also, the growing focus of China to generate hydrogen using renewable energy, natural gas, and coal resources, increasing use of hydrogen in power generation, and stringent environmental regulations towards cleaner forms of energy are contributing to the market growth.

The key players operating in the global hydrogen generation market are Plug Power Inc. (U.S.), Linde GmbH (Germany), Air Products and Chemicals, Inc. (U.S.), L'AIR LIQUIDE S.A. (France), Matheson Tri-Gas, Inc. (U.S.), SOL Spa (Italy), Cummins Inc. (U.S.), Siemens Energy AG (Germany), Shell plc (U.K.), Messer SE & Co. KGaA (Germany), Ballard Power Systems Inc. (Canada), FuelCell Energy, Inc. (U.S.), Iwatani Corporation (Japan), Enapter AG (Germany), CALORIC Anlagenbau GmbH (Germany), SPG Hydrogen Co., Ltd. (South Korea), Uniper SE (Germany), and Nel ASA (Norway).

Key questions answered in the report:

  • Which are the high growth market segments in terms of type, process, source, application, and countries?
  • What is the historical market for hydrogen generation across the globe?
  • What are the market forecasts and estimates from 2023-2030?
  • What are the major drivers, restraints, and opportunities in the global hydrogen generation market?
  • Who are the major players in the global hydrogen generation market, and what shares of the market do they hold?
  • Who are the major players in various countries, and what shares of the market do they hold?
  • How is the competitive landscape?
  • What are the recent developments in the global hydrogen generation market?
  • What are the different strategies adopted by the major players in the global hydrogen generation market?
  • What are the geographical trends and high-growth countries?
  • Who are the local emerging players in the global hydrogen generation market, and how do they compete with the other players?

Scope of the report:

Hydrogen Generation Market Assessment-by Type

  • Robotic Systems
  • Gray Hydrogen
  • Blue Hydrogen
  • Green Hydrogen
  • Other Types

Hydrogen Generation Market Assessment-By Process

  • Hydrogen Generation Process
  • Thermochemical Process
  • Electrolysis
  • Biological Processes
  • Direct Solar Water Splitting Process
  • Pressure Swing Adsorption
  • Hydrogen Storage Process
  • Cylindering
  • Portable Storage
  • Other Storage Processes

Hydrogen Generation Market Assessment-By Source

  • Fossil Fuels
  • Nuclear
  • Water
  • Solar
  • Biomass
  • Other Sources

Hydrogen Generation Market Assessment-By Application

  • Ammonia Production
  • Petroleum Refinery
  • Methanol Production
  • E-mobility
  • Synfuel Production
  • District Heating
  • Manufacturing
  • Power Generation

Hydrogen Generation Market Assessment-By Geography

  • North America
  • U.S.
  • Canada
  • Europe
  • Germany
  • U.K.
  • France
  • Italy
  • Spain
  • Netherlands
  • Poland
  • Rest of Europe
  • Asia-Pacific
  • China
  • India
  • Japan
  • South Korea
  • Indonesia
  • Singapore
  • Australia & New Zealand
  • Rest of Asia-Pacific
  • Latin America
  • Brazil
  • Mexico
  • Rest of Latin America
  • Middle East & Africa
  • UAE
  • Saudi Arabia
  • Israel
  • Rest of the Middle East & Africa

TABLE OF CONTENTS

1. Introduction

  • 1.1. Market Definition & Scope
  • 1.2. Market Ecosystem
  • 1.3. Currency & Limitations
  • 1.4. Key Stakeholders

2. Research Methodology

  • 2.1. Research Approach
  • 2.2. Process of Data Collection And Validation
    • 2.2.1. Secondary Research
    • 2.2.2. Primary Research/Interviews With Key Opinion Leaders of the Industry
  • 2.3. Market Sizing and Forecast
    • 2.3.1. Market Size Estimation Approach
    • 2.3.2. Growth Forecast Approach
  • 2.4. Assumptions For The Study

3. Executive Summary

  • 3.1. Overview
  • 3.2. Market Analysis, by Type
  • 3.3. Market Analysis, by Process
  • 3.4. Market Analysis, by Source
  • 3.5. Market Analysis, by Application
  • 3.6. Market Analysis, by Geography
  • 3.7. Competitive Analysis

4. Market Insights

  • 4.1. Overview
  • 4.2. Factors Affecting Market Growth
    • 4.2.1. Rising Demand for Hydrogen in the Chemicals Industry Boosting the Utilization of Hydrogen Generation Services
    • 4.2.2. Increasing Government Initiatives to Transition to Clean Energy Sources Driving

the Demand for Alternative Fuels Such as Hydrogen

    • 4.2.3. High Capital Cost of Storage Limiting Hydrogen Production
    • 4.2.4. Growing Focus on Developing Green Hydrogen Production Technologies Generating Growth Opportunities for Market Players
    • 4.2.5. Increasing Use of Hydrogen n Fuel Cell Electric Vehicles (FCEVS) to Promote Environmental Sustainability
    • 4.2.6. Lack of Secure Hydrogen Transport and Storage Infrastructure Creating Safety Challenges
  • 4.3. Market Trends
    • 4.3.1. Rising Use of Renewable Energy Sources for Hydrogen Production
  • 4.4. Technology Trends
    • 4.4.1. Increasing Use of Carbon Capture, Utilization, and Storage (CCUS) in Hydrogen Production
  • 4.5. Supply Chain Analysis
    • 4.5.1. Hydrogen Production
    • 4.5.2. Hydrogen Storage
    • 4.5.3. Hydrogen Transport
    • 4.5.4. Hydrogen Utilization

5. Hydrogen Generation Market Assessment-by Type

  • 5.1. Overview
  • 5.2. Gray Hydrogen
  • 5.3. Blue Hydrogen
  • 5.4. Green Hydrogen
  • 5.5. Other Types

6. Hydrogen Generation Market Assessment-by Process

  • 6.1. Overview
  • 6.2. Hydrogen Generation Process
    • 6.2.1. Thermochemical Process
      • 6.2.1.1. Steam Methane Reforming
      • 6.2.1.2. Gasification
      • 6.2.1.3. Autothermal Reforming
    • 6.2.2. Electrolysis
    • 6.2.3. Biological Process
    • 6.2.4. Direct Solar Water Splitting Process
    • 6.2.5. Pressure Swing Adsorption
  • 6.3. Hydrogen Storage Process
    • 6.3.1. Cylindering
    • 6.3.2. Portable Storage
    • 6.3.3. Other Storage Processes

7. Hydrogen Generation Market Assessment-by Source

  • 7.1. Overview
  • 7.2. Fossil Fuels
  • 7.3. Nuclear
  • 7.4. Water
  • 7.5. Solar
  • 7.6. Biomass
  • 7.7. Other Sources

8. Hydrogen Generation Market Assessment-by Application

  • 8.1. Overview
  • 8.2. Ammonia Production
  • 8.3. Petroleum Refinery
  • 8.4. Methanol Production
  • 8.5. E-Mobility
  • 8.6. Synfuel Production
  • 8.7. District Heating
  • 8.8. Manufacturing
  • 8.9. Power Generation

9. Hydrogen Generation Market Assessment-by Geography

  • 9.1. Overview
  • 9.2. Asia-Pacific
    • 9.2.1. China
    • 9.2.2. India
    • 9.2.3. Japan
    • 9.2.4. South Korea
    • 9.2.5. Indonesia
    • 9.2.6. Singapore
    • 9.2.7. Australia & New Zealand
    • 9.2.8. Rest of Asia-Pacific
  • 9.3. Europe
    • 9.3.1. Germany
    • 9.3.2. Netherlands
    • 9.3.3. U.K.
    • 9.3.4. Poland
    • 9.3.5. Spain
    • 9.3.6. Italy
    • 9.3.7. France
    • 9.3.8. Rest of Europe
  • 9.4. North America
    • 9.4.1. U.S.
    • 9.4.2. Canada
  • 9.5. Middle East & Africa
    • 9.5.1. UAE
    • 9.5.2. Israel
    • 9.5.3. Saudi Arabia
    • 9.5.4. Rest of The Middle East & Africa
  • 9.6. Latin America
    • 9.6.1. Mexico
    • 9.6.2. Brazil
    • 9.6.3. Rest of Latin America

10. Competition Analysis

  • 10.1. Overview
  • 10.2. Key Growth Strategies
  • 10.3. Competitive Benchmarking
  • 10.4. Competitive Dashboard
    • 10.4.1. Industry Leaders
      • 10.4.1.1. Market Ranking, by Key Player
    • 10.4.2. Market Differentiator
    • 10.4.3. Vanguards
    • 10.4.4. Emerging Companies

11. Company Profiles (Company Overview, Financial Overview, Product Portfolio, and Strategic Developments)

  • 11.1. L'air Liquide S.A.
  • 11.2. Air Products And Chemicals, Inc.
  • 11.3. Cummins Inc.
  • 11.4. Plug Power Inc.
  • 11.5. Fuelcell Energy, Inc.
  • 11.6. Linde Gmbh (A Subsidiary of Linde Plc)
  • 11.7. Matheson Tri-Gas, Inc. (A Subsidiary of Nippon Sanso Holdings Corporation)
  • 11.8. Sol Spa
  • 11.9. Siemens Energy Ag
  • 11.10. Shell Plc
  • 11.11. Messer Se & Co. Kgaa
  • 11.12. Ballard Power Systems Inc.
  • 11.13. Iwatani Corporation
  • 11.14. Enapter Ag
  • 11.15. Caloric Anlagenbau Gmbh
  • 11.16. Spg Hydrogen Co., Ltd.
  • 11.17. Uniper Se
  • 11.18. Nel Asa

(Note: SWOT Analysis of the Top 5 Companies Will Be Provided)

12. Appendix

  • 12.1. Available Customization
  • 12.2. Related Reports
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦