½ÃÀ庸°í¼­
»óǰÄÚµå
1630191

¼¼°èÀÇ ¹æÀü ÇöóÁ ¼Ò°á(SPS) ½ÃÀå : ½ÃÀå Á¡À¯À² ºÐ¼®, »ê¾÷ µ¿Çâ ¹× Åë°è, ¼ºÀå ¿¹Ãø(2025-2030³â)

Global Spark Plasma Sintering - Market Share Analysis, Industry Trends & Statistics, Growth Forecasts (2025 - 2030)

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Mordor Intelligence | ÆäÀÌÁö Á¤º¸: ¿µ¹® | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

¼¼°èÀÇ ¹æÀü ÇöóÁ ¼Ò°á ½ÃÀåÀº ¿¹Ãø ±â°£ µ¿¾È CAGR 5.9%¸¦ ±â·ÏÇÒ Àü¸ÁÀÔ´Ï´Ù.

Global Spark Plasma Sintering-Market-IMG1

ÁÖ¿ä ÇÏÀ̶óÀÌÆ®

  • ÃÖ±Ù ¼ö½Ê³âµ¿¾È °íÀü·ù °­µµ¸¦ ±â¹ÝÀ¸·Î ÇÑ Á¤¹ÐÈ­ ±â¼úÀÌ »ê¾÷ ºÐ¾ß¿¡¼­ Å« °ü½ÉÀ» ²ø°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Áß ¹æÀü ÇöóÁ ¼Ò°áÀº Áö³­ ¸î ³âµ¿¾È °¡Àå ¸¹ÀÌ Ã¤ÅÃµÈ ¹æ¹ýÀ¸·Î ºÎ»óÇØ ¿Ô½À´Ï´Ù. SPS ±â¼úÀº ´Ù¾çÇÑ Àç·á¸¦ ºü¸£°í È¿À²ÀûÀ¸·Î Ä¡¹ÐÈ­ÇÒ ¼ö ÀÖ´Â °Í°ú °íü ÇÕ¼º ¹× ÇÕ¼ºÀ» ¼öÇàÇϱ⿡ ÀûÇÕÇÑ ÀåÄ¡À̱⠶§¹®¿¡ ÃÖ±Ù Àç·á °úÇÐ ¹× Àç·á °¡°ø¿¡ À־ Å« Áøº¸¸¦ ÀÌ·ç°í ÀÖ½À´Ï´Ù.
  • SPS´Â FAST¶ó°íµµ ºÒ¸®¸ç ³ª³ë Àç·á·Î ǰÁú Á᫐ Á¦Ç°À» °³¹ßÇÏ´Â °í¼Ó ºÐ¸» ¾Ð¹Ð ±â¼úÀÔ´Ï´Ù. ÀÌ ±â¼úÀº ³ª³ë °áÁ¤ÀÇ ¹Ì¼¼ ±¸Á¶¸¦ À¯ÁöÇϰí Èï¹Ì·Î¿î ±â´ÉÀû Ư¼ºÀ» °¡Áø Àç·á¸¦ ¸¸µé ¼ö Àֱ⠶§¹®¿¡ Å« ÁÖ¸ñÀ» ¹Þ°í ÀÖ½À´Ï´Ù. SPS ½Ã½ºÅÛÀº ÇÖ ÇÁ·¹½º(HP) ¼Ò°á, ¿­°£ Á¤¼ö¾Ð ÇÁ·¹½º(HIP), ´ë±â·Î¿Í °°Àº ±âÁ¸ ¹æ¹ýÀ» ´É°¡ÇÕ´Ï´Ù. ¸¶ÀÌÅ©·Î½ºÆÄÅ© ÇöóÁ´Â SPS °øÁ¤¿¡¼­ Á¦¾ÈµÈ ´Ù¾çÇÑ ¹°¸®Àû ¸ÞÄ¿´ÏÁò Áß¿¡¼­ °¡Àå ÀϹÝÀûÀÎ ±â¼úÀÔ´Ï´Ù.
  • ÃÖ±Ù SPS´Â °í°­µµ, Ãʹ̼¼ °áÁ¤ Àç·á, ºÐ»ê °­È­ Àç·á, ¿­Àü Àç·á, ±Ý¼Ó-´ÙÀ̾Ƹóµå(¶Ç´Â ÀϹÝÀûÀ¸·Î ±Ý¼Ó-ź¼Ò) º¹ÇÕÀç·á, ½ºÆÛÅÍ Å¸°ÙÀÇ Á¦Á¶¿¡ ÀûÇÕÇÑ ¿É¼ÇÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ °øÁ¤Àº ¼ºÇü Áß ¼Ò°áü ³»ÀÇ ¿Âµµ ±¸¹èÀÇ Á¶Á¤À» ¿ëÀÌÇÏ°Ô ÇÕ´Ï´Ù. ÀÌ·¸°Ô ÇÏ¸é Æ¯¼ºÀÌ Å©°Ô ´Ù¸¥ ±â¿ï±â Àç·á³ª Ãþ»ó Àç·á(ZrO2/½ºÅ×Àθ®½º ½ºÆ¿, Al2O3/Ƽź µî)ÀÇ Á¦Á¶°¡ °¡´ÉÇØÁý´Ï´Ù.
  • ºÐ¸»À» ¾Ð¹ÐÇϱâ À§ÇÑ Åø·Î¼­ SPS¹ýÀÇ Ã¤¿ëÀÌ Áõ°¡Çϰí ÀÖ´Â °ÍÀº ÃÖ±Ù ¹ßÇ¥µÈ ´Ù¼öÀÇ ³í¹®¿¡ ÀÇÇØ¼­µµ ÀÔÁõµÇ°í ÀÖ½À´Ï´Ù. SPS´Â ¾ÆÁ÷ »õ·Î¿î ±â¼úÀÌÁö¸¸ ÃÖ±ÙÀÇ µ¿Çâ, ¿¬±¸°³¹ß ¹× ¿ëµµ´Â Á¡Á¡ ´«¿¡ ¶ç°Ô µÇ¾î ¿¬±¸ ºÎ¹®°ú »ê¾÷ ºÎ¹®¿¡¼­ Å« ÁÖ¸ñÀ» ¹Þ°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, SPSÀÇ °¡Àå ÀϹÝÀûÀÎ ¿ëµµ Áß Çϳª´Â ƼŸ´½ ÁúÈ­¹°°ú °°Àº °íÀ¶Á¡ Àç·áÀÇ ¼Ò°áÀÔ´Ï´Ù. ƼŸ´½ ÁúÈ­¹°Àº ³»½Ä¼ºÀÌ ³ô°í °­µµ°¡ ³ô°í ºñ±³Àû °¡º±±â ¶§¹®¿¡ Ç×°ø¿ìÁÖ »ê¾÷¿¡¼­ ¾ÐÃà±â, Åͺó ¹× ¿£Áø ³»ÀÇ ¾Ð·Â ¹è°ü¿¡ ³Î¸® »ç¿ëµË´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀÎÀº ÀÚµ¿Â÷ ¹× ¹æÀ§ ºÐ¾ß·ÎÀÇ Àü°³¸¦ °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù.
  • SPSÀÇ »ê¾÷ ¿ëµµ¿¡´Â ¿¬·á¹èÅ͸® Àç·á, °í°­µµ ³»¸¶¸ð¼º °ø±¸, ½ºÆÛÅÍ Å¸°Ù, ¿¬¸¶Àç¿ë ´ÙÀ̾Ƹóµå ¼ºÇü, ³ª³ë¹ÌÅÍ ´ÜÀ§ÀÇ ¹Ì¼¼±¸Á¶ À¯Áö°¡ ¿ä±¸µÇ´Â ¼ø±Ý¼Ó°ú È¥ÇձݼÓ, ¼¼¶ó¹Í, ¼­¸ä °³¹ß µîÀÌ ÀÖ½À´Ï´Ù. Çõ½ÅÀûÀÎ ±Ý¼Ó, »ê¾÷ Á¦Ç° ¹× ¼ÒºñÀÚ Á¦Ç°¿¡¼­ º¹ÇÕÀç·á ¹× ¼¼¶ó¹Í äÅÃÀÌ Áõ°¡Çϰí ÀÖ´Â °ÍÀº ÀÌ·¯ÇÑ °¡¿ë¼º Áõ°¡¿Í Á¦Á¶ ºñ¿ë °¨¼Ò·Î ¿¹Ãø ±â°£ µ¿¾È ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
  • ¶ÇÇÑ COVID-19ÀÇ ºÀ¼â ±â°£ µ¿¾È SPS´Â ¸¹Àº À¯ÇüÀÇ Á¶»ç¸¦ ½Ç½ÃÇÏ¿© Á¶»çµÈ ½ÃÀå ¼ºÀå¿¡ ±àÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ¿¹¸¦ µé¾î, 2021³â 4¿ù, ¾ÆÀÌ´ÙÈ£ÀÇ ¿¬±¸ÀÚµéÀº °í¼º´É ºÎǰÀ» Àú·ÅÇÏ°í ³»±¸¼ºÀÌ ÀÖ°Ô ¸¸µå´Â »ê¾÷À» Áö¿øÇÕ´Ï´Ù. ¾ÆÀÌ´ÙÈ£ ±¹¸³ ¿¬±¸¼Ò´Â ¾÷°è°¡ È¿À²ÀûÀÎ SPS Á¦Á¶ °øÁ¤À» ¼³°èÇÒ ¼ö ÀÖµµ·Ï °í±Þ ±â´ÉÀ» °³¹ßÇß½À´Ï´Ù. ÀÌ·¯ÇÑ À¯ÇüÀÇ ±â°è·Î¼­´Â ¼¼°è ÃÖ´ë±ÞÀÎ ÀÌ ¿¬±¸¼ÒÀÇ Ãֽм³ºñ¿¡ ÀÇÇØ ½Å¼ÒÀ縦 °ø¾÷ÀûÀ¸·Î ÀûÀýÇÑ ±Ô¸ð·Î Á¦Á¶ÇÏ´Â °ÍÀÌ °¡´ÉÇÏ°Ô µÇ¾ú½À´Ï´Ù. INLÀº º¥Ä¡ ½ºÄÉÀÏ¿¡¼­ ¼Ò±Ô¸ð ½ÇÇè Áö¿øºÎÅÍ »ê¾÷ ±Ô¸ð, ´ëÇü ¹× °í 󸮷® ½Ã½ºÅÛ¿¡ À̸£´Â 4°³ÀÇ ¸ÂÃãÇü SPS Àåºñ¸¦ ¼³°è ¹× Á¦Á¶Çß½À´Ï´Ù.
  • ±×·¯³ª SPS¿¡´Â ½Ã°£°ú ºñ¿ëÀ̶ó´Â Å« ¼±Çà ÅõÀÚ°¡ ÇÊ¿äÇÕ´Ï´Ù. ÀÛµ¿ º¯¼ö´Â È÷Æ® ·± Ç÷¹ÀÌÆ®, Àç·á Ư¼º, ´ÙÀÌ ¼³°è ¹× Àç·á, Ȧµå ¿Âµµ¿Í ½Ã°£, Èû Àü·«, Áø°ø, ´ë±â Á¶°Ç, Àü¿ø ¼³Á¤, ³Ã°¢ Á¶°Ç µîÀ» Æ÷ÇÔÇÏÁö¸¸ ÀÌ¿¡ ±¹ÇѵÇÁö ¾Ê½À´Ï´Ù. À̰ÍÀº ½ÃÀå ¼ºÀåÀÇ ¾ïÁ¦¿äÀÎÀ¸·Î ÀÛ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

¹æÀü ÇöóÁ ¼Ò°á ½ÃÀå µ¿Çâ

ÀÚµ¿Â÷ ºÐ¾ß°¡ ½ÃÀå ¼ºÀåÀ» À̲ø °ÍÀ¸·Î ¿¹»ó

  • Mg ¸ÅÆ®¸¯½º º¹ÇÕÀç·á´Â ÀÚµ¿Â÷ ¹× Ç×°ø¿ìÁÖ ¿ëµµ ºÐ¾ß¿¡¼­ Á¡Á¡ ´õ ¸¹ÀÌ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ¸¶±×³×½·(Mg)°ú ±× ÇÕ±ÝÀº ÀÚµ¿Â÷ ¿ëµµ·Î ÀαâÀÖ´Â ±Ý¼ÓÀÔ´Ï´Ù. ÀÌ´Â ÁÖ·Î MgÀÇ ¹Ðµµ(1.74g/cm3)°¡ ³·±â ¶§¹®¿¡ ¿¬·á ¼Òºñ¿Í ¿Â½Ç°¡½º ¹èÃâÀ» ÁÙÀ̴µ¥ µµ¿òÀÌ µË´Ï´Ù. ¹«°Ô°¡ Áß¿ä½ÃµÇ´Â ¿ëµµ¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó ÀÌ·¯ÇÑ Àç·áÀÇ ±â°èÀû Ư¼ºÀ» °­È­ÇØ¾ß ÇÕ´Ï´Ù. ±× ¹æ¹ý Áß Çϳª´Â MgÀÇ °æ·®¼º°ú ¼¼¶ó¹ÍÀÇ ¿ì¼öÇÑ °­µµ¿Í °­¼ºÀ» °áÇÕÇÏ´Â °ÍÀÔ´Ï´Ù.
  • ÀÌ Á¶ÇÕÀº Mg¸¦ ±â¹ÝÀ¸·Î ÇÏ´Â ±Ý¼Ó-¸ÅÆ®¸¯½º º¹ÇÕÀç·á¸¦ Áß¿äÇÑ °øÇÐ ¿ëµµ ºÐ¾ßÀÇ Ã·´Ü Àç·á·Î Á¡Á¡ ¸Å·ÂÀûÀ¸·Î ¸¸µé°í ÀÖ½À´Ï´Ù. Mg-¸ÅÆ®¸¯½º º¹ÇÕÀç·á´Â ÀϹÝÀûÀ¸·Î ¼ºÇü¹ýÀ̳ª ºÐ¸» ¾ß±Ý¹ý¿¡ ÀÇÇØ Á¦Á¶µÇÁö¸¸, À¯¸ÁÇÑ ¹æ¹ýÀÇ Çϳª·Î ¹æÀü ÇöóÁ ¼Ò°á(SPS)ÀÌ ÀÖ½À´Ï´Ù. ÀÌ ¹æ¹ýÀº ºÐ¸» Àç·áÀÇ ÀÔÀÚ Å©±â°¡ Ä¿Áö±â Àü¿¡ °áÁ¤¸³À» º¸È£Çϰí Á¾·¡ÀÇ ¼Ò°á¿¡¼­´Â ¾î·Á¿î ºÐ¸» Àç·á¸¦ Á¶±â¿¡ Å©¶óÀÌ¿À¹Ð¸µÇÏ´Â °ÍÀÌ ¹Ù¶÷Á÷ÇÕ´Ï´Ù.
  • ÀÚµ¿Â÷ »ê¾÷, ƯÈ÷ Àü±âÀÚµ¿Â÷ ºÐ¾ß´Â ¿¬±¸ ½ÃÀå °ø±Þ¾÷ü¿¡°Ô Å« ºñÁî´Ï½º ±âȸ Áß ÇϳªÀ̸ç SPS´Â ¿­Àü ¹ßÀü±â °³¹ß¿¡ »ç¿ëµË´Ï´Ù. ÀÌ °³¹ß ÁßÀÎ ±×¸° Å×Å©³î·¯Áö´Â ¿£ÁøÀÇ ¹è±â °¡½º ¹× »ê¾÷ Ç÷£Æ®ÀÇ Æó¿­À» Àü±â·Î º¯È¯ÇÕ´Ï´Ù.
  • ¿¹¸¦ µé¾î ±¹Á¦¿¡³ÊÁö±â±¸ÀÇ 'Global EV Outlook 2022'ÀÇ µ¥ÀÌÅÍ¿¡ µû¸£¸é 2021³â Àü±âÀÚµ¿Â÷(EV) ÆÇ¸Å·®Àº 2020³âÀÇ 2¹è·Î 660¸¸´ë¶ó´Â ½Å±â·ÏÀ» ´Þ¼ºÇß½À´Ï´Ù. 2012³â ¼¼°è¿¡¼­ ÆÇ¸ÅµÈ Àü±âÂ÷´Â ºÒ°ú 12¸¸´ë¿´½À´Ï´Ù. 2021³â¿¡´Â ¼¼°è ÀÚµ¿Â÷ ÆÇ¸Å ´ë¼öÀÇ 10% °¡±îÀ̰¡ Àü±âÀÚµ¿Â÷°¡ µÇ¾úÀ¸¸ç, 2019³â ½ÃÀå Á¡À¯À²ÀÇ 4¹è°¡ µÇ¾ú½À´Ï´Ù. 2022³â Àü±âÂ÷ÀÇ ¼¼°è ÆÇ¸Å·®Àº ±Þ°ÝÈ÷ »ó½ÂÇßÀ¸¸ç, 1ºÐ±â ÆÇ¸Å·®Àº 200¸¸´ë·Î 2021³â µ¿½Ã±âºÎÅÍ 75% Áõ°¡Çß½À´Ï´Ù.
  • °Ô´Ù°¡ Áß±¹ ±âÂ÷°ø¾÷Çùȸ(CAAM)¿¡ µû¸£¸é 2021³â¿¡´Â Áß±¹¿¡¼­ 290¸¸´ë ÀÌ»óÀÇ ¹èÅ͸® Àü±âÂ÷°¡ ÆÇ¸ÅµÇ¾î 2020³â ´ëºñ 162% Áõ°¡Çß½À´Ï´Ù. ¶ÇÇÑ °°Àº ÇØ Áß±¹¿¡¼­ ÆÇ¸ÅµÈ Ç÷¯±×ÀÎ ÇÏÀ̺긮µåÂ÷´Â ¾à 60¸¸ 3,000´ë·Î 2020³â ´ëºñ 140% Áõ°¡Çß½À´Ï´Ù. EV ¼ö¿äÀÇ ±ÞÁõÀº ¿¬±¸ ½ÃÀå¿¡ À¯¸®ÇÑ ±âȸ¸¦ Á¦°øÇÒ °ÍÀ¸·Î ±â´ëµË´Ï´Ù.

ÇöÀúÇÑ ¼ºÀåÀ» ÀÌ·ç´Â ¾Æ½Ã¾ÆÅÂÆò¾ç

  • ¾Æ½Ã¾ÆÅÂÆò¾çÀº ¼¼°èÀÇ Á¦Á¶¾÷, ƯÈ÷ ÀÏ·ºÆ®·Î¹Í½º ¹× ¹ÝµµÃ¼ »ê¾÷¿¡¼­ÀÇ ¿ìÀ§¼º¿¡¼­ SPS ½Ã½ºÅÛÀÇ ÁÖ¿ä ä¿ë±¹ Áß ÇϳªÀÔ´Ï´Ù.
  • ¿¹¸¦ µé¾î ¼¼°è ¹ÝµµÃ¼ ¹«¿ª Åë°è(WSTS)¿¡ µû¸£¸é Áß±¹ÀÇ ¹ÝµµÃ¼ ¸ÅÃâÀº 2022³â 4¿ù¿¡ 167¾ï 3,000¸¸ ´Þ·¯¿¡ ´ÞÇß½À´Ï´Ù. 2022³â 4¿ùÀÇ ¼ýÀÚ´Â ¸ÅÃâ¾×ÀÌ 148¾ï ´Þ·¯¿¡ ´ÞÇÑ 2021³â 4¿ùºÎÅÍ Áõ°¡ÇÑ °ÍÀ¸·Î ³ªÅ¸³µ½À´Ï´Ù.
  • ±¹Á¦ ǰÁú ±âÁØÀ» ÁؼöÇÔ¿¡ µû¶ó ¾Æ½Ã¾ÆÅÂÆò¾ç¿¡¼­´Â ÀÇ·á °ü±¤ »ê¾÷µµ ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. »ÀÀÇ Àΰø ´ëü¹°°ú °°Àº ¸ÂÃãÇü »ýü Àç·á´Â ³ôÀº ³»±¸¼º°ú °­µµ¸¦ ¿ä±¸ÇÕ´Ï´Ù. ±¹¸³º¸°ÇÅë°è¼¾ÅÍ(NCHS)¿¡ µû¸£¸é Àεµ¿¡¼­ Àΰø °í°üÀý ´ëü¼úÀÇ ºñ¿ëÀº ¼­À¯·´ ±¹°¡ Áß Àû¾îµµ 1/5 Á¤µµÀÔ´Ï´Ù. ¿Ü±¹ÀΠȯÀÚ¸¦ ²ø¾îµéÀ̰í SPS Àΰø°üÀý¿ë »ýüÀç·áÀÇ ¿ä±¸°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù.
  • µðÁöÅÐÈ­ µ¿ÇâÀº Á¶»ç ´ë»ó ½ÃÀå¿¡¼­µµ º¼ ¼ö ÀÖ½À´Ï´Ù. ½ÃÀå °ø±Þ¾÷ü´Â ÅÍÄ¡½ºÅ©¸° Á¦¾î ÆÐŰÁö ¹× HTML-5 ÀÎÅÍÆäÀ̽º¿Í °°Àº »õ·Î¿î ±â´ÉÀ» °®Ãá Á¦Ç°À» Á¦°øÇϰí ÀÖÀ¸¸ç ÃֽŠÀ¥ ºê¶ó¿ìÀú°¡ ÀÖ´Â ÄÄÇ»ÅͶó¸é ´©±¸³ª ÆÛ´Ï½º¿¡ ¿¬°áÇÏ¿© ½Ã½ºÅÛÀ» ¾ÈÀüÇÏ°Ô Á¦¾îÇÒ ¼ö ÀÖ½À´Ï´Ù. °ø±Þ¾÷ü´Â ¶ÇÇÑ µ¥ÀÌÅ͸¦ ÀÚµ¿À¸·Î ĸóÇÏ°í ¹«Á¦ÇÑ °¡»ó ½ºÅ丮Áö¸¦ Á¦°øÇÏ´Â ±â¼úÀ» Á¦°øÇÕ´Ï´Ù.
  • ÀÌ Áö¿ªÀÇ ±¹°¡µéÀº ±º ¹× ¹æÀ§¿¡ ´ëÇÑ ÁöÃâÀÌ °¡Àå ¸¹Àº ³ª¶óÀÇ »óÀ§¿¡µµ ·©Å©ÀÎÇϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î Áß±¹Àº 2022³â 3¿ù ¿¬°£ ±¹¹æ¿¹»êÀ» 2021³â 2,090¾ï ´Þ·¯¿¡¼­ 7.1% Áõ°¡ÇÑ 2,300¾ï ´Þ·¯·Î Áõ¾×Çß½À´Ï´Ù. Áß±¹ÀÇ ±¹¹æºñ Áõ¾×Àº ÀÎ¹Î ÇØ¹æ±ºÀÌ Àü·«ÀûÀÎ Àεµ ÅÂÆò¾ç Áö¿ª¿¡¼­ ±ÙÀ°À» À¯¿¬È­½ÃŰ´Â »ç°ÇÀ» ´Ã¸®°í ÀÖ´Â °¡¿îµ¥ ÀÌ·ç¾îÁ³½À´Ï´Ù. ÀÌ·¯ÇÑ »ç·Ê´Â Á¶»çµÈ ½ÃÀå È®´ë¸¦ À§ÇÑ ¸î °¡Áö ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù.

¹æÀü ÇöóÁ ¼Ò°á »ê¾÷ °³¿ä

¼¼°èÀÇ ¹æÀü ÇöóÁ ¼Ò°á ½ÃÀåÀº Thermal Technology LLC¿Í °°Àº ÁÖ¿ä ±â¾÷ÀÌ ½ÃÀåÀ» µ¶Á¡Çϰí ÅëÇյǾî ÀÖ½À´Ï´Ù. ¼­ºñ½º Á¦°ø¾÷ü´Â ¼³Ä¡¿¡ ³ôÀº ÀÚº» ºñ¿ë°ú ±â¼ú¿¡ ´ëÇÑ Àü¹® Áö½ÄÀ» ÇÊ¿ä·Î Çϱ⠶§¹®¿¡ ½ÃÀå¿¡ÀÇ ½Å±Ô ÁøÀÔÀÌ °úÁ¦°¡ µÇ°í ÀÖ½À´Ï´Ù.

  • 2022³â 6¿ù-Safran Corporate Ventures´Â ¹æÀü ÇöóÁ ¼Ò°á(SPS) Àü¹® ±â¼úÀ» °³¹ßÇÑ ÇÁ¶û½º ½ÅÈï ±â¾÷ Sintermat»ç¿¡ ´ëÇØ 600¸¸ À¯·Î¸¦ ³Ñ´Â ÀÚ±Ý Á¶´Þ ¶ó¿îµåÀÇ ÀÏȯÀ¸·Î ÆÄÆ®³Ê¿Í °øµ¿ ÃâÀÚ¸¦ Çß´Ù°í ¹ßÇ¥Çß½À´Ï´Ù. ´Ù¸¥ ÅõÀÚÀÚ´Â UI Investissement, Carvest ÆÝµå¸¦ ÅëÇÑ Credit Agricole de Champagne-Bourgogne, ÇÁ¶û½º ±¹¹æ Á¶´Þ ±â°ü DGA(Direction Generale de l'Armement) ´ë½Å Bpifrance Investissement »ç°¡ ¿î¿µÇÏ´Â Definvest ÆÝµåÀÔ´Ï´Ù.

±âŸ ÇýÅà :

  • ¿¢¼¿ Çü½Ä ½ÃÀå ¿¹Ãø(ME) ½ÃÆ®
  • 3°³¿ù°£ÀÇ ¾Ö³Î¸®½ºÆ® ¼­Æ÷Æ®

¸ñÂ÷

Á¦1Àå ¼­·Ð

  • Á¶»çÀÇ ÀüÁ¦Á¶°Ç ¹× ½ÃÀå Á¤ÀÇ
  • Á¶»ç ¹üÀ§

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå °³¿ä
  • ¾÷°èÀÇ ¸Å·Âµµ-Porter's Five Forces ºÐ¼®
    • °ø±Þ±â¾÷ÀÇ Çù»ó·Â
    • ¼ÒºñÀÚÀÇ Çù»ó·Â
    • ½Å±Ô Âü°¡¾÷üÀÇ À§Çù
    • °æÀï ±â¾÷°£ °æÀï °ü°è
    • ´ëüǰÀÇ À§Çù
  • »ê¾÷ ¹ë·ùüÀÎ ºÐ¼®
  • COVID-19ÀÇ ¾÷°è¿¡ ´ëÇÑ ¿µÇâ Æò°¡

Á¦5Àå ½ÃÀå ¿ªÇÐ

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • Áö¿ª Àüü¿¡¼­ÀÇ ¹æÀ§ ¿¹»ê Áõ°¡
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • °íµµ·Î ÅëÇÕµÈ ½ÃÀå

Á¦6Àå ½ÃÀåÀÇ ÁøÈ­

Á¦7Àå Àç·áº° ½ÃÀå µ¿Çâ

Á¦8Àå °¢Á¾ °íµµ ¼Ò°á ±â¼úÀÇ µ¿Çâ

Á¦9Àå ½ÃÀå ¼¼ºÐÈ­

  • ÃÖÁ¾ »ç¿ëÀÚ ¿ëµµº°
    • ÀÚµ¿Â÷
    • Á¦Á¶¾÷
    • ¿¡³ÊÁö ¹× Àü·Â
    • Ç×°ø¿ìÁÖ ¹× ¹æÀ§
    • ±âŸ ÃÖÁ¾ »ç¿ëÀÚ ¿ëµµ
  • Áö¿ªº°
    • ºÏ¹Ì
    • À¯·´
    • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ¶óƾ¾Æ¸Þ¸®Ä«
    • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦10Àå °æÀï ±¸µµ

  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Fuji Electronic Industrial Co. Ltd.
    • Dr Fritsch GmbH & Co KG
    • Thermal Technology LLC
    • FCT Systeme GmbH
    • MTI Corporation
    • Shanghai HaoYue Furnace Technology Co.,Ltd.
    • Elenix Inc.
    • Toshniwal Instruments Madras Pvt. Ltd.
    • SinterLand Inc.

Á¦11Àå ÅõÀÚ ºÐ¼®

Á¦12Àå ÇâÈÄÀÇ µ¿Çâ

AJY 25.02.05

The Global Spark Plasma Sintering Market is expected to register a CAGR of 5.9% during the forecast period.

Global Spark Plasma Sintering - Market - IMG1

Key Highlights

  • In the last couple of decades, elaboration techniques based on high current intensities have attracted substantial interest from industrial sectors. Among these techniques, spark plasma sintering has emerged as the most adopted method in the last few years. The SPS technique has recently made significant advancements in materials science and materials processing due to the capability of fast and efficient densification of various materials and the suitability of the equipment for conducting solid-state syntheses and syntheses.
  • SPS, also known as FAST, is a high-speed powder consolidation technology that develops quality-centered products from nanomaterials. The technology has gained significant attention for its ability to retain nanocrystalline microstructures and create materials with interesting functional properties. SPS systems have surpassed conventional methods, like hot press (HP) sintering, hot isostatic pressing (HIP), or atmospheric furnaces. Micro-spark/plasma is the most common technique among various proposed physical mechanisms for the SPS process.
  • In recent years, SPS has emerged as the preferred option for producing high-strength, ultra-fine crystalline materials; dispersion strengthened materials, thermoelectric or metal-diamond (or generally metal-carbon) composite materials, and sputter targets. Besides, the process facilitates the adjustment of temperature gradients within the sintering body during compaction. It enables the production of gradient and layered materials with widely differing properties (e.g., ZrO2/stainless steel, Al2O3/titanium).
  • The increasing adoption of the SPS method as a tool for consolidating powders is also demonstrated by a large number of papers published in recent years. Although SPS is still an emerging technology, slow developments, research, and applications have been increasingly witnessed in recent years, attracting great attention from the research and industrial sectors. For instance, one of the most common applications of SPS is the sintering of high melting point materials, such as titanium nitride. They have been extensively used in the aerospace industry for compressor, turbine, and pressure piping in an engine, owing to their high corrosion resistance, high strength, and relatively lightweight. These factors are fuelling their deployment in the automotive and defense sector.
  • Some of the industrial applications of SPS include fuel cell materials, high strength and wear-resistant tooling, sputter targets, diamond compaction for abrasives, and the development of pure or mixed metallics, ceramics, or cermets, where maintaining nanometric and fine microstructure is required. The increasing adoption of innovative metals, composite materials in industrial and consumer products, and ceramics is anticipated to grow during the forecast period, owing to their increasing availability and decreasing manufacturing costs.
  • Moreover, during the COVID-19 lockdown, many types of research were carried out in the SPS, which had a positive influence on the studied market growth. For instance, in April 2021, IDAHO researchers will help the industry make high-performance parts inexpensive and durable. Idaho National Laboratory developed advanced capabilities to help the industry design efficient SPS manufacturing processes. The lab's latest addition, one of the largest machines of its kind worldwide, makes it possible to manufacture new materials at industrially relevant scales. INL designed and built four custom SPS machines that range from supporting small experiments on the bench scale to industrial-scale, large-format, and high-throughput systems.
  • However, SPS requires a significant up-front investment in time and expense. The operational variables include but are not limited to heat ramp rates, material properties, die design and material, hold temperatures and times, force strategies, vacuum, atmospheric conditions, power settings, and cooling conditions. This can act as a restraining factor to the growth of the market.

Spark Plasma Sintering Market Trends

The Automotive Segment is Expected to Drive the Market's Growth

  • Mg-matrix composites are increasingly used in automotive and aerospace applications. Magnesium (Mg) and its alloys are popular metals in automotive applications. It results mainly from the low density (1.74 g/cm3) of Mg, which aids in reducing fuel consumption and greenhouse gas emissions. The increasing demand for weight-critical applications enforces the enhancement of the mechanical properties of these materials. One of the ways is to combine the light weight of Mg with the superior strength and stiffness of a ceramic.
  • Resulting from this mix, metal-matrix composites based on Mg are increasingly more appealing as advanced materials for important engineering applications. Mg-matrix composites are generally fabricated by molding and powder metallurgy methods; one of the promising ones is spark plasma sintering (SPS). This method is desired for earlier cryomilling of powder materials to protect grains before they increase in size and for powder materials that are difficult to sinter by conventional sintering.
  • The automotive industry, especially the Electric Vehicle sector, is one of the significant opportunities for studied market vendors, where SPS is used in the development of thermoelectric generators. This developing green technology converts waste heat from engine exhaust and industrial plants into electricity.
  • For instance, according to the International Energy Agency's Global EV Outlook 2022 data, sales of electric vehicles (EVs) doubled in 2021 from 2020 to a new record of 6.6 million. In 2012, just 120 000 electric cars were sold worldwide. Nearly 10% of global car sales were electric in 2021, four times the market share in 2019. The global sales of electric cars are rising strongly in 2022, with 2 million sold in the first quarter, up 75% from the same period in 2021.
  • Further, according to the China Association of Automobile Manufacturers (CAAM), in 2021, over 2.9 million battery electric vehicles were sold in China, growing 162% compared to 2020. Moreover, about 603,000 plug-in hybrid cars were sold in China during the same year, an increase of 140% compared to 2020. The upsurge in demand for Evs is expected to offer lucrative opportunities for the studied market.

Asia Pacific Region to Witness Significant Growth

  • Asia-Pacific is one of the major adopters of the SPS systems, owing to its dominance in the global manufacturing sector, especially in the electronic and semiconductor industries.
  • For instance, according to World Semiconductor Trade Statistics (WSTS), semiconductor sales in China reached USD 16.73 billion in April 2022. The April 2022 figure marks an increase from April 2021, when the sales reached USD 14.8 billion.
  • With the growing compliance with international quality standards, the medical tourism industry is also growing in the Asia Pacific region. Customized bio-materials, such as artificial replacements for bones, require high durability and strength. According to the National Centre for Health Statistics (NCHS), the cost of hip replacement surgery in India is lower by at least a fifth of the cost in western countries. Attracting foreign patients, the need for SPS joint replacement biomaterials is growing.
  • The growing trend of digitization is also witnessed in the studied market. Market vendors are offering products with new features, such as an integrated touch screen control package and full HTML-5 interface, that enables any computer with a modern web browser to connect to the furnace and control the system securely. Vendors are also offering techniques through which data is automatically captured and provides unlimited virtual storage.
  • The countries in the region are also in the top listings of the highest spenders on military and defense. For instance, in March 2022, China hiked its annual defense budget by 7.1% to USD 230 billion from USD 209 billion in 2021, three times that of India's military spending. China's hike in defense spending comes amid the People's Liberation Army's growing incidents of muscle-flexing in the strategic Indo-Pacific region. Such instances offer several opportunities for the expansion of the studied market.

Spark Plasma Sintering Industry Overview

The Global Spark Plasma Sintering Market is consolidated with the presence of key players like Thermal Technology LLC dominating the market. The service provider requires high capital cost and expertise with the technology for the installation, which is challenging the entry of new players in the market.

  • June 2022 - Safran Corporate Ventures announced that it had made a joint investment with partners in the company Sintermat, a French startup that has developed expertise in spark plasma sintering (SPS), as part of a funding round exceeding EUR 6 million. The other investors comprised UI Investissement, Credit Agricole de Champagne-Bourgogne via its Carvest fund, and the Definvest fund managed by Bpifrance Investissement on behalf of the French defense procurement agency DGA (Direction Generale de l'Armement).

Additional Benefits:

  • The market estimate (ME) sheet in Excel format
  • 3 months of analyst support

TABLE OF CONTENTS

1 INTRODUCTION

  • 1.1 Study Assumptions and Market Definition
  • 1.2 Scope of the Study

2 RESEARCH METHODOLOGY

3 EXECUTIVE SUMMARY

4 MARKET INSIGHT

  • 4.1 Market Overview
  • 4.2 Industry Attractiveness - Porter's Five Forces Analysis
    • 4.2.1 Bargaining Power of Suppliers
    • 4.2.2 Bargaining Power of Consumers
    • 4.2.3 Threat of New Entrants
    • 4.2.4 Intensity of Competitive Rivalry
    • 4.2.5 Threat of Substitutes
  • 4.3 Industry Value Chain Analysis
  • 4.4 Assessment of the Impact of COVID-19 on the Industry

5 MARKET DYNAMICS

  • 5.1 Market Drivers
    • 5.1.1 Increase in Defense Budgets Across Geographies
  • 5.2 Market Restraints
    • 5.2.1 Highly Consolidated Market

6 MARKET EVOLUTION

7 MARKET TRENDS REGRDING DIFFERENT MATERIALS

8 TRENDS REGARDING DIFFERENT TYPES OF ADVANCED SINTERING TECHNOLOGIES

9 MARKET SEGMENTATION

  • 9.1 By End-user Application
    • 9.1.1 Automotive
    • 9.1.2 Manufacturing
    • 9.1.3 Energy & Power
    • 9.1.4 Aerospace & Defense
    • 9.1.5 Other End-user Applications
  • 9.2 By Geography
    • 9.2.1 North America
    • 9.2.2 Europe
    • 9.2.3 Asia Pacific
    • 9.2.4 Latin America
    • 9.2.5 Middle East and Africa

10 COMPETITIVE LANDSCAPE

  • 10.1 Company Profiles
    • 10.1.1 Fuji Electronic Industrial Co. Ltd.
    • 10.1.2 Dr Fritsch GmbH & Co KG
    • 10.1.3 Thermal Technology LLC
    • 10.1.4 FCT Systeme GmbH
    • 10.1.5 MTI Corporation
    • 10.1.6 Shanghai HaoYue Furnace Technology Co.,Ltd.
    • 10.1.7 Elenix Inc.
    • 10.1.8 Toshniwal Instruments Madras Pvt. Ltd.
    • 10.1.9 SinterLand Inc.

11 INVESTMENT ANALYSIS

12 FUTURE TRENDS

ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦