½ÃÀ庸°í¼­
»óǰÄÚµå
1630432

À̺¥Æ® ½ºÆ®¸² ó¸® : ½ÃÀå Á¡À¯À² ºÐ¼®, »ê¾÷ µ¿Çâ ¹× Åë°è, ¼ºÀå ¿¹Ãø(2025-2030³â)

Event Stream Processing - Market Share Analysis, Industry Trends & Statistics, Growth Forecasts (2025 - 2030)

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Mordor Intelligence | ÆäÀÌÁö Á¤º¸: ¿µ¹® | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

À̺¥Æ® ½ºÆ®¸² ó¸® ½ÃÀåÀº ¿¹Ãø ±â°£ µ¿¾È 15.7%ÀÇ CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

Event Stream Processing-Market-IMG1

ÁÖ¿ä ÇÏÀ̶óÀÌÆ®

  • MachEye¿¡ µû¸£¸é, »ç¶÷µéÀº ¸ÅÀÏ 2¾ï 5õ¸¸ ¹ÙÀÌÆ®ÀÇ µ¥ÀÌÅ͸¦ »ý¼ºÇϰí ÀÖÀ¸¸ç, ÀÌ´Â ¸Å³â ºü¸£°Ô Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ºñÁî´Ï½º ÀÎÅÚ¸®Àü½º »ç¿ëÀÚµéÀº ÀÌ·¸°Ô Æø¹ßÀûÀ¸·Î Áõ°¡ÇÏ´Â º¹ÀâÇÑ µ¥ÀÌÅ͸¦ ½ÇÇà °¡´ÉÇÑ ÀλçÀÌÆ®À¸·Î ÀüȯÇÏ´Â µ¥ ¾î·Á¿òÀ» °Þ°í ÀÖ½À´Ï´Ù. ±× °á°ú, º¸´Ù Áøº¸µÇ°í »ç¿ëÇϱ⠽¬¿î µ¥ÀÌÅÍ º¯È¯ µµ±¸¿¡ ´ëÇÑ ¼ö¿ä°¡ Å©°Ô Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
  • Ÿ°ÙÆÃµÈ ¿ÀÆÛ¿Í ¿¹Ãø ºÐ¼®À» ÅëÇØ ¼Ò¸Å¾÷ü´Â ¸ðµç °í°´¿¡ ´ëÇØ ¸Å¿ì ¼¼¹ÐÇÏ°í °³ÀÎÈ­µÈ ¿ÀÆÛ¸¦ °³¹ßÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ¼Ò¸Å¾÷ü´Â ´õ ÀÚÁÖ ±¸¸ÅÇϵµ·Ï Àμ¾Æ¼ºê¸¦ Á¦°øÇÏ°í ´õ ¸¹Àº ±¸¸Å¸¦ À¯µµÇÏ´Â ¿ÀÆÛ¸¦ Á¦°øÇÔÀ¸·Î½á ¸ÅÀå °æÇèÀ» °³ÀÎÈ­ÇÏ°í ¸ðµç ä³Î¿¡¼­ ´õ ³ôÀº ¸ÅÃâÀ» ´Þ¼ºÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¹Ãø ºÐ¼®Àº °í°´ »óÇâ ÆÇ¸Å ¹× ±³Â÷ ÆÇ¸Å¿¡ Ȱ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¿¹Ãø ºÐ¼®Àº ±â¾÷ÀÌ °í°´ÀÇ Æò»ý °¡Ä¡(CLV)¸¦ ¿¹ÃøÇÏ´Â µ¥ µµ¿òÀ̵Ǹç, CLV´Â °ú°Å ÇൿÀ» ºÐ¼®Çϰí Àå±âÀûÀ¸·Î °¡Àå ¼öÀͼºÀÌ ³ôÀº °í°´À» ½Äº°ÇÏ¿© Àå±âÀûÀÎ °í°´ ÇÒÀÎ °¡Ä¡¸¦ ¿¹ÃøÇÏ´Â µ¥ µµ¿òÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù.
  • ¶ÇÇÑ, ¹æ´ëÇÑ ¾çÀÇ RFID µ¥ÀÌÅ͸¦ ½Ç½Ã°£À¸·Î ó¸®ÇØ¾ß ÇÏ´Â Çʿ伺À¸·Î ÀÎÇØ RFID(Radio-Frequency Identification) À̺¥Æ® ó¸® ¾ÖÇø®ÄÉÀ̼ǿ¡¼­ À̺¥Æ® ½ºÆ®¸² ó¸®ÀÇ »ç¿ëÀÌ ºü¸£°Ô Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¿¡ ¿¬°áµÇ¾î RFID ¸®´õ°¡ ÀÐÀ» ¼ö ÀÖ´Â ½ÅÈ£¸¦ »ý¼ºÇÕ´Ï´Ù. À̸¦ ÅëÇØ ±â¾÷Àº ¹°°ÇÀ̳ª »ç¶÷ÀÇ À§Ä¡¸¦ ½Ç½Ã°£À¸·Î ÆÄ¾ÇÇÒ ¼ö ÀÖÀ¸¸ç, °ø±Þ¸Á °ü¸®, »ç¶÷ ¾ÈÀü È®º¸ µî ´Ù¾çÇÑ Ãø¸é¿¡¼­ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù.
  • SisenseÀÇ Á¶»ç¿¡ µû¸£¸é, 50%ÀÇ ±â¾÷ÀÌ COVID-19 »çÅ ÀÌÀüº¸´Ù ¿¹Ãø ºÐ¼®À» ´õ ¸¹ÀÌ È°¿ëÇϰí ÀÖÀ¸¸ç, ±× Áß 68% ÀÌ»óÀÇ Áß¼Ò±â¾÷ÀÌ ¿¹Ãø ºÐ¼®À» ´õ ¸¹ÀÌ È°¿ëÇϰí ÀÖ´Ù°í ÇÕ´Ï´Ù. ¿¹¸¦ µé¾î, COVID-19 ÆÒµ¥¹ÍÀÇ ÇÙ½É °úÁ¦´Â °í°´ÀÌ ¿ÀÇÁ¶óÀÎ ¸ÅÀåÀ» ¹æ¹®ÇÒ ¶§ ¾ÈÀüÀ» º¸ÀåÇÏ´Â °ÍÀ̾ú½À´Ï´Ù. ºñÁî´Ï½º ÀÎÅÚ¸®Àü½º µµ±¸, ¼Ò¼È ³×Æ®¿öÅ· Ç÷§Æû, °í°´°ü°è°ü¸®(CRM) ½Ã½ºÅÛÀÇ µµ¿òÀ¸·Î ±â¾÷Àº °í°´À¸·ÎºÎÅÍ Á÷Á¢ Çǵå¹éÀ» ¹Þ¾Æ ¸ðµç »ç¶÷ÀÇ °Ç°­°ú ¾ÈÀüÀ» º¸ÀåÇϱâ À§ÇØ ÀûÀýÇÑ Á¶Ä¡¸¦ ÃëÇÒ ¼ö ÀÖ¾ú½À´Ï´Ù.
  • µ¥ÀÌÅÍ ºÐ¼® ¹× µ¥ÀÌÅÍ ½Ã°¢È­ µµ±¸¿¡ ´ëÇÑ ¼ö¿ä°¡ Å©°Ô Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, IBM Quant Crunch¿¡ µû¸£¸é, ÃÖ´ë 272¸¸ °³ÀÇ ÀÏÀÚ¸®°¡ µ¥ÀÌÅÍ °úÇÐ ±â¼úÀ» ÇÊ¿ä·Î Çϸç, ÀÌ´Â »ê¾÷ Àü¹Ý¿¡¼­ °¡Àå ¼ö¿ä°¡ ¸¹Àº ¿ªÇÒ Áß ÇϳªÀ̸ç, MIS ¹× CSÇаú¸¦ Á¹¾÷ÇÑ ´ëÇлýµéÀº µ¥ÀÌÅͺ£À̽º ¸ðµ¨¸µÀ̳ª ½ÇÁ¦ µ¥ÀÌÅͺ£À̽º ȯ°æ¿¡ ´ëÇØ °ÅÀÇ ¾ËÁö ¸øÇÕ´Ï´Ù. °ÅÀÇ ¾ËÁö ¸øÇÕ´Ï´Ù. ºñÁî´Ï½º ÀÎÅÚ¸®Àü½º³ª ºÐ¼® °úÁ¤Àº ¸»ÇÒ °Íµµ ¾ø°í, µ¥ÀÌÅͺ£À̽º ¼ö¾÷ÀÌ Àִ ƯÁ¤ IT °úÇÐ Àü°øµµ ¾ø½À´Ï´Ù. Á÷Àå¿¡¼­ »ç¿ëµÇ´Â µµ±¸¿Í ±â¼úÀ» Á¢ÇÒ ±âȸ°¡ ºÎÁ·ÇÕ´Ï´Ù.

À̺¥Æ® ½ºÆ®¸² ó¸® ½ÃÀå µ¿Çâ

»ç¹°ÀÎÅͳÝ(IoT) ¹× ½º¸¶Æ® ±â±â µµÀÔ Áõ°¡

  • ÃÖ±Ù OracleÀÇ Á¶»ç¿¡ µû¸£¸é, ±â¾÷ IoT µµÀÔÀÚµéÀº ´õ ½¬¿î ¹æ¹ýÀ» ÅÃÇÒ ÀÇÇâÀÌ ÀÖ´Â °ÍÀ¸·Î ³ªÅ¸³µ½À´Ï´Ù. Á¶»ç¿¡ Âü¿©ÇÑ 800¸íÀÇ IoT ÀÇ»ç°áÁ¤±ÇÀÚ Áß °ÅÀÇ 3ºÐÀÇ 2(64%)°¡ ¸ÂÃãÇü IoT ¼Ö·ç¼ÇÀÌ ¾Æ´Ñ '±â¼ºÇ°' IoT ¼Ö·ç¼ÇÀ» ¼±ÅÃÇÏ°Ú´Ù°í ´äÇØ ±â¾÷ÀÇ IoT Á¦Ç° ±¸¸Å ¹æ½ÄÀÌ º¯È­Çϰí ÀÖÀ½À» º¸¿©ÁÝ´Ï´Ù. ¶ÇÇÑ, ÀÀ´äÀÚÀÇ 75%´Â ¼Ö·ç¼Ç Á¦°ø¾÷ü°¡ ¿¬°á ±â´ÉÀ» ÅëÇÕÇϰųª ¼Ö·ç¼Ç Á¦°ø¾÷ü°¡ ÆÐŰ¡Çϱ⸦ ¿øÇϸç, 70%´Â ¼Ö·ç¼Ç Á¦°ø¾÷ü°¡ ¿ÏÀüÇÑ ¼Ö·ç¼ÇÀÇ ÀϺηΠµ¥ÀÌÅÍ ¹× ºÐ¼® ±â´ÉÀ» Á¦°øÇϱ⸦ ¿øÇÑ´Ù°í ´äÇß½À´Ï´Ù. ÀÌ °á°ú´Â IoT ±â´ÉÀ» Ãß°¡ÇÏ°í °¡Ä¡¸¦ âÃâÇÏ´Â µ¥ °É¸®´Â ½Ã°£À» ´ÜÃàÇÒ ¼ö ÀÖ´Â °£´ÜÇÑ ¹æ¹ý¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡Çϰí ÀÖÀ½À» º¸¿©ÁÝ´Ï´Ù.
  • ¶ÇÇÑ ¿ÃÇØ±îÁö ³×Æ®¿öÅ©¿¡ ¿¬°áµÈ ÀåÄ¡¿Í ¿¬°á ¼ö´Â 2018³â 184¾ï °³¿¡¼­ 300¾ï °³¿¡ À°¹ÚÇÒ °ÍÀ¸·Î ½Ã½ºÄÚÀÇ ¿¬·Ê ÀÎÅÍ³Ý º¸°í¼­°¡ ¿¹ÃøÇß½À´Ï´Ù. ¿ÃÇØ ¸»±îÁö IoT ±â±â´Â Àüü ³×Æ®¿öÅ© ¿¬°á ±â±âÀÇ 50%(14.7¾ï °³)¸¦ Â÷ÁöÇÒ °ÍÀ̸ç, ÀÌ´Â 2018³â 33%(6.1¾ï °³)¿¡¼­ Áõ°¡ÇÑ ¼öÄ¡ÀÔ´Ï´Ù.
  • ¸¶ÀÌÅ©·Î¼ÒÇÁÆ®ÀÇ IoT Signals º¸°í¼­¿¡ µû¸£¸é, ¹Ì±¹ÀÌ ÀÌ¿ë ´Ü°è¿¡ ÀÖ´Â ÇÁ·ÎÁ§Æ®ÀÇ 27%·Î 1À§¸¦ Â÷ÁöÇß°í, ½ºÆäÀÎ(22%), È£ÁÖ(18%)°¡ ±× µÚ¸¦ À̾úÀ¸¸ç, IoT µµÀÔ °¡¼ÓÈ­ Ãø¸é¿¡¼­ ¹Ì±¹Àº ´Ù¸¥ ±¹°¡¸¦ Å©°Ô ¾Õ¼­°í ÀÖÀ¸¸ç, ¹Ì±¹ ±â¾÷ÀÇ 78%°¡ ÇâÈÄ 2³â°£ IoT Ȱ¿ëÀ» È®´ëÇÒ ÀÇÇâÀÌ ÀÖ´Ù°í ´äÇß½À´Ï´Ù. ±×·¯³ª ¿ÃÇØ µ¶ÀÏ ±â¾÷ÀÇ 51%, ÀϺ» ±â¾÷ÀÇ 51%°¡ ÀÌ¿ë È®´ë¸¦ °èȹÇϰí ÀÖ½À´Ï´Ù. ÀÌ´Â µ¶Àϰú ÀϺ» ½ÃÀåÀÇ ±â¼ú µµÀÔÀÌ ´õ º¸¼öÀûÀ̱⠶§¹®ÀÎ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.
  • GallupÀÌ ¸Å³â ½Ç½ÃÇÏ´Â °Ç°­ ¹× ÀÇ·á °ü·Ã ¼³¹®Á¶»ç¿¡ µû¸£¸é, ¹Ì±¹ ¼ÒºñÀÚÀÇ 90%°¡ ÇöÀç ¿þ¾î·¯ºí ÇÇÆ®´Ï½º Æ®·¡Ä¿¸¦ »ç¿ëÇϰí ÀÖ´Ù°í ´äÇßÀ¸¸ç, °°Àº ºñÀ²ÀÇ ÀÀ´äÀÚ°¡ ÇöÀç ¸ð¹ÙÀÏ °Ç°­ ¾ÖÇø®ÄÉÀ̼ÇÀ» »ç¿ëÇϰí ÀÖ´Ù°í ´äÇß½À´Ï´Ù. ÇöÀç »ç¿ë ÇöȲ°ú °ú°Å¿¡ ÀÌ·¯ÇÑ ±â±â¸¦ »ç¿ëÇÑ ÀûÀÌ ÀÖ´Ù°í ´äÇÑ ¹Ì±¹ÀÎÀÇ ºñÀ²À» ÇÕÄ¡¸é, ¹Ì±¹ÀÎ 3¸í Áß 1¸íÀº ¼Õ¸ñ ¹êµå³ª ½º¸¶Æ®¿öÄ¡¿Í °°Àº ÇÇÆ®´Ï½º Æ®·¡Ä¿¸¦ »ç¿ëÇϰųª(34%), ÈÞ´ëÆùÀ̳ª ÅÂºí¸´ ¾ÖÇø®ÄÉÀ̼ÇÀ» »ç¿ëÇØ º» ÀûÀÌ ÀÖ´Â °ÍÀ¸·Î ³ªÅ¸³µ½À´Ï´Ù. (34%) ¶Ç´Â ÈÞ´ëÆùÀ̳ª ÅÂºí¸´ ¾ÖÇø®ÄÉÀ̼ÇÀ» ÅëÇØ ÀÚ½ÅÀÇ °Ç°­ Åë°è¸¦ ÃßÀûÇÑ ÀûÀÌ ÀÖ´Â °ÍÀ¸·Î ³ªÅ¸³µ½À´Ï´Ù.
  • AI¿Í °áÇÕµÈ µðÁöÅÐ ¾î½Ã½ºÅÏÆ®´Â »ç¿ëÀÚ°¡ ÇÚÁîÇÁ¸®·Î ½º¸¶Æ® ±â±â¸¦ º¸´Ù È¿À²ÀûÀ¸·Î µµÀÔÇÒ ¼ö ÀÖ°ÔÇÔÀ¸·Î½á ±¸¸ÅÀÚÀÇ ¼±È£µµ¿¡ Å« ¿µÇâÀ» ¹ÌÄ¡°í ÀÖÀ¸¸ç, Alexa, Google Assistant, Siri, Bixby¿Í °°Àº µðÁöÅÐ ¾î½Ã½ºÅÏÆ®ÀÇ µîÀåÀ¸·Î ½º¸¶Æ® ±â±â¸¦ À½¼º ¸í·ÉÀ¸·Î Á¦¾îÇÏ°í °ü¸®ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ºí·çÅõ½º ½ºÇÇÄ¿ Á¦¾î, ÇÚÁîÇÁ¸® ä³Î ¼­Çΰú °°Àº µðÁöÅÐ ºñ¼­ÀÇ °³¹ß ±â´ÉÀÌ ½º¸¶Æ®È¨ ±â±â ½ÃÀåÀ» ÁÖµµÇϰí ÀÖÀ¸¸ç, À½¼º ¸í·ÉÀ¸·Î ½º¸¶Æ® ±â±â¸¦ Á¦¾îÇÏ°í °ü¸®ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ, ±¸¸ÅÀÚµéÀº ´õ ³ªÀº ÆíÀǼº°ú »ç¿ëÀÚ °æÇèÀ» À§ÇØ ¸ÂÃãÇü µð¹ÙÀ̽º¸¦ ¼±ÅÃÇÕ´Ï´Ù.

ºÏ¹Ì ½ÃÀåÀÌ Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ Àü¸Á

  • ºÏ¹Ì´Â ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå ±Ô¸ð¸¦ À¯ÁöÇϸç ESP ½ÃÀåÀ» Áö¹èÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. ÀÌ Áö¿ª¿¡ ¸¹Àº ESP º¥´õ°¡ Á¸ÀçÇÏ´Â ÀÌÀ¯´Â »õ·Î¿î ±â¼úÀÇ Á¶±â µµÀÔ°ú ³ôÀº µµÀÔ·ü, ±×¸®°í À̺¥Æ® ±â¹Ý Á¦°øÀ» °³¼±Çϱâ À§ÇÑ ¿¬±¸°³¹ß¿¡ ÅõÀÚÇϰí Àֱ⠶§¹®ÀÔ´Ï´Ù.
  • À̺¥Æ® ½ºÆ®¸² 󸮿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ÀÌ Áö¿ª ±â¾÷µéÀº ½ÃÀå Á¡À¯À²À» È®º¸Çϱâ À§ÇØ »õ·Î¿î ¼Ö·ç¼ÇÀ» Á¦°øÇϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, IBM Event Streams´Â ÅëÇÕ ±â´ÉÀ» Á¦°øÇÏ´Â IBM Cloud PakÀÔ´Ï´Ù. À̺¥Æ® ½ºÆ®¸²À» ÅëÇØ ±â¾÷ µ¥ÀÌÅÍ¿¡ ´ëÇÑ ¾×¼¼½º¸¦ Á¦°øÇϰí, À̺¥Æ® ±â¹Ý µ¥ÀÌÅͷκÎÅÍ ÀλçÀÌÆ®¸¦ ¾ò°í, ½Ç½Ã°£ ´ë±Ô¸ð ŽÁö ¹× Á¶Ä¡¸¦ ÃëÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÏ´Â IBMÀÇ Â÷º°È­ ¿ä¼Ò´Â API °ü¸®¿Í ÇÔ²² À̺¥Æ® ¿£µåÆ÷ÀÎÆ®¸¦ Á¦¾îÇÒ ¼ö ÀÖ´Â ´É·ÂÀÔ´Ï´Ù. Á¦¾îÇÒ ¼ö ÀÖ´Â ´É·ÂÀÔ´Ï´Ù.
  • ¹Ì±¹ ±â¹Ý µ¥ÀÌÅÍ ºÐ¼® ±â¾÷ Express Analytics´Â Áö³­ 2¿ù ¼¼°è È®Àå Àü·«ÀÇ ÀÏȯÀ¸·Î Àεµ ½ÃÀå¿¡ ÁøÃâÇØ ±â¼ú, Åë½Å, ÀºÇà, ÀºÇà, ±¤°í, ¼Ò¸Å »ê¾÷ ±â¾÷ ¹× °ø°ø ºÎ¹®¿¡ ÀΰøÁö´É(AI) ¹× ¸Ó½Å·¯´×(ML) ±â¹Ý ¿¹Ãø ºÐ¼® ¼­ºñ½º¸¦ Á¦°øÇÑ´Ù°í ¹ßÇ¥Çß½À´Ï´Ù. ¶ÇÇÑ, ºü¸£°Ô º¯È­ÇÏ´Â µðÁöÅÐ Àεµ ½ÃÀå¿¡¼­ Æ÷Æ®Æú¸®¿À¸¦ È®ÀåÇϱâ À§ÇØ µ¨¸®¿¡ º»»ç¸¦ µÐ ¸¶ºêÄÄ ¾îµå¹ÙÀÌÀú¸®(Mavcomm Advisory)¿Í Àü·«Àû °è¾àÀ» ü°áÇß½À´Ï´Ù.
  • ¹Ì±¹ Ŭ¶ó¿ìµå ºÎ¹®¿¡¼­´Â ¸î °¡Áö ÆÄÆ®³Ê½Ê Ȱµ¿À» º¼ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ±â¼ú Áß½ÉÀÇ ¼¼°è ±â¾÷ÀÎ HCL Technologies´Â Google Cloud¿ÍÀÇ ÆÄÆ®³Ê½ÊÀ» ¿¬ÀåÇÏ¿© HCLÀÇ Actian Æ÷Æ®Æú¸®¿À ÀÎ Actian Avalanche¸¦ Google Cloud¿¡ Á¦°øÇÑ´Ù°í ¹ßÇ¥Çß½À´Ï´Ù. ÀÌ ÇÏÀ̺긮µå Ŭ¶ó¿ìµå µ¥ÀÌÅÍ¿þ¾îÇϿ콺´Â ±â¾÷ÀÇ ºñÁî´Ï½º ºÐ¼® ¿öÅ©·Îµå¸¦ °³¼±Çϱâ À§ÇØ Á¦¾ÈµÈ °ÍÀ¸·Î, Avalanche´Â Google Cloud¿¡¼­ ºñÁî´Ï½º ÀÎÅÚ¸®Àü½º ¹× ºÐ¼® Ç÷§ÆûÀ» Á¦°øÇÏ¿© ÀϹÝÀûÀÎ SaaS ¹× ±â¾÷ ¾ÖÇø®ÄÉÀ̼ÇÀ» ½±°Ô µµÀÔÇÏ°í »ç¿ëÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÕ´Ï´Ù. ¾ÖÇø®ÄÉÀ̼ÇÀÌ ½±°Ô µµÀÔÇÏ°í »ç¿ëÇÒ ¼ö ÀÖ´Â Á¾ÇÕÀûÀÎ ¼Ö·ç¼ÇÀ» Á¦°øÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÕ´Ï´Ù.
  • µðÁöÅРä³Î·Î ÀüȯÇÏ´Â °í°´ÀÌ Áõ°¡ÇÏ°í ¹°¸®Àû ÁöÁ¡¸ÁÀÇ ºñ¿ëÀÌ ³ô¾ÆÁü¿¡ µû¶ó µðÁöÅÐ Àü¿ë ÀºÇà »ç¾÷ü°¡ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. ¿¹±ÝÀ» ¸ðÀ¸±â À§ÇØ µðÁöÅÐ Àü¿ë ÀºÇàÀ» ¼³¸³ÇÏ´Â ±ÝÀ¶±â°üÀº ÀûÁö¸¸, ´ëÃâ, ÅõÀÚ, Àü¹® ¼­ºñ½º¸¦ Á¦°øÇϱâ À§ÇØ µðÁöÅÐ Ç÷§ÆûÀ» Ȱ¿ëÇÏ´Â ±ÝÀ¶±â°üµµ ÀÖ½À´Ï´Ù. µÎ °æ¿ì ¸ðµÎ »õ·Î¿î ¾ÆÀ̵ð¾î¸¦ âÃâÇϰí, °í°´ °æÇèÀ» °³¼±Çϰí, °í°´¿¡°Ô ´õ ¸¹Àº °¡Ä¡¸¦ Á¦°øÇÏ´Â µ¥ ÃÊÁ¡À» ¸ÂÃß°í ÀÖ½À´Ï´Ù. ÀÌ´Â °í°´ µ¥ÀÌÅÍ¿Í À̺¥Æ® ½ºÆ®¸² 󸮸¦ ÅëÇØ¼­¸¸ °¡´ÉÇÕ´Ï´Ù.

À̺¥Æ® ½ºÆ®¸² ó¸® »ê¾÷ °³¿ä

¼¼°è À̺¥Æ® ½ºÆ®¸² ó¸® ½ÃÀåÀº ´Ù¼öÀÇ ÁøÀÔÀÚ°¡ Á¸ÀçÇϱ⠶§¹®¿¡ Àû´çÇÑ °æÀï »óÅ¿¡ ÀÖ½À´Ï´Ù. ½ÃÀå ÁøÀÔ ±â¾÷Àº Á¦Ç° Æ÷Æ®Æú¸®¿À¸¦ È®ÀåÇϰí Áö¸®Àû ¹üÀ§¸¦ È®ÀåÇϸç ÁÖ·Î Á¦Ç° Çõ½Å, ÇÕº´ ¹× Àμö¿Í °°Àº Àü·«À» äÅÃÇÏ¿© ½ÃÀå¿¡¼­ °æÀïÀ» À¯ÁöÇϱâ À§ÇØ Á¦Ç° Çõ½Å, ÇÕº´ ¹× Àμö µîÀÇ Àü·«À» äÅÃÇϰí ÀÖ½À´Ï´Ù.

Áö³­ 10¿ù, µ¥ÀÌÅÍ ½ºÆ®¸² ó¸® Ç÷§ÆûÀ» °³¹ßÇÏ´Â RisingWave Labs´Â Yunqi Partners, ¹ÌÈ®ÀÎµÈ ±â¾÷ ÆÄÆ®³Ê ¹× ¿£Á© ÅõÀÚÀÚ¸¦ Áß½ÉÀ¸·Î 3,600¸¸ ´Þ·¯ÀÇ ½Ã¸®Áî A ÀÚ±Ý Á¶´ÞÀ» ¹ßÇ¥Çß½À´Ï´Ù. RisingWaveÀÇ ÃÑ ÅõÀÚ¾×Àº 4,000¸¸ ´Þ·¯ ÀÌ»óÀ̸ç, ÀÌ ÀÚ±ÝÀº ¸î ³â ÈÄ »õ·Î¿î Ŭ¶ó¿ìµå ¼­ºñ½ºÀÎ RisingWave Ŭ¶ó¿ìµå¸¦ Ãâ½ÃÇϱâ À§ÇØ ½ºÅ¸Æ®¾÷ÀÇ »ç¾÷ È®Àå¿¡ »ç¿ëµÉ ¿¹Á¤ÀÔ´Ï´Ù.

±×´åÀÌ 2022³â 3¿ù¿¡ ¸¸µç QuineÀº ´ë¿ë·® À̺¥Æ® 󸮸¦ À§ÇØ ¼³°èµÈ ¿ÀÇ ¼Ò½º ½ºÆ®¸®¹Ö ±×·¡ÇÁ ¼Ö·ç¼ÇÀ¸·Î, ±×·¡ÇÁ µ¥ÀÌÅÍ¿Í ½ºÆ®¸®¹Ö ±â¼úÀ» È¥ÇÕÇÏ¿© ½Ç½Ã°£À¸·Î º¹ÀâÇÑ À̺¥Æ® ó¸® ÇÁ·Î¼¼½º¸¦ ´ë±Ô¸ð·Î ±¸ÃàÇÒ ¼ö ÀÖ°Ô ÇØÁشٴ °ÍÀÌ ±×´åÀÇ ¼³¸íÀÔ´Ï´Ù. º¹ÀâÇÑ À̺¥Æ® ó¸® ÇÁ·Î¼¼½º¸¦ ´ë±Ô¸ð·Î ±¸ÃàÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. ½ºÆ®¸² 󸮸¦ À§ÇÑ À̺¥Æ® ±â¹Ý ¸¶ÀÌÅ©·Î¼­ºñ½º °³¹ßÀº µ¥ÀÌÅͺ£À̽º¿Í ºÐ»ê ½Ã½ºÅÛ ¿µ¿ªÀÇ º¹ÀâÇÑ ¾î·Á¿òÀÌ °áÇÕµÈ ¾î·Á¿î ÀÛ¾÷ÀÔ´Ï´Ù. ÇÕÀÇ, µ¿½Ã¼º, Æ®·£Àè¼Ç ·ÎÁ÷, Ŭ·¯½ºÅ͸µ µ¿ÀÛ, ³»°áÇÔ¼º, È®À强, ÀÐ±â ¹× ¾²±â ¼º´É Æ®·¹ÀÌµå ¿ÀÇÁÀÇ ±ÕÇü, ±âŸ ±â´É µîÀÌ ¸ðµÎ Æ÷ÇԵ˴ϴÙ.

±âŸ ÇýÅÃ

  • ¿¢¼¿ Çü½ÄÀÇ ½ÃÀå ¿¹Ãø(ME) ½ÃÆ®
  • 3°³¿ù°£ÀÇ ¾Ö³Î¸®½ºÆ® Áö¿ø

¸ñÂ÷

Á¦1Àå ¼Ò°³

  • Á¶»ç °¡Á¤°ú ½ÃÀå Á¤ÀÇ
  • Á¶»ç ¹üÀ§

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå ¿ªÇÐ

  • ½ÃÀå °³¿ä
  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • »ç¹°ÀÎÅͳÝ(IoT)°ú ½º¸¶Æ® µð¹ÙÀ̽º ä¿ë Áõ°¡
    • ´Ù¾çÇÑ ¼Ò½º¿¡¼­ ´ë·® µ¥ÀÌÅ͸¦ ºÐ¼®ÇÏ´Â ¿ä±¸ Áõ°¡
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • µ¥ÀÌÅÍ º¸¾È°ú ÇÁ¶óÀ̹ö½Ã¿¡ °üÇÑ ¿ì·Á
  • Porter's Five Forces ºÐ¼®
    • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
    • ±¸¸ÅÀÚÀÇ ±³¼··Â
    • ½Å±Ô Âü¿©¾÷üÀÇ À§Çù
    • ´ëüǰÀÇ À§Çù
    • °æÀï ±â¾÷ °£ÀÇ °æÀï °­µµ

Á¦5Àå ½ÃÀå ¼¼ºÐÈ­

  • µµÀÔ ¹æ½Ä
    • Ŭ¶ó¿ìµå
    • ¿ÂÇÁ·¹¹Ì½º
  • ÄÄÆ÷³ÍÆ®
    • ¼Ö·ç¼Ç(¼ÒÇÁÆ®¿þ¾î & Ç÷§Æû)
    • ¼­ºñ½º
  • ¾ÖÇø®ÄÉÀ̼Ç
    • ºÎÁ¤ °¨Áö
    • ¾Ë°í¸®Áò °Å·¡
    • ÇÁ·Î¼¼½º ¸ð´ÏÅ͸µ
    • ¿¹Áöº¸Àü
    • ¼¼ÀÏÁî ¹× ¸¶ÄÉÆÃ
  • ÃÖÁ¾ ÀÌ¿ë »ê¾÷º°
    • IT¡¤Åë½Å
    • BFSI
    • Á¦Á¶¾÷
    • ¼Ò¸Å¡¤E-Commerce
    • ¿¡³ÊÁö ¹× À¯Æ¿¸®Æ¼
    • ±âŸ ÃÖÁ¾ ÀÌ¿ë »ê¾÷º°
  • Áö¿ª
    • ºÏ¹Ì
    • À¯·´
    • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ¶óƾ¾Æ¸Þ¸®Ä«
    • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦6Àå °æÀï ±¸µµ

  • ±â¾÷ °³¿ä
    • IBM Corporation
    • Microsoft Corporation
    • Google Inc.
    • Oracle Corporation
    • Amazon Web Services Inc.
    • Salesforce
    • Redhat
    • SAP SE
    • TIBCO
    • Hazelcast IMDG
    • SAS
    • Confluent, Inc.
    • Hitachi Vantara
    • Informatica

Á¦7Àå ÅõÀÚ ºÐ¼®

Á¦8Àå ½ÃÀå ±âȸ¿Í ÇâÈÄ µ¿Çâ

ksm 25.01.23

The Event Stream Processing Market is expected to register a CAGR of 15.7% during the forecast period.

Event Stream Processing - Market - IMG1

Key Highlights

  • According to MachEye, people produce 2.5 quintillion bytes of data daily, which is expected to grow faster each year. Business intelligence users are already struggling to translate this explosion of complex data into actionable insights. As a result, there would be a significant demand for more advanced, easy-to-use data translation tools.
  • Targeted offers and predictive analytics enable merchants to develop highly personalized offers for all their customers at a very granular level. For instance, retailers can personalize the in-store experience by providing offers to incentivize frequent buying and drive more purchases, thereby achieving higher sales across all their channels. Predictive analytics can be used to upsell or cross-sell a customer. Further, predictive analytics helps businesses predict a customer's lifetime value (CLV). CLV helps forecast a customer's discounted value over time by analyzing past behavior to determine the most profitable customers over time.
  • Further, due to the necessity for real-time processing of vast volumes of RFID data, the use of event stream processing in radio-frequency identification (RFID) event processing applications is quickly rising. RFID tags are connected to items or people and generate a signal that an RFID reader can read. This lets businesses keep track of where goods and people are in real time, which is important for many things like managing the supply chain and keeping people safe.
  • According to a survey from Sisense, 50% of companies are utilizing predictive analytics more or much more than before the COVID-19 pandemic, including over 68% of small businesses. For instance, a significant challenge of the COVID-19 pandemic was ensuring that clients felt safe when visiting brick-and-mortar stores. With the help of business intelligence tools, social networking platforms, and customer relationship management (CRM) systems, companies could get direct feedback from customers and take the right steps to ensure everyone's health and safety.
  • There is a significant increase in the requirement for data analytics and data visualization tools. For example, according to the IBM Quant Crunch, up to 2.72 million jobs require data science skills, making it one of the most in-demand roles across industries. College graduates from the MIS and CS departments know little about database modeling or real-world database environments. There are specific IT sciences majors with database classes, let alone business intelligence and analytics courses. There is a lack of exposure to tools and technologies found in the workplace.

Event Stream Processing Market Trends

Increasing Adoption of the Internet of Things (IoT) and Smart Devices

  • According to a recent Oracle survey, enterprise IoT adopters are prepared to take an easier route. Nearly two-thirds (64%) of the 800 IoT decision-makers surveyed said they would choose an "off-the-shelf" IoT solution over a custom-built one, showing a shift in how businesses purchase IoT products. Additionally, 75% of respondents want the connection baked into or packaged by the solution provider, and 70% want providers to provide data and analytics capabilities as part of a complete solution. The results show that there is a growing need for a simple way to add IoT capabilities that speeds up the time it takes to get value from them.
  • Moreover, by this year, there will be close to 30 billion network-connected devices and connections, up from 18.4 billion in 2018, predicts Cisco's Annual Internet Report. By the end of the current year, IoT devices will make up 50% (14.7 billion) of all networked devices, up from 33% (6.1 billion) in 2018.
  • According to the Microsoft IoT Signals report, the United States leads the pack with 27% of projects in the usage phase, followed by Spain (22%), and Australia (18%). In terms of accelerating IoT adoption, the US is far ahead of the rest of the world: 78% of US firms intend to increase their IoT usage over the next two years. However, only 53% of By this year, 51% of German businesses and 51% of Japanese businesses planned to increase utilization. This can be due to the more conservative technological adoption in the German and Japanese markets.
  • According to Gallup's annual Health and Healthcare survey, 90% of American consumers said they are currently using a wearable fitness tracker, and the same percentage stated that they currently use a mobile health application. By combining the present use with the percentages of Americans that claim, in the past, they have used such devices, it becomes clear that, at some point, one in three Americans used a fitness tracker such as a wristband or smartwatch (34%), or tracked their health statistics on a phone or tablet application (32%).
  • Digital assistance combined with AI allows users to deploy smart devices hands-free and more efficiently, dramatically influencing buyer preferences. With the rise of digital assistants such as Alexa, Google Assistant, Siri, and Bixby, smart devices can now be controlled and managed via voice commands. The developing features of these digital assistants, such as Bluetooth speaker control and hands-free channel surfing, are driving the market for smart home gadgets. Buyers also choose customized devices for their ease and improved user experience.

North America is Expected to Hold a Large Share of the Market

  • North America is expected to hold the largest market size and dominate the ESP market during the forecast period. The fact that there are a lot of ESP vendors in the area is due to their early adoption of new technologies and high adoption rates, as well as their investments in research and development to improve their event-based offerings.
  • The rise in demand for event stream processing is pushing firms in the region to provide new solutions to capture market share. For example, IBM Event Streams is an IBM Cloud Pak for integration capabilities. It gives enterprises access to corporate data via event streams, allowing them to gain insights from event-based data and detect and take action in real time and at scale. The IBM differentiators mentioned were the ability to control event endpoints alongside API administration.
  • In February last year, Express Analytics, a US-based data analytics firm, announced that it would enter the Indian market as part of its global expansion strategy, offering artificial intelligence (AI) and machine learning (ML)-based predictive analytics services to companies in the technology, telecom, banking, advertising, and retail industries, as well as the public sector. In addition, the company has made a strategic deal with Delhi-based Mavcomm Advisory to expand its portfolio in the fast-changing digital Indian market.
  • The cloud segment in the United States is witnessing several partnership activities. For instance, HCL Technologies, a global technology-oriented company, announced the extension of its partnership with Google Cloud to bring HCL's Actian portfolio offering, Actian Avalanche, to Google Cloud. This hybrid cloud data warehouse is proposed to improve an enterprise's operational analytics workload. Avalanche also offers a business intelligence and analytics platform with Google Cloud and helps popular SaaS and enterprise applications deliver a comprehensive solution that is easy to deploy and consume.
  • With increasing numbers of customers switching to digital channels and the high cost of a physical branch network, digital-only banking entities are proliferating. While few financial institutions are launching digital-only banks to collect deposits, others use digital platforms to provide lending, investing, and specialty services. In both cases, the focus is on coming up with new ideas, making the customer experience better, and giving the customer more value. This is only possible with customer data and event stream processing.

Event Stream Processing Industry Overview

The global event stream processing market is moderately competitive owing to the presence of multiple players. The players in the market are adopting strategies like product innovation, mergers, and acquisitions in order to expand their product portfolios, expand their geographic reach, and primarily to stay competitive in the market.

In October 2022, RisingWave Labs, a business developing a platform for data stream processing, announced a Series A fundraising round of USD 36 million headed by Yunqi Partners, unidentified corporate partners, and angel investors. The money, which brings RisingWave's total investment to more than USD 40 million, will be used to expand the startup's business operations in preparation for the launch of RisingWave Cloud, a new cloud service, in the next few years.

In March 2022, Quine, created by thatDot, will be an open-source streaming graph solution designed for high-volume event processing. Quine, according to thatDot, mixes graph data and streaming technologies to enable the building of real-time, complicated event processing processes at scale. Developing an event-driven microservice for stream processing is a difficult endeavor that combines complex difficulties from the database and distributed systems domains. Consensus, concurrency, transactional logic, clustering behavior, fault tolerance, scalability, balancing read and write performance trade-offs, and other features are all included.

Additional Benefits:

  • The market estimate (ME) sheet in Excel format
  • 3 months of analyst support

TABLE OF CONTENTS

1 INTRODUCTION

  • 1.1 Study Assumptions and Market Definition
  • 1.2 Scope of the Study

2 RESEARCH METHODOLOGY

3 EXECUTIVE SUMMARY

4 MARKET DYNAMICS

  • 4.1 Market Overview
  • 4.2 Market Drivers
    • 4.2.1 Increasing Adoption of the Internet of Things (IoT) and Smart Devices
    • 4.2.2 Increasing Need to Analyze Large Volumes of Data From Diverse Sources
  • 4.3 Market Restraints
    • 4.3.1 Concerns Associated with Data Security and Privacy
  • 4.4 Porter's Five Forces Analysis
    • 4.4.1 Bargaining Power of Suppliers
    • 4.4.2 Bargaining Power of Buyers
    • 4.4.3 Threat of New Entrants
    • 4.4.4 Threat of Substitute Products
    • 4.4.5 Intensity of Competitive Rivalry

5 MARKET SEGMENTATION

  • 5.1 Deployment Type
    • 5.1.1 Cloud
    • 5.1.2 On-premise
  • 5.2 Component
    • 5.2.1 Solutions (Software & Platforms)
    • 5.2.2 Services
  • 5.3 Application
    • 5.3.1 Fraud Detection
    • 5.3.2 Algorithmic Trading
    • 5.3.3 Process Monitoring
    • 5.3.4 Predictive Maintenance
    • 5.3.5 Sales and Marketing
  • 5.4 End-user Vertical
    • 5.4.1 IT & Telecommunications
    • 5.4.2 BFSI
    • 5.4.3 Manufacturing
    • 5.4.4 Retail & E-commerce
    • 5.4.5 Energy & Utilities
    • 5.4.6 Other End-user Verticals
  • 5.5 Geography
    • 5.5.1 North America
    • 5.5.2 Europe
    • 5.5.3 Asia-Pacific
    • 5.5.4 Latin America
    • 5.5.5 Middle-East and Africa

6 COMPETITIVE LANDSCAPE

  • 6.1 Company Profiles
    • 6.1.1 IBM Corporation
    • 6.1.2 Microsoft Corporation
    • 6.1.3 Google Inc.
    • 6.1.4 Oracle Corporation
    • 6.1.5 Amazon Web Services Inc.
    • 6.1.6 Salesforce
    • 6.1.7 Redhat
    • 6.1.8 SAP SE
    • 6.1.9 TIBCO
    • 6.1.10 Hazelcast IMDG
    • 6.1.11 SAS
    • 6.1.12 Confluent, Inc.
    • 6.1.13 Hitachi Vantara
    • 6.1.14 Informatica

7 INVESTMENT ANALYSIS

8 MARKET OPPORTUNITIES AND FUTURE TRENDS

ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦