½ÃÀ庸°í¼­
»óǰÄÚµå
1435869

ÀÚÀ²Çü µ¥ÀÌÅÍ Ç÷§Æû : ½ÃÀå Á¡À¯À² ºÐ¼®, ¾÷°è µ¿Çâ°ú Åë°è, ¼ºÀå ¿¹Ãø(2024-2029³â)

Autonomous Data Platform - Market Share Analysis, Industry Trends & Statistics, Growth Forecasts (2024 - 2029)

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Mordor Intelligence | ÆäÀÌÁö Á¤º¸: ¿µ¹® | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

ÀÚÀ²Çü µ¥ÀÌÅÍ Ç÷§Æû ½ÃÀå ±Ô¸ð´Â 2024³â¿¡ 17¾ï 7,000¸¸ ´Þ·¯·Î ÃßÁ¤µÇ°í 2029³â±îÁö 44¾ï 6,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖÀ¸¸ç, ¿¹Ãø ±â°£(2024-2029³â) Áß 20.33%ÀÇ CAGR·Î ¼ºÀåÇÕ´Ï´Ù.

ÀÚÀ²Çü µ¥ÀÌÅÍ Ç÷§Æû- ½ÃÀå

ÀÎÁö ÄÄÇ»ÆÃ ±â¼ú°ú °í±Þ ºÐ¼®ÀÇ µµÀÔÀÌ Áõ°¡ÇÏ°í º¹ÀâÇÏ°í ºñÁ¤ÇüÈ­µÈ µ¥ÀÌÅÍÀÇ ¾çÀÌ Áõ°¡Çϸ鼭 ½ÃÀå ¼ºÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. Àü ¼¼°è¿¡¼­ »ç¶÷µéÀº ÇâÈÄ ¼ö³â°£ ¹ßÀüÇÒ Á¤º¸¸¦ ±³È¯Çϰí ÀÖ½À´Ï´Ù. Domo Inc.´Â 2020³â ¸»±îÁö Áö±¸»óÀÇ ¸ðµç »ç¶÷¿¡ ´ëÇØ ÃÊ´ç 1.7MBÀÇ µ¥ÀÌÅͰ¡ »ý¼ºµÉ °ÍÀ¸·Î ÃßÁ¤Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ Áß¼Ò±â¾÷ÀÇ ÀÚÀ² µ¥ÀÌÅÍ Ç÷§Æû¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿Í Ŭ¶ó¿ìµå ±â¼ú µµÀÔÀÇ °¡¼ÓÈ­´Â ÀÌ ½ÃÀåÀÇ ¼ºÀåÀ» °áÁ¤Áþ´Â ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù.

ÁÖ¿ä ÇÏÀ̶óÀÌÆ®

  • ºòµ¥ÀÌÅÍ´Â ¿À´Ã³¯ ±â¾÷ÀÌ ³Î¸® »ç¿ëÇÏ´Â ±â¼ú Áß Çϳª·Î ¹àÇôÁ³½À´Ï´Ù. ÀÚÀ² µ¥ÀÌÅÍ Ç÷§ÆûÀº ºòµ¥ÀÌÅÍ ÀÎÇÁ¶ó¸¦ Á¦¾îÇϰí ÃÖÀûÈ­ÇÕ´Ï´Ù. SalesforceÀÇ ÃֽмîÇÎ Áö¼ö¿¡ µû¸£¸é µðÁöÅÐ »ó°Å·¡´Â 2018³â 4ºÐ±â¿¡ Àü³â µ¿±â ´ëºñ 13% ¼ºÀåÇßÀ¸¸ç, 2020³â±îÁö ¼Ò¸Å E-Commerce ¸ÅÃâÀº 4Á¶ ´Þ·¯ ÀÌ»ó¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¹Ì±¹ Àα¸ Á¶»ç±¹ÀÇ º¸°í¼­¿¡ µû¸£¸é 87% 2019³â µðÁöÅРä³Î¿¡¼­ °Ë»öÀ» ½ÃÀÛÇÑ ¹Ì±¹ °í°´ÀÇ ºñÀ²Àº Àü³âµµ 71%¿¡¼­ Áõ°¡Çß½À´Ï´Ù. À̸¦ À§Çؼ­´Â Ŭ¶ó¿ìµåÀÇ ºòµ¥ÀÌÅÍ ¼­ºñ½º Ȱ¿ëÀ» °­È­ÇØ¾ß ÇÕ´Ï´Ù.
  • ±â¼úÀÌ °¡Á®´ÙÁÖ´Â ÀÌÁ¡À¸·Î ÀÎÇØ Ŭ¶ó¿ìµå ÄÄÇ»ÆÃÀÇ µµÀÔÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. Æ÷ºê½º(Forbes)¿¡ µû¸£¸é Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ ½ÃÀåÀº 2020³â±îÁö 1,600¾ï ´Þ·¯ ±Ô¸ð·Î ¼ºÀåÇÏ¿© 19%ÀÇ ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Ŭ¶ó¿ìµå ±â¹Ý µµÀÔÀº ¿¹Ãø ±â°£ Áß Å« ÆøÀÇ ¼ºÀåÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Ŭ¶ó¿ìµå Ç÷§ÆûÀÌ Á¦°øÇÏ´Â Çù¾÷, È®À强, ºñ¿ë È¿À²¼ºÀÌ °­È­µÇ¸é¼­ Ŭ¶ó¿ìµå ±â¹Ý ÀÚÀ²Çü µ¥ÀÌÅÍ Ç÷§Æû¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
  • ÀÎÅͳÝÀÇ º¸±ÞÀ¸·Î ÀÎÇØ Àåºñ¿Í ÀÚÀ²ÀûÀÎ µ¥ÀÌÅÍ ÅøÀÇ ¼ö°¡ Áõ°¡ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ µ¥ÀÌÅÍ Áõ°¡ÀÇ ÁÖ¿ä ÀÌÀ¯´Â ÀÎÅͳݿ¡ ÀÖ½À´Ï´Ù. Cisco VNI º¸°í¼­¿¡ µû¸£¸é 2022³â ÀÎÅÍ³Ý °¡ÀÔÀÚ´Â ¾à 48¾ï ¸íÀ¸·Î Àü ¼¼°è Àα¸ÀÇ 60%¸¦ ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Cisco VNI Global IP Traffic Forecast¿¡ µû¸£¸é µ¥ÀÌÅÍ ¼Òºñ Áõ°¡ÀÇ ¶Ç ´Ù¸¥ Áß¿äÇÑ ¿äÀÎÀº Àü ¼¼°è Æò±Õ Wi-Fi ¼Óµµ Áõ°¡·Î, ¾Æ½Ã¾ÆÅÂÆò¾ç¿¡¼­´Â 2022³â¿¡ 2017³â¿¡ ºñÇØ 2¹è ÀÌ»ó Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
  • ±×·¯³ª º¹ÀâÇÑ ºÐ¼® ÇÁ·Î¼¼½º, ¼÷·ÃµÇ°í ÈÆ·ÃµÈ Àü¹®°¡ ºÎÁ·, ǰÁú ¹× ¾ÈÀü µ¿±âÈ­ À¯Áö¿Í °ü·ÃµÈ ¹®Á¦°¡ ÀÌ ½ÃÀåÀÇ ¼ºÀåÀ» Á¦ÇÑÇÏ´Â ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÎÁö ÄÄÇ»ÆÃ ±â¼úÀÇ ÀαⰡ ³ô¾ÆÁö°í °í±Þ ºÐ¼®¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ½ÃÀå ¼ºÀå¿¡ ÃæºÐÇÑ ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù.
  • ºòµ¥ÀÌÅÍ ºÐ¼® »ê¾÷, ³ª¾Æ°¡ ÀÚÀ²Çü µ¥ÀÌÅÍ Ç÷§Æû ½ÃÀå¿¡ ´ëÇÑ COVID-19ÀÇ ¿µÇâÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ÁÖ¿ä ¿äÀÎÀº µðÁöÅÐ Çõ½Å¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, ºÐ¼®¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡, ¿ø°Ý ¼­ºñ½º ¹× À§Ä¡ µ¥ÀÌÅÍ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, ½ÇÁ¦ µ¥ÀÌÅÍ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡ µîÀÔ´Ï´Ù. ¼ö¿ä Áõ°¡ÀÔ´Ï´Ù. ½Ã°£ Á¤º¸´Â COVID-19ÀÇ È®»êÀ» ÃßÀûÇÏ°í ¸ð´ÏÅ͸µÇÕ´Ï´Ù.
  • ƯÈ÷ COVID-19 ÆÒµ¥¹Í »óȲ¿¡¼­ ÀÌ·¯ÇÑ ÀÎÅÚ¸®Àü½º¸¦ °ÅÀÇ ½Ç½Ã°£À¸·Î ÃßÃâ, ½Ã°¢È­, ½ÇÇàÇØ¾ß ÇÒ Çʿ伺ÀÌ Á¡Á¡ ´õ ¹Ì¼Ç Å©¸®Æ¼ÄÃÇÑ ¸ñÇ¥°¡ µÇ°í ÀÖÀ¸¸ç, ÀÌ´Â °¨¿° È®»êÀ» ¸·°í ±â¾÷ÀÇ »ýÁ¸À» Áö¿øÇϱâ À§ÇÑ ³ë·Â¿¡ ÈûÀ» ½Ç¾îÁÖ°í ÀÖ½À´Ï´Ù.

ÀÚÀ²Çü µ¥ÀÌÅÍ Ç÷§Æû ½ÃÀå µ¿Çâ

¼Ò¸Å¾÷Àº Å« ÆøÀÇ ¼ºÀå¼¼¸¦ ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»ó

  • ÀÎÅÍ³Ý »ç¿ëÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ¼Ò¸Å ¾÷°è´Â °í°´ Áß½ÉÀ¸·Î º¯È­Çϰí ÀÖ½À´Ï´Ù. ±â¼úÀÇ ¹ßÀüÀº ÀÌ »ê¾÷¿¡¼­µµ ¼ÒºñÀÚ ÇൿÀÇ º¯È­¸¦ °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ±× °á°ú, ÀÚÀ² µ¥ÀÌÅÍ Ç÷§ÆûÀº ¼Ò¸Å ¾÷°èÀÇ Áß¿äÇÑ ºÎºÐÀ¸·Î ÀÚ¸® Àâ¾Ò°í, ¼Ò¸Å¾÷üµéÀÌ Ä¡¿­ÇÑ °æÀï ½ÃÀå¿¡¼­ °í°´ Ãæ¼ºµµ¸¦ ³ôÀÏ ¼ö ÀÖµµ·Ï µ½°í ÀÖ½À´Ï´Ù. ÀÌ Ç÷§ÆûÀº ¼Ò¸Å¾÷ü°¡ °í°´ÀÇ ¼îÇÎ ¿©Á¤À» ½Ç½Ã°£À¸·Î ÃßÀûÇÏ´Â µ¥ µµ¿òÀÌ µÇ¸ç, ¼Ò¸Å¾÷ü°¡ °í°´ÀÇ ¿ä±¸¿Í ¿ä±¸ »çÇ×À» ÀÌÇØÇϰí ÀÌ¿¡ ´ëÀÀÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù.
  • ºòµ¥ÀÌÅÍ´Â AI¸¦ °­È­Çϱ⠶§¹®¿¡ AI´Â ¾ÕÀ¸·Îµµ ¼Ò¸Å ¹× ¼ÒºñÀç »ê¾÷¿¡ °è¼Ó ÁøÃâÇÒ °ÍÀÔ´Ï´Ù. Àü ¼¼°è ¸¹Àº ºòµ¥ÀÌÅÍ ±â¾÷Àº ¸¶ÄÉÆÃ ´ã´çÀÚ, ¼Ò¸Å¾÷ü, E-Commerce ±â¾÷ÀÇ µ¥ÀÌÅÍ °ü¸®¸¦ Áö¿øÇÏ¿© °í°´ Âü¿©¸¦ °³ÀÎÈ­Çϰí, Àç°í¸¦ ¿¹ÃøÇϰí, Áö¿ª³» °í°´À» ¼¼ºÐÈ­ÇÒ ¼ö ÀÖ´Ù°í ÁÖÀåÇϰí ÀÖ½À´Ï´Ù.
  • MapR Technologies´Â ¼Ò¸Å¾÷ü°¡ E-Commerce, POS(Point of Sale) ½Ã½ºÅÛ, Ŭ¸¯ ½ºÆ®¸² µ¥ÀÌÅÍ, À̸ÞÀÏ, ¼Ò¼È¹Ìµð¾î, ÀüÈ­, À̸ÞÀÏ, ¼Ò¼È¹Ìµð¾î, ÀüÈ­ µî ´Ù¾çÇÑ ¿Â¶óÀÎ ¹× ¿ÀÇÁ¶óÀÎ °í°´ µ¥ÀÌÅ͸¦ ÀúÀå, ÅëÇÕ, ºÐ¼®ÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÏ´Â ÀÚÀ²Çü µ¥ÀÌÅÍ Ç÷§ÆûÀ» Á¦°øÇÕ´Ï´Ù. Ç÷§ÆûÀ» Á¦°øÇÕ´Ï´Ù. ¼¾ÅÍ ·¹ÄÚµå - ¸ðµç °ÍÀÌ ÇϳªÀÇ Áß¾Ó ÀúÀå¼Ò¿¡ ÀÖ½À´Ï´Ù. ¿ù¸¶Æ®´Â µðÁöÅÐ Çõ½ÅÀ» °æÇèÇϰí ÀÖ½À´Ï´Ù. ÇöÀç ¼¼°è¿¡¼­ °¡Àå Å« ±Ô¸ðÀÇ ÇÁ¶óÀ̺ø Ŭ¶ó¿ìµå ½Ã½ºÅÛÀ» °³¹ß ÁßÀ̸ç, ½Ã°£´ç 2.5ÆäŸ¹ÙÀÌÆ®ÀÇ µ¥ÀÌÅ͸¦ °ü¸®ÇÒ ¼ö ÀÖ´Â °ÍÀ¸·Î ¾Ë·ÁÁ® ÀÖ½À´Ï´Ù.
  • IBM¿¡ µû¸£¸é ¼Ò¸Å¾÷üÀÇ 62%°¡ ºòµ¥ÀÌÅÍ »ç¿ëÀÌ °æÀï ¿ìÀ§¸¦ °¡Á®´Ù ÁØ´Ù°í ´äÇß½À´Ï´Ù. ¾÷°è´Â ¿¹Ãø ±â°£ Áß ºòµ¥ÀÌÅÍ ±â¼ú äÅÃÀÌ Å©°Ô Áõ°¡ÇÏ¿© ÀÚÀ² µ¥ÀÌÅÍ Ç÷§Æû ½ÃÀå ¼ºÀå¿¡ ±àÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óÇϰí ÀÖ½À´Ï´Ù.
  • ¼Ò¸Å ¾÷°è´Â ´Ù¾çÇÑ ¼Ò½º¿¡¼­ ±¸Á¶È­µÈ µ¥ÀÌÅÍ¿Í ºñÁ¤Çü µ¥ÀÌÅ͸¦ Æ÷ÇÔÇÑ ´Ù¾çÇÑ À¯ÇüÀÇ µ¥ÀÌÅ͸¦ ½Ç½Ã°£À¸·Î ¼öÁýÇÒ ¼ö ÀÖ´Â °­·ÂÇÑ ÀÚÀ² µ¥ÀÌÅÍ Ç÷§ÆûÀÌ ÇÊ¿äÇÕ´Ï´Ù. ¾÷°è°¡ Á÷¸éÇÑ Áß¿äÇÑ °úÁ¦¿¡´Â ¿È´Ïä³Î °æÇè°ú ¼ÒºñÀÚ ½Ç½Ã°£ ÃßÀû¿¡ ´ëÇÑ ¿ä±¸°¡ Æ÷ÇԵ˴ϴÙ. ÀÚÀ² µ¥ÀÌÅÍ Ç÷§Æû°ú ¼­ºñ½º´Â ÀÌ·¯ÇÑ °úÁ¦¿¡ È¿À²ÀûÀ¸·Î ´ëÀÀÇÏ´Â µ¥ µµ¿òÀÌ µÇ±â ¶§¹®¿¡ ÇâÈÄ ¼ö³â°£ ¼Ò¸Å¾÷üµéÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ºÏ¹Ì°¡ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷Áö

  • ºÏ¹Ì¿¡¼­ ÀÎÅͳݰú ¸ð¹ÙÀÏ ±â±âÀÇ ±¤¹üÀ§ÇÑ º¸±ÞÀº ±â¾÷ÀÌ ÀÌ Áö¿ªÀÇ Ã¤³Î ÆÄÆ®³Ê, °í°´ ¹× ±âŸ ÀÌÇØ°ü°èÀÚµé°ú Á¢ÃËÇÒ ¼ö ÀÖ´Â °¡´É¼ºÀ» ¿­¾îÁÖ¾ú½À´Ï´Ù. ºñÁî´Ï½º ÆÄÆ®³Ê ¹× °í°´°ú ¿¬°áÇÏ°í °í°´ÀÇ ºñÁî´Ï½º ¿ä±¸¿¡ µû¶ó ¸ÂÃãÇü ÄÁÅÙÃ÷¸¦ Á¦°øÇϱâ À§ÇÑ ¸ð¹ÙÀÏ Àåºñ ¹× ¼Ò¼È¹Ìµð¾î Ç÷§ÆûÀÇ º¸±ÞÀ¸·Î ±â¾÷Àº ÀÚÀ² µ¥ÀÌÅÍ Ç÷§Æû ¹× ¼­ºñ½º¸¦ äÅÃÇÏ°Ô µÇ¾ú½À´Ï´Ù. µµÀÔÇϰí ÀÖ½À´Ï´Ù.
  • ¹Ì±¹ ´Ù±¹Àû ±â¾÷ÀÎ ÀÎÅÚÀº ºòµ¥ÀÌÅÍ¿¡¼­ ÀÇ¹Ì ÀÖ´Â °¡Ä¡¸¦ ¹ß°ßÇß½À´Ï´Ù. ÀÌ È¸»ç´Â ºòµ¥ÀÌÅ͸¦ Ȱ¿ëÇÏ¿© ĨÀ» ´õ ºü¸£°Ô °³¹ßÇϰí, Á¦Á¶ °áÇÔÀ» ÀνÄÇϰí, º¸¾È À§Çù¿¡ ´ëÇÑ Á¤º¸¸¦ Á¦°øÇÕ´Ï´Ù. ºòµ¥ÀÌÅ͸¦ ÅëÇØ ÀÎÅÚÀº ¿¹Ãø ºÐ¼®À» ¿ëÀÌÇÏ°Ô Çϰí ǰÁúÀ» Çâ»ó½ÃŰ¸é¼­ ǰÁú º¸Áõ ÁöÃâÀ» ¾à 3,000¸¸ ´Þ·¯ Àý°¨ÇÒ ¼ö ÀÖ¾ú½À´Ï´Ù. ¹é¾Ç°üµµ ºòµ¥ÀÌÅÍ ÇÁ·ÎÁ§Æ®¿¡ ¾à 2¾ï ´Þ·¯¸¦ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÌ ±¹°¡¿¡´Â Á¶»ç ´ë»ó ½ÃÀå¿¡ ´ëÇÑ Àü¹®°¡°¡ ¸¹À¸¸ç, ¿¹Ãø ±â°£ Áß ¼ºÀåÇÒ ÀáÀç·ÂÀÌ Å®´Ï´Ù.
  • ¹Ì±¹ ¼Ò¸Å¾÷üÀÇ ¼ºÀåÀº °ø±Þ¸Á °ü¸®¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÃËÁøÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, °í°´ °æÇèÀ» °³¼±Çϱâ À§ÇØ ¿­½ÉÈ÷ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù. ºòµ¥ÀÌÅÍ ¿ëµµ°ú ÀÚÀ² µ¥ÀÌÅÍ Ç÷§ÆûÀº µÎ °¡Áö¸¦ ¸ðµÎ ´Þ¼ºÇÏ´Â µ¥ µµ¿òÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ¹Ì±¹ »ó¹«ºÎ°¡ ¹ßÇ¥ ÇÑ ºÐ±âº° E-Commerce Åë°è¿¡ µû¸£¸é °í°´Àº 2019³â¹Ì±¹ ÆÇ¸ÅÀÚ¿Í ¿Â¶óÀÎÀ¸·Î 6,017¾ï 5 ,000¸¸ ´Þ·¯¸¦ ÁöÃâÇÏ¿© Àü³âµµ 5,236¾ï 4 ,000¸¸ ´Þ·¯¿¡¼­ 14.9% Áõ°¡ÇÏ¿© ¿Â¶óÀÎ ¸ÅÃâÀ̺¸°íµÈ 2018³âº¸´Ù ´õ ³ôÀº ¼ºÀå·üÀ» ±â·ÏÇß½À´Ï´Ù. º¸°íµÈ 2018³âº¸´Ù ³ôÀº ¼ºÀå·üÀÔ´Ï´Ù. »ó¹«ºÎ´Â Àü³â ´ëºñ 13.6% Áõ°¡Çß´Ù°í ¹àÇû½À´Ï´Ù. ÀÌ¿¡ µû¶ó ¹Ì±¹ ¼Ò¸Å¾÷üµéÀÇ ºòµ¥ÀÌÅÍ »ç¿ë, ³ª¾Æ°¡ ÀÚÀ² µ¥ÀÌÅÍ Ç÷§ÆûÀÇ »ç¿ëµµ Å©°Ô Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
  • ±â¾÷Àº ¸Ó½Å·¯´× ±â¼ú ±â¹Ý ¼ÒÇÁÆ®¿þ¾î ¹× ¼­ºñ½º¸¦ »ç¿ëÇÏ¿© °¡Àå ½Å·ÚÇÒ ¼ö ÀÖ´Â ÃÖÁ¾»ç¿ëÀÚ °æÇèÀ» Á¦°øÇϰí ÃÖ°íÀÇ ¼­ºñ½º¸¦ Á¦°øÇÏ´Â µ¥ ÁßÁ¡À» µÎ°í ÀÖ½À´Ï´Ù. ±×µéÀº ÀÚÀ² µ¥ÀÌÅÍ Ç÷§ÆûÀ» Ȱ¿ëÇÏ¿© °í°´ °ü·Ã µ¥ÀÌÅ͸¦ ºÐ¼®ÇÏ¿© °í°´ÀÇ ±¸¸Å Çൿ, °èÀýÀû ¼ö¿ä, Á¦Ç° ¼ö¿ä¿Í °°Àº ¸Å°³ º¯¼ö¸¦ ã½À´Ï´Ù. µ¶¸³ÀûÀÎ µ¥ÀÌÅÍ Ç÷§ÆûÀÇ ÃâÇöÀ¸·Î ¸¶ÄÉÆÃ ´ã´çÀÚ´Â ´Ù¾çÇÑ ¼Ò½ºÀÇ °í°´ µ¥ÀÌÅ͸¦ ÇϳªÀÇ Ç÷§Æû¿¡¼­ Áß¾Ó ÁýÁß½ÄÀ¸·Î °ü¸®ÇÒ ¼ö ÀÖÀ¸¸ç, ÅëÇÕ ÀÛ¾÷¿¡ ¼Ò¿äµÇ´Â ½Ã°£À» Àý¾àÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÚÀ²Çü µ¥ÀÌÅÍ Ç÷§Æû »ê¾÷ °³¿ä

ÀÚÀ²Çü µ¥ÀÌÅÍ Ç÷§Æû ½ÃÀå¿¡´Â IBM, Microsoft, Teradata Corporation µî ½ÃÀåÀ» µ¶Á¡Çϰí ÀÖ´Â ÁÖ¿ä ·¹°Å½Ã ±â¾÷ÀÌ ÁýÁߵǾî ÀÖ½À´Ï´Ù. ±â¾÷Àº Á÷¿ø°ú °í°´ÀÇ µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã¿Í °ü¸®¿¡ ´ëÇÑ ¿ì·Á·Î ÀÎÇØ ½Å±Ô ½ÃÀå ÁøÃâ±â¾÷º¸´Ù ±âÁ¸ º¥´õ¸¦ ´õ ½Å·ÚÇÕ´Ï´Ù. µ¥ÀÌÅÍ ±ÞÁõÀ¸·Î ÀÎÇØ Oracle, ¸Ê¾Ë, AWS¿Í °°Àº µ¥ÀÌÅÍ °ü¸® Ç÷§Æû ¾÷üµéÀº IT ÆÀÀÇ ÇÁ·Î¼¼½º °£¼ÒÈ­ ¹× °ü¸®¸¦ Áö¿øÇÏ´Â ÀÚÀ² µ¥ÀÌÅÍ Ç÷§ÆûÀÇ °³¹ß ¹× ¼³°è¸¦ ÃßÁøÇϰí ÀÖ½À´Ï´Ù. ÀÚÀ² µ¥ÀÌÅÍ Ç÷§Æû Á¦°ø ¾÷üµéÀº ½ÃÀå ¹üÀ§¸¦ È®ÀåÇÏ°í »õ·Î¿î ½ÃÀå¿¡¼­ÀÇ ÀÔÁö¸¦ °­È­Çϱâ À§ÇØ ¼­·Î °æÀïÇϰí ÀÖ½À´Ï´Ù.

  • 2020³â 6¿ù - ¼±µµÀûÀÎ ÆÄÀ̽㠵¥ÀÌÅÍ »çÀ̾𽺠Ç÷§Æû ÇÁ·Î¹ÙÀÌ´õÀÎ ¾Æ³ªÄÜ´Ù(Anaconda, Inc.)¿Í IBM ¿Ó½¼(IBM Watson)ÀÌ ±â¾÷ÀÇ AI ¿ÀǼҽº ±â¼ú µµÀÔÀ» °£¼ÒÈ­Çϱâ À§ÇÑ »õ·Î¿î ÆÄÆ®³Ê½ÊÀ» ¹ßÇ¥Çß½À´Ï´Ù. ¾ç»ç´Â Çù·ÂÀ» ÅëÇØ Çõ½ÅÀ» ÃËÁøÇÏ°í ¸¹Àº ±â¾÷ÀÌ Á÷¸éÇÑ AI ¹× µ¥ÀÌÅÍ °úÇÐ ±â¼ú °ÝÂ÷¸¦ ÇØ¼ÒÇϱâ À§ÇØ Çù·ÂÇÒ °èȹÀÔ´Ï´Ù. Anaconda Team Edition ¸®Æ÷ÁöÅ丮´Â IBM Cloud Pak for DataÀÇ IBM Watson Studio¿Í ÅëÇյǾî Á¶Á÷ÀÌ ¸ðµç Ŭ¶ó¿ìµå¿¡¼­ AI ¿ÀǼҽº ±â¼ú µµÀÔÀ» ´õ Àß °ü¸®ÇÏ°í °¡¼ÓÈ­ÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÕ´Ï´Ù.
  • 2020³â 2¿ù - OracleÀº Oracle Ŭ¶ó¿ìµå µ¥ÀÌÅÍ »çÀ̾𽺠Ç÷§Æû(Oracle Cloud Data Science Platform)ÀÇ °¡¿ë¼ºÀ» ¹ßÇ¥Çß½À´Ï´Ù. ±× ÇÙ½ÉÀº Oracle Cloud Infrastructure Data Science·Î, ±â¾÷ÀÌ ¸Ó½Å·¯´× ¸ðµ¨À» °øµ¿À¸·Î ±¸Ãà, ±³À°, °ü¸® ¹× ¹èÆ÷ÇÏ¿© µ¥ÀÌÅÍ °úÇÐ ÇÁ·ÎÁ§Æ®ÀÇ ¼º°øÀ» ÃËÁøÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÏ´Â Oracle Cloud Infrastructure Data Science, °øÀ¯ ÇÁ·ÎÁ§Æ®, ¸ðµ¨ īŻ·Î±×, ÆÀ º¸¾È Á¤Ã¥, ÀçÇö¼º, °¨»ç °¡´É¼º µîÀ» Á¦°øÇÕ´Ï´Ù.

±âŸ ÇýÅÃ

  • ¿¢¼¿ Çü½ÄÀÇ ½ÃÀå ¿¹Ãø(ME) ½ÃÆ®
  • 3°³¿ù°£ÀÇ ¾Ö³Î¸®½ºÆ® Áö¿ø

¸ñÂ÷

Á¦1Àå ¼­·Ð

  • Á¶»çÀÇ ÀüÁ¦Á¶°Ç°ú ½ÃÀåÀÇ Á¤ÀÇ
  • Á¶»ç ¹üÀ§

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå ¿ªÇÐ

  • ½ÃÀå °³¿ä
  • ½ÃÀå ÃËÁø¿äÀÎ
    • ÀÎÁöÄÄÇ»ÆÃ Å×Å©³î·¯Áö¿Í ÷´Ü ºÐ¼®ÀÇ Ã¤Åà Ȯ´ë
    • »óÈ£ Á¢¼ÓµÈ µð¹ÙÀ̽º¿Í ¼Ò¼È¹Ìµð¾îÀÇ °æÀÌ·Î¿î ¼ºÀå¿¡ ÀÇÇÑ ºñ±¸Á¶È­ µ¥ÀÌÅÍÀÇ ¾ç Áõ´ë
  • ½ÃÀå ¾ïÁ¦¿äÀÎ
    • ¼÷·Ã Àü¹®°¡ ¼­ºñ½º¸¦ ÇÊ¿ä·Î ÇÏ´Â º¹ÀâÇÑ ºÐ¼® ÇÁ·Î¼¼½º
  • ¾÷°èÀÇ ¸Å·Â - Porter's Five Forces ºÐ¼®
    • ½Å±Ô ÁøÃâ¾÷üÀÇ À§Çù
    • ±¸¸ÅÀÚÀÇ ±³¼··Â
    • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
    • ´ëüǰÀÇ À§Çù
    • °æÀï ±â¾÷°£ °æÀïÀÇ °­µµ
  • ¾÷°èÀÇ ¹ë·ùüÀÎ ºÐ¼®
  • COVID-19°¡ ÀÚÀ²Çü µ¥ÀÌÅÍ Ç÷§Æû ½ÃÀå¿¡ ¹ÌÄ¡´Â ¿µÇâÀÇ ºÐ¼®

Á¦5Àå ½ÃÀå ¼¼ºÐÈ­

  • Á¶Á÷ ±Ô¸ðº°
    • ´ë±â¾÷
    • Áß¼Ò±â¾÷
  • µµÀÔ À¯Çüº°
    • ÆÛºí¸¯ Ŭ¶ó¿ìµå
    • ÇÁ¶óÀ̺ø Ŭ¶ó¿ìµå
    • ÇÏÀ̺긮µå Ŭ¶ó¿ìµå
  • ÃÖÁ¾»ç¿ëÀÚ ¾÷Á¾º°
    • BFSI
    • ÇコÄɾî¿Í »ý¸í°úÇÐ
    • ¼Ò¸Å ¹× ¼ÒºñÀç
    • ¹Ìµð¾î¿Í Åë½Å
    • ±âŸ ÃÖÁ¾»ç¿ëÀÚ ¾÷Á¾(Á¤ºÎ±â°ü, Á¦Á¶¾÷)
  • Áö¿ª
    • ºÏ¹Ì
    • À¯·´
    • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ¶óƾ¾Æ¸Þ¸®Ä«
    • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦6Àå °æÀï ±¸µµ

  • ±â¾÷ °³¿ä
    • Oracle Corporation
    • International Business Machines Corporation
    • Amazon Web Services
    • Teradata Corporation
    • Qubole Inc
    • MapR Technologies, Inc.
    • Alteryx Inc.
    • Ataccama Corporation
    • Cloudera, Inc.
    • Gemini Data Inc.
    • Datrium, Inc.
    • Denodo Technologies
    • Paxata, Inc.
    • Zaloni Inc.

Á¦7Àå ÅõÀÚ ºÐ¼®

Á¦8Àå ½ÃÀå ±âȸ¿Í ÇâÈÄ µ¿Çâ

KSA 24.03.07

The Autonomous Data Platform Market size is estimated at USD 1.77 billion in 2024, and is expected to reach USD 4.46 billion by 2029, growing at a CAGR of 20.33% during the forecast period (2024-2029).

Autonomous Data Platform - Market

The growing adoption of cognitive computing technology and advanced analytics as well as the rising volume of complex and unstructured data drive market growth. Across the world, people are swapping information that is going to develop in the coming years. Domo Inc. estimated that 1.7MB of data will be created every second for every person on earth by 2020 end. Additionally, rising demand for autonomous data platforms from SMEs and accelerating adoption of cloud technology are the determinants for the growth of this market.

Key Highlights

  • Big Data has turned out to be one of the widespread technologies being utilized by companies today. An autonomous data platform controls and optimizes the big data infrastructure. According to the most contemporary Shopping Index of Salesforce, digital commerce grew at a rate of 13% year-over-year in Q4 2018, and projected retail e-commerce sales exceeding USD 4 trillion through 2020. The US Census Bureau reported that 87% of the US customers began their hunt in digital channels in 2019, up from 71% the previous year. This calls for enhanced use of big data services for the cloud.
  • Owing to the advantages the technology grants, cloud computing is witnessing an accelerated development in its adoption. According to Forbes, the market for cloud computing will increase to USD 160 billion by 2020, achieving a growth rate of 19%. Cloud-based deployment anticipated to have meaningful growth during the forecast period. Enhanced collaboration, Scalability, and cost-effectiveness offered by the cloud platform are expected to encourage the demand for cloud-based autonomous data platforms.
  • The propagation of the Internet will feed this increase in the number of devices and autonomous data tool. The Internet happens to the principal reason for this growth in data. According to the Cisco VNI report, there will be about 4.8 billion internet subscribers in 2022, 60% of the global population. According to Cisco VNI Global IP Traffic Forecast, the other significant factor for the increase in consumption of data will be the rise in global average Wi-Fi speeds that are exacted to more than double in Asia-Pacific in 2022 as compared to 2017.
  • However, complicated analytical process, lack of skilled and trained professional, and problem associated with the maintaining sync between quality and safety acts as a restricting factor for this market growth. Moreover, growing popularity of cognitive computing technology and the increasing need for advanced analytics will provide adequate opportunities for the growth of the market.
  • The principal factors driving the growth of COVID-19 impact on the Big Data Analytics industry and hence Autonomous Data Platform Market are increasing demand for digital transformation, increased investments in analytics, growing demand for remote services and location data, and increasing need for real-time information track and monitor the COVID-19 spread.
  • Especially during the COVID-19 pandemic - including efforts to contain its spread and help businesses stay afloat - the need to extract, visualize, and execute this intelligence in near-real-time is increasingly becoming a mission-critical objective, thus giving a boost to the Autonomous Data Platform Market.

Autonomous Data Platform Market Trends

Retail Vertical is Expected to Register a Significant Growth

  • With the growing use of the Internet, the retail vertical has become more customer-centric. Advancements in technologies have also made this vertical witness the accelerated changes in consumers' behavior. Consequently, the autonomous data platform has become an essential part of the retail vertical, assisting retailers to attain improved customer loyalty in the highly competitive market. The platform helps retailers track customers' shopping journeys in real-time, thus enabling retailers to understand and address their customers' needs and requirements.
  • Big data powers AI, and so it follows that AI would continue to find its way into the retail & consumer goods industry. Many big data companies globally claim to assist marketers, retailers, and eCommerce companies in managing their data so that it would allow them to personalize customer engagement, forecast inventory, and segment customers in the region.
  • MapR Technologies is offering an Autonomous Data Platform, which helps retailers store, integrate, and analyze the wide variety of online and offline customer data e-commerce transactions, point of sale (POS) systems, clickstream data, email, social media, and call center records - all in one central repository. Walmart is experiencing a digital transformation. It is in the process of developing the world's most extensive private cloud system, which is supposed to have the capacity to manage 2.5 petabytes of data every hour.
  • According to IBM, 62% of retailers report that the use of Big Data is giving them a competitive advantage. It is expected that the industry will witness significant growth in the adoption of Big Data technology over the forecast period, thereby positively impacting the Autonomous Data Platform market's growth.
  • The retail sector needs a strong autonomous data platform to collect different data types, including structured and unstructured, from various sources in real-time. The significant challenges faced by this vertical include the demand for omnichannel experience and the tracking of consumers in real-time. As autonomous data platforms and services help efficiently address these challenges, their adoption by retailers is expected to increase in the coming years.

North America to Hold the Largest Market Share

  • The extensive penetration of the Internet and mobile devices in North America has created possibilities for enterprises to reach out to channel partners, clients, and other stakeholders in the region. The widespread use of mobile devices and social media platforms to connect with business partners and clients for giving customized content as per the business necessities of clients has prompted businesses to embrace autonomous data platforms and services.
  • American multinational corporation, Intel is finding meaningful value in big data. The firm uses big data to develop chips quicker, recognize manufacturing glitches, and inform about security threats. By adopting Big Data, the firm has been able to facilitate predictive analysis and save around USD 30 million on its Quality Assurance spend while still increasing quality. The White House has also invested around USD 200 million in big data projects. The country also has a huge number of professionals in the studied market, which offers a vast potential to grow over the forecast period.
  • The US retailer's growth is expected to foster their investment in the supply chain management and are rigorously trying to enhance the customer experience. Big data applications and Autonomous data platform can help them in achieving both. Customers spent USD 601.75 billion online with U.S. merchants in 2019, up 14.9% from USD 523.64 billion the prior year, according to the U.S. Department of Commerce quarterly ecommerce figures released, and that was a higher growth rate than 2018, when online sales reported by the Commerce Department rose 13.6% year over year. As a result, the use of big data and hence Autonomous data platform is also expected to rise significantly among the US retailers.
  • Companies focus on offering the most reliable end-user experience and providing the best services by using machine-learning technology-based software and services. They leverage the autonomous data platform to analyze customer-related data and to find parameters such as customers' buying behavior, seasonal demand, and product demand. With the advent of independent data platforms, marketers can centralize customers' data from different sources at one platform, thereby saving hours of integration work.

Autonomous Data Platform Industry Overview

The Autonomous Data Platform Market is concentrated with major legacy players dominating the market like IBM, Microsoft, and Teradata Corporation. Since companies are concerned regarding the privacy and management of their employee/customer data, they trust established vendors more rather than new entrants. The proliferation of data has pushed data management platform vendors, such as Oracle, MapR, and AWS, to develop and design autonomous data platforms that help IT teams simplify and manage processes. The autonomous data platform providers are competing with each other to expand their market coverage and increase their presence in newer markets.

  • June 2020 - Anaconda, Inc. provider of the leading Python data science platform and IBM Watson announced a new collaboration to help simplify enterprise adoption of AI open-source technologies. By working together, the two companies plan to help fuel innovation and address the AI and data science skills gap that many enterprises face. Anaconda Team Edition repository will be integrated with IBM Watson Studio on IBM Cloud Pak for Data, enabling organizations to better govern and speed the deployment of AI open-source technologies across any cloud.
  • Feb 2020 - Oracle announced the availability of the Oracle Cloud Data Science Platform. At the core is Oracle Cloud Infrastructure Data Science, helping enterprises to collaboratively build, train, manage and deploy machine learning models to increase the success of data science projects, helping improve the effectiveness of data science teams with capabilities like shared projects, model catalogs, team security policies, reproducibility and auditability.

Additional Benefits:

  • The market estimate (ME) sheet in Excel format
  • 3 months of analyst support

TABLE OF CONTENTS

1 INTRODUCTION

  • 1.1 Study Assumptions and Market Definition
  • 1.2 Scope of the Study

2 RESEARCH METHODOLOGY

3 EXECUTIVE SUMMARY

4 MARKET DYNAMICS

  • 4.1 Market Overview
  • 4.2 Market Drivers
    • 4.2.1 Growing Adoption of Cognitive Computing Technology and Advanced Analytics
    • 4.2.2 Expanding Volume of Unstructured Data Due to the Phenomenal Growth of Interconnected Devices and Social Media
  • 4.3 Market Restraints
    • 4.3.1 Complex Analytical Process Requiring Skilled Professionals Services
  • 4.4 Industry Attractiveness - Porter's Five Force Analysis
    • 4.4.1 Threat of New Entrants
    • 4.4.2 Bargaining Power of Buyers/Consumers
    • 4.4.3 Bargaining Power of Suppliers
    • 4.4.4 Threat of Substitute Products
    • 4.4.5 Intensity of Competitive Rivalry
  • 4.5 Industry Value Chain Analysis
  • 4.6 Analysis on the impact of COVID-19 on the Autonomous Data Platform Market

5 MARKET SEGMENTATION

  • 5.1 By Organization Size
    • 5.1.1 Large Enterprises
    • 5.1.2 Small and Medium-Sized Enterprise
  • 5.2 By Deployment Type
    • 5.2.1 Public Cloud
    • 5.2.2 Private Cloud
    • 5.2.3 Hybrid Cloud
  • 5.3 By End-user Vertical
    • 5.3.1 BFSI
    • 5.3.2 Healthcare and Life Sciences
    • 5.3.3 Retail and Consumer Goods
    • 5.3.4 Media and Telecommunication
    • 5.3.5 Other End-User Verticals (Government, Manufacturing)
  • 5.4 Geography
    • 5.4.1 North America
    • 5.4.2 Europe
    • 5.4.3 Asia Pacific
    • 5.4.4 Latin America
    • 5.4.5 Middle East & Africa

6 COMPETITIVE LANDSCAPE

  • 6.1 Company Profiles
    • 6.1.1 Oracle Corporation
    • 6.1.2 International Business Machines Corporation
    • 6.1.3 Amazon Web Services
    • 6.1.4 Teradata Corporation
    • 6.1.5 Qubole Inc
    • 6.1.6 MapR Technologies, Inc.
    • 6.1.7 Alteryx Inc.
    • 6.1.8 Ataccama Corporation
    • 6.1.9 Cloudera, Inc.
    • 6.1.10 Gemini Data Inc.
    • 6.1.11 Datrium, Inc.
    • 6.1.12 Denodo Technologies
    • 6.1.13 Paxata, Inc.
    • 6.1.14 Zaloni Inc.

7 INVESTMENT ANALYSIS

8 MARKET OPPORTUNITIES AND FUTURE TRENDS

ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦