½ÃÀ庸°í¼­
»óǰÄÚµå
1408440

µ¥ÀÌÅÍÈ­ : ½ÃÀå Á¡À¯À² ºÐ¼®, »ê¾÷ µ¿Çâ ¹× Åë°è, ¼ºÀå ¿¹Ãø(2024-2029³â)

Datafication - Market Share Analysis, Industry Trends & Statistics, Growth Forecasts 2024 - 2029

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Mordor Intelligence | ÆäÀÌÁö Á¤º¸: ¿µ¹® | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

µ¥ÀÌÅÍÈ­(Datafication) ½ÃÀåÀÇ Àü³â ½ÃÀå ±Ô¸ð´Â 3,099¾ï 7,000¸¸ ´Þ·¯¿´À¸¸ç, ÇâÈÄ 5³â°£ CAGR 12.42%·Î ÃßÀÌÇÏ¸ç ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, 6,300¾ï 1,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù.

Datafication-Market-IMG1

ÁÖ¿ä ÇÏÀ̶óÀÌÆ®

  • Àü ¼¼°èÀûÀ¸·Î »ý¼ºµÇ´Â µ¥ÀÌÅÍÀÇ ¾çÀÌ ±âÇϱ޼öÀûÀ¸·Î Áõ°¡Çϰí Àֱ⠶§¹®ÀÔ´Ï´Ù. µðÁöÅÐ ±â¼ú, »ç¹°ÀÎÅͳÝ(IoT), ¼Ò¼È ¹Ìµð¾î, ¿Â¶óÀÎ °Å·¡ÀÇ È®»êÀ¸·Î ÀÎÇØ ¸ÅÀÏ ¾öû³­ ¾çÀÇ µ¥ÀÌÅͰ¡ »ý¼ºµÇ°í ÀÖ½À´Ï´Ù.
  • ±â¾÷µéÀº Á¤º¸¿¡ ÀÔ°¢ÇÑ ÀÇ»ç °áÁ¤, ¿î¿µ È¿À²¼º Çâ»ó, °æÀï ¿ìÀ§ È®º¸¿¡ ÀÖ¾î µ¥ÀÌÅÍÀÇ Á߿伺À» ÀνÄÇϰí ÀÖÀ¸¸ç, ÀÌ´Â µ¥ÀÌÅÍÈ­ ½ÃÀåÀÌ ²ÙÁØÈ÷ ¼ºÀåÇÏ´Â ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍ ¼Ò½ºÀÇ È®»ê°ú °í±Þ ºÐ¼® µµ±¸ÀÇ ¹ß´Þ·Î ÀÎÇØ ´Ù¾çÇÑ »ê¾÷ ºÐ¾ßÀÇ ±â¾÷µéÀÌ À¯¿ëÇÑ ÀλçÀÌÆ®¸¦ µµÃâÇϱâ À§ÇØ µ¥ÀÌÅ͸¦ »ç¿ëÇÏ´Â µ¥ ¸·´ëÇÑ ºñ¿ëÀ» ÁöÃâÇϰí ÀÖ½À´Ï´Ù.
  • ¿þ¾î·¯ºí°ú ½º¸¶Æ® ¿Âµµ Á¶Àý±âºÎÅÍ »ê¾÷¿ë ¼¾¼­¿Í ÀÚÀ² ÁÖÇà ÀÚµ¿Â÷¿¡ À̸£±â±îÁö IoT ÀåÄ¡´Â Á¤±âÀûÀ¸·Î µ¥ÀÌÅ͸¦ »ý¼ºÇÕ´Ï´Ù. ½Ç½Ã°£ ¸ð´ÏÅ͸µ, »çÀü ¿¹¹æÀû À¯Áöº¸¼ö, Çâ»óµÈ »ç¿ëÀÚ °æÇèÀº ¸ðµÎ ÀÌ µ¥ÀÌÅ͸¦ Ȱ¿ëÇÕ´Ï´Ù. IoT µ¥ÀÌÅÍ´Â Á¦Á¶, ÀÇ·á, ½º¸¶Æ® ½ÃƼ¿Í °°Àº ºÐ¾ß¿¡¼­ ¿î¿µ°ú ¼­ºñ½º¸¦ °³¼±ÇÏ´Â µ¥ »ç¿ëµË´Ï´Ù.
  • ÆÒµ¥¹ÍÀ¸·Î ÀÎÇØ ±â¾÷µéÀº ¿ø°Ý ±Ù¹«, ¿Â¶óÀÎ ÆÇ¸Å, °¡»ó ¼­ºñ½º¸¦ ºü¸£°Ô µµÀÔÇØ¾ß Çß½À´Ï´Ù. ±× °á°ú µ¥ÀÌÅÍ ºÐ¼®°ú µðÁöÅÐ ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÁöÃâÀ» ´Ã·È½À´Ï´Ù. ±â¾÷ÀÌ µ¥ÀÌÅÍ ±â¹Ý ÀÇ»ç °áÁ¤°ú ¹ÎøÇÑ ºñÁî´Ï½º ¿î¿µÀ» ¿ì¼±½ÃÇÏ´Â ÇÑ, ÀÌ·¯ÇÑ µðÁöÅÐÈ­ Ãß¼¼´Â °è¼ÓµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
  • µ¥ÀÌÅÍÈ­ÀÇ ÃÖÀü¼±Àº Àΰø Áö´É(Al)°ú °í±Þ ºÐ¼®ÀÔ´Ï´Ù. ¸Ó½Å·¯´× ¾Ë°í¸®ÁòÀº ÆÐÅÏÀ» ã°í, °á°ú¸¦ ¿¹ÃøÇϰí, ÀÇ»ç°áÁ¤À» ÀÚµ¿È­Çϱâ À§ÇØ ¹æ´ëÇÑ ¾çÀÇ Á¤º¸¸¦ ºÐ¼®ÇÕ´Ï´Ù. ±ÝÀ¶ ¹× ÀüÀÚ»ó°Å·¡¿Í °°Àº ºÐ¾ß¿¡¼­´Â AI ±â¹Ý ÀλçÀÌÆ®¸¦ »ç¿ëÇÏ¿© °³Àκ° ¸ÂÃã ¼­ºñ½º¸¦ Á¦°øÇϰí, ºñÁ¤»óÀûÀÎ ºÎºÐÀ» ã¾Æ³»¸ç, ÀýÂ÷¸¦ °£¼ÒÈ­ÇÕ´Ï´Ù.
  • ÆÒµ¥¹Í ±â°£ µ¿¾È Àü ¼¼°è Á¶Á÷Àº ÀÇ»ç °áÁ¤, º¹¿ø·Â °­È­, ¿ì¼öÇÑ ¼­ºñ½º Á¦°ø¿¡ ÀÖ¾î µ¥ÀÌÅÍ ºÐ¼®ÀÇ Á߿伺À» ÀνÄÇß½À´Ï´Ù. COVID-19ÀÇ ¿©ÆÄ·Î µ¥ÀÌÅÍÈ­ ½ÃÀåÀº °ß°íÇÑ ¼ºÀå¼¼¸¦ º¸À̰í ÀÖÀ¸¸ç, ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼­ µ¥ÀÌÅÍ ±â¹Ý Àü·«ÀÌ Ç¥ÁØÀ¸·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù. ÀÌ´Â Á¡Á¡ ´õ µ¥ÀÌÅÍ Áß½ÉÀÌ µÇ¾î°¡´Â ¼¼»ó¿¡¼­ È¿°úÀûÀÎ µ¥ÀÌÅÍ °ü¸®¿Í ¾ö°ÝÇÑ °³ÀÎÁ¤º¸ º¸È£°¡ ¾ó¸¶³ª Áß¿äÇÑÁö¸¦ Àß º¸¿©ÁÝ´Ï´Ù.

µ¥ÀÌÅÍÈ­ ½ÃÀå µ¿Çâ

»ý¼ºµÇ´Â µ¥ÀÌÅÍ ¾çÀÇ ÆäÀ̽º

  • Facebook, Twitter, Instagram µîÀÇ ¼Ò¼È ³×Æ®¿öÅ· »çÀÌÆ®¿¡¼­´Â ¸ÅÀÏ ¼ö½Ê¾ï °³ÀÇ °Ô½Ã¹°, »çÁø, µ¿¿µ»óÀÌ ¸¸µé¾îÁö°í ÀÖ½À´Ï´Ù. ¼¾¼­³ª ½º¸¶Æ® °¡Àü°ú °°Àº »ç¹°ÀÎÅͳÝ(IoT) µð¹ÙÀ̽º¿¡¼­´Â Áö¼ÓÀûÀ¸·Î µ¥ÀÌÅÍ ½ºÆ®¸²ÀÌ »ý¼ºµÇ°í ÀÖ½À´Ï´Ù. International Data Corporation(IDC)ÀÇ º¸°í¼­¿¡ µû¸£¸é ÇâÈÄ 3³â±îÁö ¼¼°è¿¡¼­ »ý¼ºµÇ´Â µ¥ÀÌÅÍÀÇ ¾çÀº 163Á¦Å¸¹ÙÀÌÆ®(ZB)¸¦ ÃʰúÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
  • ¸ÅÀÏ »ý¼ºµÇ´Â ¾öû³­ ¾çÀÇ µ¥ÀÌÅÍ·Î ºñÁî´Ï½º Àü·«°ú ¼ÒºñÀÚ °æÇèÀÌ º¯È­Çϰí ÀÖ½À´Ï´Ù. ±â¾÷Àº ÀÌ µ¥ÀÌÅÍÀÇ ±Ý±¤À» Ȱ¿ëÇÏ¿© ¼ÒºñÀÚ Çൿ, ½ÃÀå µ¿Çâ, ¾÷¹« È¿À²¿¡ ´ëÇØ ´õ ±íÀÌ ¾Ë°íÀÚ ÇÕ´Ï´Ù.
  • Netflix ¹× Amazon°ú °°Àº ±â¾÷¿¡¼­´Â °í°´ µ¥ÀÌÅ͸¦ »ç¿ëÇÏ¿© °³ÀÎ ÃßõÀ» ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ µ¥ÀÌÅÍ Áß½ÉÀÇ Àü·«Àº °í°´ÀÇ Çູµµ¸¦ ³ôÀ̸鼭 ¸ÅÃâÀ» ´Ã¸®°í ÀÖ½À´Ï´Ù. ¿þ¾î·¯ºí ÀÇ·á ±â¼ú°ú ÀüÀÚ ÀÇ·á ±â·Ï(EHR)À» ÅëÇØ ¸¹Àº ¾çÀÇ È¯ÀÚ µ¥ÀÌÅͰ¡ »ý¼ºµÇ¾ú½À´Ï´Ù. ÀÌ µ¥ÀÌÅÍ ºÐ¼®À» ÅëÇØ ȯÀÚ °ü¸®¸¦ °³¼±Çϰí Áúº´À» Á¶±â¿¡ ¹ß°ßÇÒ ¼ö ÀÖ½À´Ï´Ù.
  • Á¶Á÷Àº °ú°Å µ¥ÀÌÅ͸¦ ÀÌÇØÇÒ »Ó¸¸ ¾Æ´Ï¶ó °í±Þ ºÐ¼® µµ±¸¿Í ¸Ó½Å·¯´× ¾Ë°í¸®ÁòÀ» »ç¿ëÇÏ¿© ¹Ì·¡ µ¿ÇâÀ» ¿¹ÃøÇÒ ¼ö ÀÖ½À´Ï´Ù. À̸¦ ÅëÇØ Á¶Á÷Àº µ¥ÀÌÅ͸¦ ±â¹ÝÀ¸·Î ÀÇ»ç °áÁ¤À» ³»¸®°í °í°´ °æÇèÀ» °³¼±Çϰí ÇÁ·Î¼¼½º¸¦ °£¼ÒÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù.
  • µ¥ÀÌÅÍ ºÐ¼®Àº ±ÝÀ¶ ºÎ¹®¿¡¼­ ¸®½ºÅ© °ü¸®, ÄÄÇöóÀ̾𽺠º¸Àå ¹× »ç±â °¨Áö °³¼±¿¡ ÇʼöÀûÀÔ´Ï´Ù. µ¥ÀÌÅÍ ºÐ¼®À» ÅëÇØ ±ÝÀ¶ ±â°üÀº ÅõÀÚ¸¦ °ü¸®Çϰí ÃæºÐÇÑ Á¤º¸¸¦ ±â¹ÝÀ¸·Î ´ëÃâ °áÁ¤À» ³»¸®°í Æ÷Æ®Æú¸®¿À¸¦ ±Ø´ëÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀºÇà ¹× ±âŸ ±ÝÀ¶±â°üÀº µ¥ÀÌÅÍ ºÐ¼®À» ÀÌ¿ëÇÏ¿© »ç±â °Å·¡¸¦ ÆÄ¾ÇÇÏ°í ½Å¿ë À§ÇèÀ» Æò°¡ÇÔÀ¸·Î½á ºñ¿ëÀ» Àý¾àÇϰí À繫 ¼Õ½ÇÀ» ÃÖ¼ÒÈ­ÇÕ´Ï´Ù.
  • ±Þ¼ÓÇÑ µµ½ÃÈ­ ¹®Á¦¸¦ ÇØ°áÇÏ·Á¸é µ¥ÀÌÅ͸¦ ±â¹ÝÀ¸·Î ÇÑ µµ½Ã °èȹ°ú ÇàÁ¤ÀÌ ÇÊ¿äÇÕ´Ï´Ù. µµ½Ã´Â ±³Åë ÆÐÅÏ, ¿¡³ÊÁö »ç¿ë, °ø°ø ¼­ºñ½º¿¡ °üÇÑ µ¥ÀÌÅ͸¦ Æò°¡ÇÔÀ¸·Î½á ÀÎÇÁ¶ó¸¦ °³¼±Çϰí, Á¤Ã¼¸¦ ¿ÏÈ­Çϸç, ½Ã¹ÎÀÇ »îÀÇ ÁúÀ» ÇâÃâ½Ãų ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ±³Åë È帧, ¿¡³ÊÁö ¼Òºñ, °ø°ø ¼­ºñ½º¸¦ ÃÖÀûÈ­Çϱâ À§ÇØ ½º¸¶Æ®½ÃƼ ÇÁ·Î±×·¥Àº ±³Åë ¼¾¼­, Ä«¸Þ¶ó, ±â»ó °üÃø¼Ò µî ´Ù¾çÇÑ Ãâó¿¡¼­ µ¥ÀÌÅ͸¦ ¼öÁýÇÕ´Ï´Ù.
Datafication-Market-IMG2

ºÏ¹Ì°¡ Å« Á¡À¯À²À» Â÷ÁöÇÒ Àü¸Á

  • ¼¼°è¿¡¼­ °¡Àå À¯¸íÇÑ ±â¼ú ¼¾ÅÍ Áß ÀϺδ ¹Ì±¹À» Áß½ÉÀ¸·Î ºÏ¹Ì¿¡ ÀÖ½À´Ï´Ù. °Ë»ö ¿£Áø°ú ±¤°í Ç÷§ÆûÀ» °³¼±Çϱâ À§ÇØ ¸ÅÀÏ ÆäŸ¹ÙÀÌÆ® ´ÜÀ§ÀÇ µ¥ÀÌÅ͸¦ ó¸®ÇÏ´Â Google°ú °°Àº ±â¾÷Àº ½Ç¸®ÄÜ ¹ë¸® »ýŰ迡¼­ ž½À´Ï´Ù. Çö±ÝÀ» âÃâÇÒ »Ó¸¸ ¾Æ´Ï¶ó ÀÌ·¯ÇÑ µ¥ÀÌÅÍ ºÐ¼®ÀÇ Áøº¸´Â ±¹Á¦ÀûÀÎ µ¥ÀÌÅÍÈ­ µ¿Çâ¿¡µµ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù.
  • ¸¹Àº ¼Ò½º·ÎºÎÅÍ µ¥ÀÌÅͰ¡ ³Î¸® »ý»êµÇ°í ÀÖ´Â °ÍÀÌ, µ¥ÀÌÅÍÈ­¡¤ºñÁî´Ï½º¿¡ À־ÀÇ ºÏ¹ÌÀÇ ¿ìÀ§¼º¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. IoT´Â ¹Ì±¹ÀÇ ÀÚµ¿Â÷ ºÎ¹®¿¡ ºü¸£°Ô ¹Þ¾Æµé¿©Áö°í ÀÖÀ¸¸ç, ¿òÁ÷ÀÌ´Â ¹°Ã¼¿¡¼­ ½Ç½Ã°£ µ¥ÀÌÅ͸¦ ¼öÁýÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ Á¤º¸´Â Å×½½¶ó¿Í °°Àº ±â¾÷ÀÌ ÀÚÀ² ÁÖÇàÀÇ ±â´É Çâ»óÀ̳ª ¿ø°Ý Áø´Ü¿¡ ÀÌ¿ëÇϰí ÀÖ½À´Ï´Ù. ºÏ¹ÌÀÇ µ¥ÀÌÅÍ »ý»ê¿øÀÇ ¸¹À½Àº ¾ÈÁ¤ÀûÀÎ µ¥ÀÌÅÍ È帧À» º¸ÀåÇϸç, ÀÌ´Â µ¥ÀÌÅÍÈ­ ½ÃÀå¿¡ ÇʼöÀûÀÔ´Ï´Ù.
  • °æÀï ¿ìÀ§¸¦ ¾ò±â À§ÇØ ºÏ¹Ì ±â¾÷Àº µ¥ÀÌÅÍ ºÐ¼®ÀÇ ÈûÀ» ÅëÇÕÇϰí ÀÖ½À´Ï´Ù. ¾÷°è Ç¥ÁØÀÎ AmazonÀÇ Ãßõ ¿£ÁøÀº °í±Þ µ¥ÀÌÅÍ ºÐ¼®À» Ȱ¿ëÇÕ´Ï´Ù. »óǰÀ» ÃßõÇϱâ À§ÇØ ¼ÒºñÀÚÀÇ Çൿ°ú °ú°Å ±¸¸Å ³»¿ªÀ» Á¶»çÇÏ¿© ±â¾÷ ¼öÀÍÀ» Å©°Ô ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ºÏ¹Ì ±â¾÷Àº µ¥ÀÌÅÍ ºÐ¼®ÀÇ Àü¹® Áö½Ä°ú µµ±¸¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖÀ¸¸ç, ±× °á°ú µ¥ÀÌÅÍ ÁÖµµÀÇ »ç°í¹æ½ÄÀÌ Ä§ÅõÇϰí ÀÖ½À´Ï´Ù.
  • ºÏ¹Ì °æÁ¦´Â ´Ù¾ç¼ºÀÌ Ç³ºÎÇϰí, ¿©·¯ ´Ù¸¥ °æÁ¦ ºÎ¹®¿¡ °ÉÃÄ ÀÖÀ¸¸ç, °¢°¢¿¡´Â ´Ù¾çÇÑ µ¥ÀÌÅÍ ¿ä±¸ »çÇ×ÀÌ ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ´Ù¾ç¼ºÀ» ÅëÇØ µ¥ÀÌÅÍÈ­ ½ÃÀåÀÇ ¿ëµµ´Â ÀºÇà, ÀÇ·á, Á¦Á¶, ¿£ÅÍÅ×ÀÎ¸ÕÆ® µî ¾÷°è·Î È®´ëµÇ°í ÀÖ½À´Ï´Ù. ºÏ¹Ì´Â ±¤¹üÀ§ÇÑ ¾÷°è »óȲ¿¡ µû¶ó °¢ ºÐ¾ß¿¡ ´ëÇÑ Çʿ伺¿¡ ƯȭµÈ µ¥ÀÌÅÍ ºÐ¼® ¼Ö·ç¼ÇÀ» ÅëÇØ ¼¼°è µ¥ÀÌÅÍÈ­ ½ÃÀå¿¡¼­ ´õ °­ÇÑ ÁöÀ§¸¦ ±¸ÃàÇϰí ÀÖ½À´Ï´Ù.

µ¥ÀÌÅÍÈ­ »ê¾÷ °³¿ä

µ¥ÀÌÅÍÈ­ ½ÃÀåÀº ¼¼°èÀÇ ÁøÃâ±â¾÷°ú Áö¿ªÀûÀÎ ÁøÃâ±â¾÷ÀÌ È¥ÀçÇϰí Àֱ⠶§¹®¿¡ ½ÃÀå ȯ°æÀº Àû´çÈ÷ ´ÜÆíÈ­µÇ°í ÀÖ½À´Ï´Ù. ±×·¯³ª ´Ù¾çÇÑ ¼Ò±Ô¸ð ÁøÃâ±â¾÷ °£ÀÇ ÅëÇÕ °æÇâÀº ÇöÀúÇÕ´Ï´Ù. ½ÃÀå ÁøÃâ ±â¾÷ÀÇ ´ëºÎºÐÀº Çõ½ÅÀûÀÎ Àü·«À¸·Î °æÀïÀ» °­È­Çϰí ÀÖ½À´Ï´Ù. ÀÌ ½ÃÀåÀÇ ÁÖ¿ä ±â¾÷¿¡´Â IBM Corporation, SAS Institute, Workiva µîÀÌ Æ÷ÇԵ˴ϴÙ.

2023³â 7¿ù, HCLTech´Â HCLTech Advantage Analytics·Î ¾Ë·ÁÁø ȹ±âÀûÀÎ ¼Ö·ç¼ÇÀ» ¹ßÇ¥Çß½À´Ï´Ù. ÀÌ Çõ½ÅÀº AI(ÀΰøÁö´É)¿Í BI(ºñÁî´Ï½º ÀÎÅÚ¸®Àü½º)¸¦ ¿øÈ°ÇÏ°Ô ÅëÇÕÇÏ¿© ±â¾÷¿¡ ±¤¹üÀ§ÇÑ ¼­ºñ½º¸¦ Á¦°øÇÏ´Â °ÍÀ» ¸ñÇ¥·Î ÇÕ´Ï´Ù. ±× ¸ñÀûÀº °í°´ °æÇèÀ» °­È­Çϰí Àü¹ÝÀûÀÎ ºñÁî´Ï½º ¼º°ú¸¦ ÇâÃâ½ÃŰ´Â °ÍÀÔ´Ï´Ù. HCLTech Advantage Analytics´Â AIÀÇ ÈûÀ» Ȱ¿ëÇϰí SnowflakeÀÇ Data Cloud¿Í ¿¬µ¿Çϵµ·Ï ¼³°èµÇ¾ú½À´Ï´Ù. ÀÌ ±â¼ú Á߸³ Ç÷§ÆûÀ» ÅëÇØ HCLTech Advantage Insights´Â SnowflakeÀÇ Data Cloud¿Í ¿øÈ°ÇÏ°Ô ¿¬µ¿ÇÏ¿© ºü¸£°í ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÀÇ»ç °áÁ¤À» °¡´ÉÇÏ°Ô ÇÏ´Â AI¸¦ Ȱ¿ëÇÑ ÅëÂû·ÂÀ» °í°´¿¡°Ô Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù.

2023³â 7¿ù KPM Analytics´Â ±ÙÀû¿Ü¼±(NIR) ºÐ¼®±â SpectraStar XT ½Ã¸®ÁîÀÇ ¿ø°Ý °ü¸®¸¦ À§ÇÑ ¸ÂÃãÇü Ŭ¶ó¿ìµå ±â¹Ý ¿ëµµÀÎ KPMLink¸¦ ¹ßÇ¥Çß½À´Ï´Ù. ÀÌ Çõ½ÅÀûÀÎ µµ±¸¸¦ ÅëÇØ »ç¿ëÀÚ¿Í °ü¸®ÀÚ´Â °¢ µð¹ÙÀ̽ºÀÇ Á¾ÇÕÀûÀÎ Áø´Ü ³»¿ª¿¡ ¾×¼¼½ºÇÒ ¼ö ÀÖ¾î °ÇÀü¼º µ¥ÀÌÅÍ¿¡ ´ëÇÑ È®½ÇÇÑ ÅëÂû·ÂÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ Áß¿äÇÑ µð¹ÙÀ̽ºÀÇ °Ç°­ µ¥ÀÌÅÍ´Â KPMLink¸¦ ÅëÇØ ¿Â»çÀÌÆ®¿Í Ŭ¶ó¿ìµå ¸ðµÎ¿¡ ¾ÈÀüÇÏ°Ô ÀúÀåµÇ¹Ç·Î µ¥ÀÌÅÍ ¹«°á¼ºÀ» º¸ÀåÇÏ°í »ç¿ëÀÚ´Â ½Å·ÚÇÒ ¼ö ÀÖ´Â ÃøÁ¤ µ¥ÀÌÅ͸¦ ±â¹ÝÀ¸·Î ÀÇ»ç °áÁ¤À» ³»¸± ¼ö ÀÖ½À´Ï´Ù.

±âŸ ÇýÅÃ

  • ¿¢¼¿ Çü½Ä ½ÃÀå ¿¹Ãø(ME) ½ÃÆ®
  • 3°³¿ù°£ÀÇ ¾Ö³Î¸®½ºÆ® ¼­Æ÷Æ®

¸ñÂ÷

Á¦1Àå ¼­·Ð

  • Á¶»ç ÀüÁ¦ Á¶°Ç ¹× ½ÃÀå Á¤ÀÇ
  • Á¶»ç ¹üÀ§

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå °³¿ä
  • ¾÷°èÀÇ ¸Å·Âµµ-Porter's Five Forces ºÐ¼®
    • ±¸¸ÅÀÚÀÇ Çù»ó·Â
    • °ø±Þ±â¾÷ÀÇ Çù»ó·Â
    • ½Å±Ô Âü°¡¾÷üÀÇ À§Çù
    • ´ëüǰÀÇ À§Çù
    • °æÀï ±â¾÷°£ °æÀï °ü°è
  • ¾÷°è °¡Ä¡»ç½½ ºÐ¼®
  • ½ÃÀå¿¡ ´ëÇÑ COVID-19ÀÇ ¿µÇâ Æò°¡

Á¦5Àå ½ÃÀå ¿ªÇÐ

  • ½ÃÀå ¼ºÀå ÃËÁø ¿äÀÎ
    • »ý¼ºµÇ´Â µ¥ÀÌÅÍ ¾çÀÇ ¼Óµµ
    • µ¥ÀÌÅͷκÎÅÍ ÅëÂû¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡
  • ½ÃÀå ¼ºÀå ¾ïÁ¦ ¿äÀÎ
    • ¼÷·ÃµÈ ÀÎÀç ºÎÁ·

Á¦6Àå ½ÃÀå ¼¼ºÐÈ­

  • À¯Çüº°
    • Çൿ µ¥ÀÌÅÍÈ­
    • ¼Ò¼È µ¥ÀÌÅÍÈ­
    • Áö¸®°ø°£ µ¥ÀÌÅÍÈ­
    • Æ®·£Àè¼Ç µ¥ÀÌÅÍÈ­
    • ¼¾¼­ µ¥ÀÌÅÍÈ­
  • ¿ëµµº°
    • ºí·ÏüÀÎ
    • AIops
    • ÀÎÁö ÄÄÇ»ÆÃ
    • ¿§Áö ÄÄÇ»ÆÃ
    • FinOps
    • ±âŸ ¿ëµµ
  • ¾÷°èº°
    • BFSI
    • ÀÇ·á
    • IT ¹× Åë½Å
    • Á¤ºÎ ¹× ¹æÀ§
    • ¼Ò¸Å
    • ±âŸ ¾÷°èº°
  • Áö¿ªº°
    • ºÏ¹Ì
    • À¯·´
    • ¾Æ½Ã¾Æ ÅÂÆò¾ç
    • Áß³²¹Ì
    • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦7Àå °æÀï ±¸µµ

  • ±â¾÷ °³¿ä
    • Workiva
    • IBM Corporation
    • Matillion
    • Search Discovery, Inc.
    • Xceptor
    • SAS Institute Inc
    • DataRobot, Inc.
    • Crosser

Á¦8Àå ÅõÀÚ ºÐ¼®

Á¦9Àå ½ÃÀå ±âȸ ¹× ÇâÈÄ µ¿Çâ

LYJ 24.01.31
Datafication - Market - IMG1

The datafication market was valued at USD 309.97 billion in the previous year and is expected to register a CAGR of 12.42%, reaching USD 630.01 billion by the next five years.

Key Highlights

  • Owing to the fact that the amount of data generated worldwide continues to grow exponentially. The proliferation of digital technologies, the Internet of Things (IoT), social media, and online transactions all contribute to the massive daily data volume.
  • Organizations recognize the significance of data in making informed decisions, enhancing operational efficiency, and obtaining a competitive edge, fueling that datafication market's steady expansion. Companies across industries are spending extensively on using data to derive useful insights due to the proliferation of data sources and the development of advanced analytics tools.
  • IoT devices regularly generate data, from wearables and smart thermostats to industrial sensors and self-driving cars. Real-time monitoring, proactive maintenance, and improved user experiences all make use of this data. IoT data is used by sectors like manufacturing, healthcare, and smart cities to improve operations and services.
  • The pandemic compelled businesses to adopt remote work, online sales, and virtual services quickly. As a result, they upped their spending on data analytics and digital infrastructure. As long as businesses prioritize data-driven decision-making and agile business operations, this digitalization trend is anticipated to continue.
  • The forefront of datafication is artificial intelligence (Al) and advanced analytics. In order to find patterns, anticipate outcomes, and automate decision-making, machine learning algorithms analyze massive amounts of information. Sectors like finance and e-commerce use AI-powered insights to give individualized services, spot irregularities, and streamline procedures.
  • During the pandemic, the significance of data analytics in forming decisions, boosting resilience, and offering superior services was acknowledged by organizations worldwide. In the aftermath of COVID-19, the datafication market is experiencing robust growth, with data-driven strategies becoming the norm across a wide spectrum of industries. This underscores the utmost importance of effective data management and stringent privacy safeguards in an increasingly data-centric world.

Datafication Market Trends

The pace at which volume of data being generated

  • Daily, billions of posts, photographs, and videos are created on social networking sites like Facebook, Twitter, and Instagram. Data streams are continuously produced by Internet of Things (IoT) devices like sensors and smart appliances. By the next three years, the amount of data generated globally is anticipated to exceed 163 zettabytes (ZB), as per reports by the International Data Corporation (IDC).
  • Business strategy and consumer experiences are changing due to the sheer volume of data generated every day. Businesses are making use of this data gold mine to learn more about consumer behavior, market trends, and operational efficiency.
  • Personal recommendations are made using client data by businesses like Netflix and Amazon. This data-driven strategy raises sales while enhancing customer happiness. Large amounts of patient data are produced through wearable medical technology and electronic health records (EHRs). This data analysis can result in improved patient care and early disease detection.
  • Organizations can predict future trends using sophisticated analytics tools and machine learning algorithms in addition to understanding historical data. This allows organizations to make data-based decisions, improve client experiences, and streamline processes.
  • Data analytics are essential in the financial sector for managing risks, guaranteeing compliance, and improving fraud detection. It enables institutions to manage investments, make informed lending decisions, and maximize their portfolios. Banks and other financial institutions use data analytics to identify fraudulent transactions and evaluate credit risk, which saves money and minimizes financial losses.
  • Addressing the problems of rapid urbanization requires data-driven urban planning and administration. Cities can improve infrastructure, ease congestion, and improve the quality of life for citizens by evaluating data on traffic patterns, energy use, and public services. Also, to optimize traffic flow, energy consumption, and public services, smart city programs gather data from a variety of sources, including traffic sensors, cameras, and weather stations.
Datafication - Market - IMG2

North America Expected to Witness Significant Share

  • Some of the most well-known technology centers in the world are located in North America, primarily the United States. Companies like Google, which processes petabytes of data daily to improve its search engines and advertising platforms, were born in Silicon Valley's ecosystem. In addition to generating cash, these data analytics advancements also have an impact on international datafication trends.
  • The widespread production of data from many sources contributes to North America's dominance in the datafication business. The IoT is being quickly embraced by the American automotive sector, allowing for the collection of real-time data from moving objects. This information is used by businesses like Tesla to improve the capabilities of autonomous driving and conduct remote diagnostics. The plethora of data production sources in North America guarantees a steady stream of data, which is essential to the market for datafication.
  • To acquire a competitive edge, North American enterprises have embraced the power of data analytics. An industry standard, Amazon's recommendation engine uses advanced data analytics. To make product recommendations, it examines consumer behavior and past purchases, greatly boosting the company's revenue. North American Businesses are heavily invested in data analytics expertise and tools as a result of the data-driven mentality that permeates them.
  • The economy of North America is diverse, spanning several different economic sectors with various data requirements in each. Due to this diversity, the datafication market's application has expanded into industries including banking, health care, manufacturing, and entertainment. Due to its broad industrial landscape, North America has a stronger position in the global datafication market because of data analytics solutions that are specifically adapted to each sector's needs.

Datafication Industry Overview

The datafication market comprises a mix of global and regional players, resulting in a moderately fragmented market landscape. However, there is a noticeable trend towards consolidation among various smaller players. Many market participants are gaining a competitive edge through innovative strategies. Key players in this market include IBM Corporation, SAS Institute, and Workiva, among others.

In July 2023, HCLTech introduced a groundbreaking solution known as HCLTech Advantage Analytics. This innovation aims to offer businesses a wide range of services by seamlessly integrating AI (artificial intelligence) and BI (business intelligence). The objective is to enhance customer experiences and improve overall business outcomes. HCLTech Advantage Analytics harnesses the power of AI and is designed to work in conjunction with Snowflake's Data Cloud. This technology-neutral platform allows HCLTech Advantage Insights to seamlessly interact with Snowflake's Data Cloud, providing clients with AI-infused insights that empower quick and well-informed decision-making.

In July 2023, KPM Analytics unveiled KPMLink, a cloud-based application tailored for the remote management of its SpectraStar XT series Near-Infrared (NIR) analyzers. This innovative tool allows users and management to access comprehensive diagnostic histories for each instrument, ensuring robust health data insights. Furthermore, critical instrument health data is securely stored both on-site and in the cloud through KPMLink, ensuring data integrity and providing users with the confidence to base their decisions on reliable measurement data.

Additional Benefits:

  • The market estimate (ME) sheet in Excel format
  • 3 months of analyst support

TABLE OF CONTENTS

1 INTRODUCTION

  • 1.1 Study Assumptions and Market Definition
  • 1.2 Scope of the Study

2 RESEARCH METHODOLOGY

3 EXECUTIVE SUMMARY

4 MARKET INSIGHTS

  • 4.1 Market Overview
  • 4.2 Industry Attractiveness - Porter's Five Forces Analysis
    • 4.2.1 Bargaining Power of Buyers
    • 4.2.2 Bargaining Power of Suppliers
    • 4.2.3 Threat of New Entrants
    • 4.2.4 Threat of Substitutes
    • 4.2.5 Intensity of Competitive Rivalry
  • 4.3 Industry Value Chain Analysis
  • 4.4 Assessment of the Impact of COVID-19 on the Market

5 MARKET DYNAMICS

  • 5.1 Market Drivers
    • 5.1.1 The pace at which volume of data being generated.
    • 5.1.2 The growing demand for insights from data
  • 5.2 Market Restraints
    • 5.2.1 Lack of Skilled Resources

6 MARKET SEGMENTATION

  • 6.1 By Type
    • 6.1.1 Behavioral Datafication
    • 6.1.2 Social Datafication
    • 6.1.3 Geospatial Datafication
    • 6.1.4 Transactional Datafication
    • 6.1.5 Sensor Datafication
  • 6.2 By Application
    • 6.2.1 Blockchain
    • 6.2.2 AIops
    • 6.2.3 Cognitive Computing
    • 6.2.4 Edge Computung
    • 6.2.5 FinOps
    • 6.2.6 Other Applications
  • 6.3 By End-user Vertical
    • 6.3.1 BFSI
    • 6.3.2 Healthcare
    • 6.3.3 IT &Telecom
    • 6.3.4 Government and defense
    • 6.3.5 Retail
    • 6.3.6 Other End-user Verticals
  • 6.4 By Geography
    • 6.4.1 North America
    • 6.4.2 Europe
    • 6.4.3 Asia-Pacific
    • 6.4.4 Latin Amerca
    • 6.4.5 Middle East & Africa

7 COMPETITIVE LANDSCAPE

  • 7.1 Company Profiles
    • 7.1.1 Workiva
    • 7.1.2 IBM Corporation
    • 7.1.3 Matillion
    • 7.1.4 Search Discovery, Inc.
    • 7.1.5 Xceptor
    • 7.1.6 SAS Institute Inc
    • 7.1.7 DataRobot, Inc.
    • 7.1.8 Crosser

8 INVESTMENT ANALYSIS

9 MARKET OPPORTUNITIES AND FUTURE TRENDS

»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦