½ÃÀ庸°í¼­
»óǰÄÚµå
1636589

À¯·´ÀÇ ¸®Å×ÀÏ ¾Ö³Î¸®Æ½½º ½ÃÀå : Á¡À¯À² ºÐ¼®, »ê¾÷ µ¿Çâ ¹× Åë°è, ¼ºÀå ¿¹Ãø(2025-2030³â)

Europe Retail Analytics - Market Share Analysis, Industry Trends & Statistics, Growth Forecasts (2025 - 2030)

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Mordor Intelligence | ÆäÀÌÁö Á¤º¸: ¿µ¹® | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

À¯·´ÀÇ ¸®Å×ÀÏ ¾Ö³Î¸®Æ½½º ½ÃÀåÀº ¿¹Ãø ±â°£ µ¿¾È CAGR 20.76%¸¦ ±â·ÏÇÒ Àü¸ÁÀÔ´Ï´Ù.

Europe Retail Analytics-Market-IMG1

ÁÖ¿ä ÇÏÀ̶óÀÌÆ®

  • ÀÌ Áö¿ª¿¡¼­ ¸®Å×ÀÏ ¾Ö³Î¸®Æ½½º¸¦ Ȱ¿ëÇÏ´Â ¿øµ¿·ÂÀº °í°´ Çൿ¿¡ ´ëÇÑ ±¸Ã¼ÀûÀÌ°í ½Ç¿ëÀûÀÎ ÀλçÀÌÆ®¸¦ ¾ò´Â °ÍÀÔ´Ï´Ù. ¸®Å×ÀÏ ¾Ö³Î¸®Æ½½º ¼­ºñ½º´Â ¼ÒºñÀÚ °¢ÀÚ¿¡°Ô ¸Â´Â °í·Á »çÇ×À» Á¦°øÇϵµ·Ï ¼³°èµÇ¾ú½À´Ï´Ù. ±â¾÷Àº ¼ÒºñÀÚ ¿ä±¸ÀÇ º¯È­¿Í °í°´ ·Î¿­Æ¼¸¦ µÑ·¯½Ñ ¼Ò¸Å¾÷ü °£ÀÇ °æÀï °ÝÈ­¿¡ ´ëÀÀÇÏ¿© °í°´ÀÇ ±â¾÷ Âü¿©¸¦ Àå±âÈ­ÇÏ´Â µ¥ÀÌÅÍ Áß½ÉÀÇ ¸®Å×ÀÏ ¾Ö³Î¸®Æ½½º ¼Ö·ç¼ÇÀ» ÀÌ¿ëÇϰí ÀÖ½À´Ï´Ù. ¼Ò¸Å¾÷ÀÇ ¿¹Ãø ºÐ¼®À» ÅëÇØ ¼Ò¸Å¾÷ü´Â °í°´ µ¥ÀÌÅ͸¦ Æò°¡ÇÏ°í °í°´ÀÇ ¿å±¸¸¦ ¿¹ÃøÇÒ ¼ö ÀÖ½À´Ï´Ù.
  • ¶ÇÇÑ °í°´ Áß½ÉÀÇ °üÁ¡¿¡¼­ ¸®Å×ÀÏ ¾Ö³Î¸®Æ½½º Àü·«ÀÇ µµÀÔÀº ¿Â¶óÀΠä³Î Àü¹Ý¿¡¼­ ¿øÈ°ÇÑ ¼ÒºñÀÚ °æÇèÀ» âÃâÇϰí ÀÚµ¿È­ÇÏ´Â µ¥ ÇÊ¿äÇÑ ¸®¼Ò½º¿Í ±â¼úÀ» ±â¾÷¿¡ Á¦°øÇÏ´Â °ÍÀ» ¸ñÇ¥·Î ÇÕ´Ï´Ù. °í°´°ü°è°ü¸®(CRM) ½Ã½ºÅÛÀ» µµÀÔÇÏ´Â ¼Ò¸Å±â¾÷ÀÌ ´Ã¾î³ª¸é¼­ °í°´Ã¼ÇèÀÌ Çâ»óµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ IoT, POS, RFID ¹× ±âŸ ½º¸¶Æ® ÀåÄ¡ÀÇ »ç¿ë È®´ë·Î ÀÎÇØ ¾öû³­ ¾çÀÇ µ¥ÀÌÅͰ¡ »ý¼ºµÇ°í ¼Ò¸Å ¾÷ü´Â ÀÌ·¯ÇÑ µ¥ÀÌÅ͸¦ Ȱ¿ëÇÏ¿© °í°´ÀÇ ±¸¸Å ¼±È£µµ¿Í ¼û°ÜÁø °í°´ ÀλçÀÌÆ®¸¦ ãÀ» ¼ö ÀÖ½À´Ï´Ù. ±× °á°ú ¼Ò¸Å¾÷ü´Â ÁÖ·Î °í°´ °æÇè Çâ»ó¿¡ ÁÖ·ÂÇÏ°Ô µÇ°í ¸®Å×ÀÏ ¾Ö³Î¸®Æ½½º ¼­ºñ½º ¹× ¼ÒÇÁÆ®¿þ¾î¿¡ ´ëÇÑ ¼ö¿ä´Â ÇâÈÄ ¼ö³â°£ ´Ü¹ø¿¡ ³ô¾ÆÁú °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
  • ¼Ò¸Å¾÷üÀÇ ÁÖ¿ä ÀÚ¿øÀº »óǰ Àç°í ¹× ¼±¹Ý °ø°£ ¹èºÐÀÔ´Ï´Ù. ¾Ö³Î¸®Æ½½º´Â ÀûÀýÇÑ °í°´¿¡°Ô ÀûÀýÇÑ À§Ä¡¿¡¼­ ÀûÀýÇÑ ½ÃÁ¡¿¡¼­ ÀûÀýÇÑ ¼ö·®ÀÇ Á¦Ç° Á¦°øÀ» °áÁ¤Çϱâ À§ÇÑ ¾Ö³Î¸®Æ½½ºÀÇ È°¿ëÀ» ÀǹÌÇÕ´Ï´Ù. ¸¶ÀÌÅ©·Î ·¹º§ ºÐ¼®°ú ±¸»ö °èȹÀÇ °üÁ¡¿¡¼­ ÀÌ µ¿ÇâÀº ÇöÀç ¼Ò¸Å ¾÷°è¿¡¼­ Áö¼ÓÀûÀÎ ÇÁ·Î¼¼½º°¡ µÇ°í ÀÖ½À´Ï´Ù. ¼±¹Ý °ø°£ °ü¸®´Â »óÁ¡¿¡¼­ °í°´ÀÇ ¼±È£¿Í ´Ù¾çÇÑ ±¸»öÀÌ À繫¿¡ ¹ÌÄ¡´Â ¿µÇâ°ú °ü·ÃÇÏ¿© ¿¬±¸µÇ¾ú½À´Ï´Ù.
  • ¿¹¸¦ µé¾î, À¯·´ÀÇ ½ÅÈï ±â¾÷ÀÎ Trax Ltd.¿Í Roamler´Â ¼ÒºñÀÚ Æ÷Àå »óǰ(CPG) ±â¾÷¿¡ Á¡Æ÷ °¨»ç ¼­ºñ½º¸¦ Á¦°øÇϱâ À§ÇØ Á¦ÈÞÇß½À´Ï´Ù. ±â¾÷Àº Ç×»ó ¼±¹Ý »çÁøÀ» ÃÔ¿µÇÏ°í ¼±¹Ý »óȲ¿¡ ´ëÇÑ ÀλçÀÌÆ®¸¦ Á¦°øÇÕ´Ï´Ù. À̸¦ ÅëÇØ ¼±¹Ý¿¡¼­ »óǰÀÇ Àç°í »óȲÀ» °³¼±ÇÒ ¼ö ÀÖÀ¸¸ç, °¡¸ÍÁ¡Àº Àû½Ã¿¡ ÀλçÀÌÆ®¸¦ ¾ò°í ±¸¸ÅÀÚÀÇ °æÇèÀ» °³¼±Çϱâ À§ÇÑ ÀÇ»ç °áÁ¤À» ³»¸± ¼ö ÀÖ½À´Ï´Ù.
  • ÀÇ»ç°áÁ¤ Áö¿ø ½Ã½ºÅÛ(DSS)°ú °°Àº ºñÁî´Ï½º ÀÎÅÚ¸®Àü½º ÅøÀ» ÅëÇØ À¯·´ ±â¾÷µéÀº ½ºÆ®·¹½º Å×½ºÆ®¿Í ¸ÅÃâ ¿¹ÃøÀ» ¸¸µé ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. DSS¸¦ Ȱ¿ëÇÔÀ¸·Î½á ±â¾÷Àº °¨ÀÀµµ ºÐ¼®À» ½Ç½ÃÇÏ¿© ºÀ¼â °¡´É¼ºÀ̳ª Á÷¿øÀÇ º´ µî ¿ÜºÎ º¯¼ö°¡ ¾÷¹«¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍ Áß½ÉÀÇ ÀÇ»ç °áÁ¤À» ¼±È£ÇÏ´Â ±â¾÷Àº ¾Ö³Î¸®Æ½½º³ª ºñÁî´Ï½º ÀÎÅÚ¸®Àü½º¸¦ »ç¿ëÇÏÁö ¾Ê´Â ±â¾÷º¸´Ù À§±â °ü¸®¸¦ °­È­Çϰí ȸº¹À» °¡¼ÓÈ­ÇÒ °ÍÀ¸·Î ±â´ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

¸®Å×ÀÏ ¾Ö³Î¸®Æ½½º ½ÃÀå µ¿Çâ

Ŭ¶ó¿ìµå ºÎ¹®ÀÌ ½ÃÀåÀ» °ßÀÎÇÏ´Â ¿äÀÎ Áß Çϳª

  • ¼Ò¸Å¾÷ü°¡ ¾Ö³Î¸®Æ½½º¿Í BI¸¦ Ŭ¶ó¿ìµå¿¡¼­ ¼öÇàÇÏ´Â µ¥´Â ¿©·¯ °¡Áö ÀÌÀ¯¿Í °æÁ¦Àû ÀÌÁ¡ÀÌ ÀÖ½À´Ï´Ù. ±× Áß ÀϺδ 24½Ã°£ 365ÀÏÀÇ ÀÎÇÁ¶ó µ¶¸³Àû Ŭ¶ó¿ìµå ȯ°æÀÇ °¡¿ë¼º, BI ±¸¼º ¿ä¼Ò ¹èÆ÷ ½Ã°£ ´ÜÃà, ¿ä±¸ »çÇ׿¡ µû¸¥ ÀÎÇÁ¶ó È®Àå ¹× Ãà¼Ò À¯¿¬¼º, ÀÎÇÁ¶ó Á¶´Þ ºñ¿ë È¿°ú µîÀ» Æ÷ÇÔÇÕ´Ï´Ù. ¶ÇÇÑ ¶óÀ̼±½º ºñ¿ëÀÌ ¸¹ÀÌ µé°í ¸ð¹ÙÀÏ ¹× À¥ ±â¹Ý ¿ø°Ý ¾×¼¼½º¸¦ Áö¿øÇÏ¿© µ¥ÀÌÅͺ£À̽º¿¡ ´ëÇÑ ¾×¼¼½º¸¦ Á¦¾îÇÏ¿© »ç¿ëÀÚÀÇ º¸¾ÈÀ» È®º¸ÇÏ°í ºÐ¼®À» ¼öÇàÇÒ ¼ö ÀÖ½À´Ï´Ù.
  • A&BI Ç÷§ÆûÀÇ ÃÑ ¼ÒÀ¯ ºñ¿ë(TOC)À» ¾Æ´Â °ÍÀº Áß¿äÇÑ °í·Á »çÇ×ÀÔ´Ï´Ù. ¿ÜºÎ Ŭ¶ó¿ìµå È£½ºÆÃ°ú ºñ±³ÇÏ¿© ÀÎÇÁ¶ó ¶óÀ̼±½º ¹× Áö¿øÀÇ ³»ºÎ ºñ¿ëÀ» °ËÁõÇÏ´Â ºñ¿ë ºñ±³¸¦ Æò°¡ÇØ¾ß ÇÕ´Ï´Ù. SaaSÀÇ °æ¿ì ÀϺΠ¿äÀÎÀ¸·Î ÀÎÇØ ÃÑ ¼ÒÀ¯ ºñ¿ëÀÌ ÀϹÝÀûÀ¸·Î ³·¾ÆÁý´Ï´Ù. ù°, ÀϺΠSaaS ¼Ö·ç¼Ç¿¡´Â ¿©·¯ »ç¿ëÀÚ°¡ ¼ÒÇÁÆ®¿þ¾îÀÇ ±â¹ÝÀÌ µÇ´Â ÀÎÇÁ¶ó¸¦ °øÀ¯ÇÒ ¼ö ÀÖ´Â ´ÙÁß Å×³ÍÆ® Ç÷§ÆûÀÌ ÀÖ½À´Ï´Ù. °øÀ¯ Ç÷§Æû¿¡¼­µµ »ç¿ëÀÚ´Â °³ÀÎÀûÀÎ °³º° Á¤º¸¸¦ À¯ÁöÇÕ´Ï´Ù. µÑ°, SaaS ºÐ¼® ¹× BI Ç÷§ÆûÀº ¼ÒÇÁÆ®¿þ¾î¸¦ ½ÇÇàÇϱâ À§ÇØ ±â¾÷ ¼­¹ö, Çϵå¿þ¾î ¹× IT ¸®¼Ò½º°¡ ÇÊ¿äÇÏÁö ¾Ê½À´Ï´Ù.
  • SaaSÀÇ A&BI Ç÷§ÆûÀº ÀÚµ¿È­µÇ¾î ÀÖÀ¸¸ç Áï½Ã »ç¿ëÇÒ ¼ö ÀÖÀ¸¹Ç·Î Àü°³¿¡ ¼Ò¿äµÇ´Â ½Ã°£ÀÌ Å©°Ô ´ÜÃàµË´Ï´Ù. SaaS´Â Ç¥ÁØ À¥ ºê¶ó¿ìÀú¸¦ ÅëÇØ ¾×¼¼½ºÇÒ ¼ö ÀÖÀ¸¹Ç·Î ÇнÀ °î¼±ÀÌ ´ÜÃàµÇ°í ä¿ë·üÀÌ ³ô¾ÆÁý´Ï´Ù. SaaS ¼Ö·ç¼ÇÀº Á÷°üÀûÀÌ°í ¼¿ÇÁ ¼­ºñ½ºÀ̸ç Ä£¼÷ÇØÁö¹Ç·Î ¸ðµç »ç¿ëÀÚ°¡ ¾×¼¼½ºÇÒ ¼ö ÀÖ½À´Ï´Ù. ¹Ý¸é¿¡ ¿ÂÇÁ·¹¹Ì½º A&BI ÀÎÇÁ¶ó ±¸Ãà¿¡´Â ÀϹÝÀûÀ¸·Î ¸î °³¿ùÀÌ °É¸®¸ç ÀλçÀÌÆ®¸¦ ÃßÃâÇÏ·Á¸é ±³À°À» ¹ÞÀº Á÷¿øÀÌ ÇÊ¿äÇÕ´Ï´Ù.
  • ¿ÂÇÁ·¹¹Ì½º ¼Ö·ç¼Ç¿¡ ´ëÇÑ Å¬¶ó¿ìµå ¼Ö·ç¼ÇÀÇ ÀÌÁ¡Àº Ŭ¶ó¿ìµå Àü°³¸¦ Å©°Ô ÃËÁøÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. µ¥ÀÌÅÍ Áß½ÉÀÇ ÀÇ»ç°áÁ¤À» ÁöÁöÇÏ´Â ±â¾÷Àº ¾Ö³Î¸®Æ½½º³ª ºñÁî´Ï½º ÀÎÅÚ¸®Àü½º¸¦ ÀÌ¿ëÇÏÁö ¾Ê´Â ±â¾÷º¸´Ù À§±â°ü¸®¸¦ °­È­Çϰí ȸº¹À» ¾Õ´ç±æ °ÍÀ¸·Î ±â´ëµË´Ï´Ù.
  • Eurostat¿¡ µû¸£¸é 2021³â¿¡µµ ÀüÀÚ ¸ÞÀÏ ¹× ÆÄÀÏ ½ºÅ丮Áö¸¦ À§ÇÑ Å¬¶ó¿ìµå »ç¿ëÀº ¿©ÀüÈ÷ ³Î¸® º¸±ÞµÇ¾î ÀÖÀ¸¸ç Ŭ¶ó¿ìµå ÄÄÇ»ÆÃÀ» »ç¿ëÇÏ´Â Á¶Á÷ÀÇ °¢°¢ 79%¿Í 66%°¡ ÀÌ·¯ÇÑ À¯ÇüÀÇ Å¬¶ó¿ìµå ¼­ºñ½º¸¦ ±¸¸ÅÇϰí ÀÖ´Ù°í º¸°íÇß½À´Ï´Ù. 2020³â¿¡ ºñÇØ ÀüÀÚ ¸ÞÀÏ, ¿ÀÇǽº ¼ÒÇÁÆ®¿þ¾î, ȸ°è ¹× À繫 ¿ëµµÀÇ Å¬¶ó¿ìµå ÀÌ¿ëÀº ¿Ï¸¸ÇÏ°Ô Áõ°¡Çß½À´Ï´Ù(À̸ÞÀϰú ¿ÀÇǽº ¼ÒÇÁÆ®¿þ¾î¿¡¼­ +3% Æ÷ÀÎÆ®, ȸ°è ¿ëµµ¿¡¼­ +2% Æ÷ÀÎÆ®). ´Ù¸¥ Ŭ¶ó¿ìµå ¼­ºñ½ºÀÇ Ã¤¿ë·üÀº ºñ±³Àû ÀÏÁ¤Çß½À´Ï´Ù.

ÇÁ¶û½º´Â Å©°Ô ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»ó

  • ÇÁ¶û½º ¼Ò¸Å¾÷ü´Â Á÷¿ø Á¤º¸ºÎÅÍ Àç°í ¼¼ºÎ»çÇ×, °ø±Þ¾÷ü µ¥ÀÌÅÍ, °í°´ ±¸¸Å Çൿ¿¡ À̸£±â±îÁö ¹æ´ëÇÑ ¾çÀÇ Á¤º¸¸¦ °ü¸®ÇØ¾ß ÇÕ´Ï´Ù. ¸ðµç »óÈ£ÀÛ¿ë°ú µ¥ÀÌÅÍ Æ÷ÀÎÆ®°¡ ¼Ò¸Å ºñÁî´Ï½º¸¦ º¸´Ù È¿À²ÀûÀÌ°í ¼º°øÀûÀ¸·Î À̲ø ¼ö ÀÖ´Â ±âȸÀÔ´Ï´Ù. MicrosoftÀÇ BI µµ±¸ÀÎ Power BI´Â ÀÌ·¯ÇÑ µ¥ÀÌÅÍ Æ÷ÀÎÆ®¸¦ ±â·ÏÇÏ°í °í°´ µ¿ÇâÀ» ±×·¡ÇÈÀ¸·Î Ç¥ÇöÇÏ¿© ½Ç¿ëÀûÀÎ ÀλçÀÌÆ®¸¦ »ý¼ºÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÕ´Ï´Ù. µû¶ó¼­ ¼Ò¸Å¾÷ü´Â BI µ¥ÀÌÅ͸¦ Ȱ¿ëÇÏ¿© °³ÀÎÈ­¸¦ ÅëÇØ È¿°úÀûÀÎ °í°´ Ÿ°ÙÆÃÀ» ¼öÇàÇÒ ¼ö ÀÖ½À´Ï´Ù.
  • ¶ÇÇÑ, ÀüÀÚ»ó°Å·¡ÀÇ ±Þ¼ÓÇÑ »ó½ÂÀ¸·Î ºñÁî´Ï½º ÀÎÅÚ¸®Àü½º´Â »ç¿ëÀÚ°¡ ÀüÀÚ»ó°Å·¡ »óÁ¡°ú »óÈ£ ÀÛ¿ëÇÏ´Â ¹æ½ÄÀ» ÃßÀûÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ Á¤º¸¸¦ ÅëÇØ °í°´ÀÇ ¼îÇÎ °æÇè°ú ¼­ºñ½º °æÇèÀ» ´õ¿í Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀüÀÚ»ó°Å·¡¿¡¼­´Â ºñÁî´Ï½º ÀÎÅÚ¸®Àü½º¸¦ Ȱ¿ëÇÏ¿© ¼Ò¸Å¾÷ü°¡ °í°´ÀÇ Çൿ¿¡ µû¶ó Çö¸íÇϰí È¿À²ÀûÀÎ ÀÇ»ç °áÁ¤À» ³»¸± ¼ö ÀÖ½À´Ï´Ù. ÀÌ µ¥ÀÌÅÍ´Â ½Ç½Ã°£À¸·Î È®ÀÎÇÒ ¼ö ÀÖÀ¸¹Ç·Î ±â¾÷Àº °¡°Ý Á¶Á¤ ¹× »óǰ Á¦°ø º¯°æÀ» ½Å¼ÓÇÏ°Ô ¼öÇàÇÒ ¼ö ÀÖ½À´Ï´Ù.
  • °Ô´Ù°¡ Eurostat¿¡ µû¸£¸é 2021³â ÇÁ¶û½º¿¡¼­ ¿Â¶óÀÎ ¼îÇÎÀ» ÇÑ »ç¶÷µé Áß 34%°¡ Á¶»ç Àü 3°³¿ù¿¡ ÇÑ ¹ø µÎ ¹ø °¬´Ù°í ÇÕ´Ï´Ù. ³ª¸ÓÁö 3ºÐÀÇ 2´Â ÀÌ ±â°£¿¡ 3ȸ ÀÌ»ó ¿Â¶óÀÎ ¼îÇÎÀ» ÀÌ¿ëÇÕ´Ï´Ù.
  • Retail-Index¿¡ µû¸£¸é ÇÁ¶û½º ¼Ò¸Å ½ÃÀå¿¡´Â 2021³â 2¿ù ÇöÀç 20°³ ÀÌ»óÀÇ Ä«Å×°í¸®¿¡ °ÉÃÄ 382°³ÀÇ ¼Ò¸Å ¾÷ü°¡ ÀÖ½À´Ï´Ù. ÀÇ·ù »ê¾÷¿¡´Â 130°³ ÀÌ»óÀÇ »óÁ¡ÀÌ ÀÖÀ¸¸ç, ±× Áß 52°³ ȸ»ç´Â ½Å¹ß°ú °¡Á× Á¦Ç°ÀÇ ÆÇ¸Å¸¦ Àü¹®À¸·Î ÇÕ´Ï´Ù. ½Äǰ¼Ò¸Å¾÷¿¡ ƯȭµÈ ¼Ò¸Å±â¾÷Àº 28°³»ç¿´½À´Ï´Ù.
  • Ÿ°ÙÆÃµÈ ¿ÀÆÛ¿Í ¿¹Ãø ºÐ¼®À» ÅëÇØ ÇÁ¶û½º ¼Ò¸Å¾÷ü´Â ¸ðµç °í°´¿¡°Ô ¸Å¿ì ¼¼¹ÐÇÏ°í ¸ÂÃãÇü ¿ÀÆÛ¸¦ °³¹ßÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ¼Ò¸Å¾÷ü´Â ±¸¸Å ºóµµ¸¦ ³ôÀÌ´Â Àμ¾Æ¼ºê¸¦ Á¦°øÇÏ´Â ÄíÆùÀ» Á¦°øÇÔÀ¸·Î½á ¸ÅÀå¿¡¼­ÀÇ °æÇèÀ» °³ÀÎÈ­ÇÏ°í ±¸¸Å¸¦ ÃËÁøÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¹Ãø ºÐ¼®Àº °í°´ÀÇ ¾÷¼¿ ¹× Å©·Î½º¼¿¿¡ Ȱ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

¸®Å×ÀÏ ¾Ö³Î¸®Æ½½º »ê¾÷ °³¿ä

À¯·´ÀÇ ¸®Å×ÀÏ ¾Ö³Î¸®Æ½½º ½ÃÀå º¸°í¼­¿¡¼­ »ç¾÷À» Àü°³ÇÏ´Â ÁÖ¿ä ±â¾÷Àº SAP SE, Oracle Corporation, Qlik Technologies, Inc., Zoho Corporation, IBM Corporation, Retail Next, Inc., Alteryx, Inc., Tableau Software, Inc., Adobe Systems Incorporated, Microstrategy, Inc., Prevedere Software, Inc. ±¹³» ±â¾÷ÀÔ´Ï´Ù.

2022³â 11¿ù, RetailNext´Â À¯·´°ú ¾Æ½Ã¾ÆÀÇ Ç² Æ®·¡ÇÈ ¸ð´ÏÅ͸µ Ç÷§ÆûÀ» È®ÀåÇϱâ À§ÇØ ½ÃÀå Á¶»ç ȸ»ç Ipsos¿¡¼­ ¿µ±¹ÀÇ ¶óÀ̹ú Retail Performance Àμö¸¦ ¹ßÇ¥Çß½À´Ï´Ù. ¼Ò¸Å ³Ø½ºÆ®´Â ÀÌ Àμö¿¡ ´ëÇØ ¿µ±¹ ¹× À¯·´ÀÇ ¼Ò¸Å ÀÎÅÚ¸®Àü½º ºÐ¾ß¿¡¼­ Àü·«Àû È®´ë¶ó°í ¼³¸íÇÕ´Ï´Ù. ÀÌ È¸»çÀÇ ÇöÀç ¸ð´ÏÅ͸µ ¾÷¹«´Â 50°³±¹ÀÇ 4,500°³ ÀÌ»óÀÇ ¼Ò¸ÅÁ¡Æ÷¿¡¼­ ¿¬°£ 10¾ï ¸í ÀÌ»óÀÇ ¼ÒºñÀÚ ¹æ¹®À» ±â·ÏÇϰí ÀÖ½À´Ï´Ù.

2022³â 9¿ù Â÷¼¼´ë µðÁöÅÐ ¼­ºñ½º¿Í ÄÁ¼³ÆÃÀÇ ¼¼°è ±â¾÷ÀÎ ÀÎÆ÷½Ã½º´Â MicrosoftÀÇ Å¬¶ó¿ìµå Æ÷ ¸®Å×Àϰú Á¦ÈÞÇß½À´Ï´Ù. ÀÌ Á¦ÈÞ¸¦ ÅëÇØ ¼Ò¸Å¾÷ü´Â ¼ÒºñÀÚ °æÇèÀ» À籸¼ºÇϰí ÇÁ·Î¼¼½º¸¦ »õ·Î °íÄ¡°í Ŭ¶ó¿ìµå¿Í µ¥ÀÌÅ͸¦ ÅëÇØ ½Ã½ºÅÛÀ» ºü¸£°Ô ÁõÆøÇÒ ¼ö ÀÖ½À´Ï´Ù. InfosysÀÇ ¼Ò¸Å ±â¾÷¿ë Ŭ¶ó¿ìµå ¼Ö·ç¼Ç ¹× ¾÷°è ¼­ºñ½º´Â Microsoft Cloud for Retail ÆÄÆ®³Ê·Î Á¦°øµÇ¸ç Infosys CobaltÀÇ Microsoft Cloud Á¦Ç°À» º¸¿ÏÇÕ´Ï´Ù.

±âŸ ÇýÅà :

  • ¿¢¼¿ Çü½Ä ½ÃÀå ¿¹Ãø(ME) ½ÃÆ®
  • 3°³¿ù°£ÀÇ ¾Ö³Î¸®½ºÆ® ¼­Æ÷Æ®

¸ñÂ÷

Á¦1Àå ¼­·Ð

  • Á¶»çÀÇ ÀüÁ¦Á¶°Ç ¹× ½ÃÀå Á¤ÀÇ
  • Á¶»ç ¹üÀ§

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå ¿ªÇÐ

  • ½ÃÀå °³¿ä
  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • ¿¹Ãø ºÐ¼® Áß½ÃÀÇ °íÁ¶
    • µ¥ÀÌÅÍ·®ÀÇ Áö¼ÓÀû Áõ°¡
    • ¸ÅÃâ ¿¹Ãø¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡
  • ¾ïÁ¦¿äÀÎ
    • ½ÅÈï Áö¿ªÀÇ ÀϹÝÀûÀÎ Àνİú Àü¹® Áö½ÄÀÇ ºÎÁ·
    • Ç¥ÁØÈ­¿Í ÅëÇÕ ¹®Á¦
  • ¾÷°è ¹ë·ùüÀÎ ºÐ¼®
  • ¾÷°èÀÇ ¸Å·Âµµ-Porter's Five Forces ºÐ¼®
    • ½Å±Ô ÁøÀÔ¾÷ÀÚÀÇ À§Çù
    • ±¸¸ÅÀÚÀÇ Çù»ó·Â
    • °ø±Þ±â¾÷ÀÇ Çù»ó·Â
    • ´ëüǰÀÇ À§Çù
    • °æÀï ±â¾÷°£ °æÀï °ü°èÀÇ °­µµ

Á¦5Àå ½ÃÀå ¼¼ºÐÈ­

  • Àü°³ ¸ðµåº°
    • ¿ÂÇÁ·¹¹Ì½º
    • Ŭ¶ó¿ìµå
  • À¯Çüº°
    • ¼Ö·ç¼Ç(ºÐ¼®, ½Ã°¢È­ Åø, µ¥ÀÌÅÍ °ü¸® µî)
    • ¼­ºñ½º(ÅëÇÕ, Áö¿ø ¹× ÄÁ¼³ÆÃ)
  • ¸ðµâ À¯Çüº°
    • Àü·« ¹× °èȹ(¸ÅÅ©·Î µ¿Çâ, KPI, °¡Ä¡ ºÐ¼®)
    • ¸¶ÄÉÆÃ(°¡°Ý ¼³Á¤, ·Î¿­Æ¼, ºÎ¹® ºÐ¼®)
    • À繫°ü¸®(ȸ°è°ü¸®)
    • Á¡Æ÷ ¿ÀÆÛ·¹À̼Ç(ºÎÁ¤ °ËÁö, ³ëµ¿·Â ºÐ¼®)
    • ¸Óõ´ÙÀÌ¡(±¸»ö ÃÖÀûÈ­, ¼îÆÛ ÆÐ½º ºÐ¼®)
    • °ø±Þ¸Á °ü¸®(Àç°í, º¥´õ, ¼ö±Þ ¸ðµ¨¸µ)
    • ±âŸ ¸ðµâ À¯Çü
  • ºñÁî´Ï½º À¯Çüº°
    • Áß¼Ò±â¾÷
    • ´ë±Ô¸ð Á¶Á÷
  • ±¹°¡º°
    • ¿µ±¹
    • µ¶ÀÏ
    • ÇÁ¶û½º
    • ±âŸ ±¹°¡

Á¦6Àå °æÀï ±¸µµ

  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • SAP SE
    • Oracle Corporation
    • Qlik Technologies, Inc.
    • Zoho Corporation
    • IBM Corporation
    • Retail Next, Inc.
    • Alteryx, Inc.
    • Tableau Software, Inc.
    • Adobe Systems Incorporated
    • Microstrategy, Inc.
    • Prevedere Software, Inc.
    • Targit
    • Pentaho Corporation
    • ZAP Business Intelligence
    • Fuzzy Logix

Á¦7Àå ÅõÀÚ ºÐ¼®

  • ÃÖ±Ù M&A
  • ÅõÀÚ Àü¸Á

Á¦8Àå À¯·´ ¸®Å×ÀÏ ¾Ö³Î¸®Æ½½º ½ÃÀåÀÇ ÇâÈÄ µ¿Çâ

AJY 25.02.12

The Europe Retail Analytics Market is expected to register a CAGR of 20.76% during the forecast period.

Europe Retail Analytics - Market - IMG1

Key Highlights

  • The driving factor for using retail analytics in the region is that it provides tangible and practical insights into customer behavior. Retail analytics services are designed to give each consumer tailored attention. Companies have used data-driven retail analytics solutions that keep customers engaged with the company for a longer period in response to changing consumer needs and increasing rivalry among retailers for customer loyalty. Retail predictive analytics allows retailers to evaluate customer data and anticipate client wants and desires.
  • Furthermore, from a customer-centric standpoint, implementing a retail analytics strategy is intended to offer businesses the resources and technology required to create and automate seamless consumer experiences across online channels. Customer experiences are improving as more retailers implement customer relationship management (CRM) systems. Furthermore, the increased use of IoT, POS, RFID and other smart devices generates enormous data, which merchants can utilize to find client buying preferences and hidden customer insights. As a result, retailers primarily focus on improving customer experience, which is expected to immediately drive demand for retail analytics services and software in the coming years.
  • A retailer's primary resources are product inventory and shelf space allotment. It refers to the use of analytics to decide product offers in the right place, at the right time, and in the appropriate quantity for the right customers. In terms of micro-level analysis and assortment planning, this trend has now become a constant process in the retail industry. Shelf space management is being studied in relation to client preferences in the store and the financial impact of various assortments.
  • For instance, Trax Ltd. and Roamler, two European startups, have joined forces to provide shop auditing services to consumer packaged goods (CPG) corporations. Companies constantly capture shelf photos and provide insights about shelf conditions. It improves product availability on the shelf and enables merchants to get timely insights and make decisions to improve shopper experiences.
  • Business intelligence tools like decision support systems (DSS) have allowed companies in Europe to produce stress tests and sales forecasts, which are significantly used to assess a company's ability to operate under challenging economic scenarios. Utilizing DSS, companies can perform sensitivity analyses to evaluate the impacts of external variables, such as a possible lockdown or employee sickness, on their operations. Companies that favor data-driven decision-making are more expected to manage the crisis better and recover faster than businesses that do not use analytics and business intelligence.

Retail Analytics Market Trends

Cloud Segment is One of the Factors Driving the Market

  • There are various reasons and financial benefits for retailers to have their analytics and BI on the cloud. Some of them are the 24x7 availability of the cloud environment without any infrastructure dependency, the reduction of the time taken to deploy BI components, the flexibility of scaling up or scaling down the infrastructure based on the requirement, and the cost-effectiveness in terms of infrastructure procurement. Additionally, the massive spending on licenses and the support of mobile and web-based remote access to control database access ensure user security and perform analytics.
  • Knowing the Total Cost of Ownership (TOC) of the A&BI platform is a significant consideration. A cost comparison that examines the internal costs of infrastructure licensing and support compared to external cloud hosting must be assessed. With SaaS, the total cost of ownership is typically lower due to several factors. First, some SaaS solutions are multitenant platforms that allow several users to share the software's underlying infrastructure. Even though it could be a shared platform, users retain their private and separate information. Second, SaaS analytics and BI platforms don't need the business's servers, hardware, or IT resources to get the software up and running.
  • Because SaaS A&BI platforms are automated and ready to use, they have significantly less implementation time- typically a matter of days. SaaS is accessible via standard web browsers, resulting in reduced learning curves and higher adoption rates. Because SaaS solutions are intuitive, self-service, and approachable, they are accessible to all users. On the other hand, implementation of on-premise A&BI infrastructure generally takes months and requires trained employees to extract insights.
  • The advantages of cloud solutions over on-premise solutions are expected to drive cloud deployment significantly. Companies that favor data-driven decision-making are expected to manage the crisis better and recover faster than businesses that do not use analytics and business intelligence.
  • According to Eurostat, In 2021, the usage of the cloud for e-mail and file storage was still prevalent, with 79% and 66% of organizations utilizing cloud computing, respectively, reporting purchasing these sorts of cloud services. Compared to 2020, the use of e-mail, office software, and accounting and financial apps in the cloud increased moderately (+3 % points for both e-mail and office software and +2% points for accounting applications). The adoption of other forms of cloud services remained relatively constant.

France is Expected to Observe Significant Growth

  • Retail businesses in France have to manage an enormous amount of information, from employee information to inventory details and supplier data to customer buying behavior. Every interaction and data point offers an opportunity to make the retail business more efficient and successful. Microsoft's Power BI, a BI tool, records these data points and helps generate actionable insights via its graphical representations of customer trends. Retailers can thus leverage BI data for effectively targeting customers through personalization.
  • Moreover, with the rapid rise of e-commerce, business intelligence can track how users interact with e-commerce stores. This information can further enhance the customer shopping and service experience. E-commerce also allows retailers to make smart, efficient decisions based on customer behavior with business intelligence. This data can be viewed in real-time, enabling businesses to adjust prices or alter merchandise offerings quickly.
  • Further, according to Eurostat, among people shopping online in France in 2021, 34 % did so once or twice in the three months before the survey. The remaining two-thirds engaged in this activity three or more times during this period.
  • According to Retail-Index, The French retail market had 382 separate retailer enterprises across over 20 categories as of February 2021. There were over 130 different stores in the garment industry, with 52 specializing in selling footwear and leather goods. Twenty-eight retail enterprises focused on the food retail sector.
  • Targeted offers and predictive analytics enable merchants in France to develop highly personalized offers to all their customers at a very granular level. For instance, retailers can personalize the in-store experience by providing offers to incentivize frequent buying to drive more purchases, thereby achieving higher sales across all their channels. Predictive analytics can be used to upsell or cross-sell a customer.

Retail Analytics Industry Overview

The major players operating in the European retail analytics market report are SAP SE, Oracle Corporation, Qlik Technologies, Inc., Zoho Corporation, IBM Corporation, Retail Next, Inc., Alteryx, Inc., Tableau Software, Inc., Adobe Systems Incorporated, Microstrategy, Inc., Prevedere Software, Inc., Targit, Pentaho Corporation, ZAP Business Intelligence, Fuzzy Logix, among other domestic players.

In November 2022, RetailNext announced the acquisition of U.K. rival Retail Performance from market research firm Ipsos to expand its foot-traffic-monitoring platform in Europe and Asia. RetailNext described the transaction as a strategic expansion in the United Kingdom and Europe's retail intelligence area. The company's current monitoring operations log more than 1 billion consumer visits annually across over 4,500 retail locations in 50 countries.

In September 2022, Infosys, a global player in next-generation digital services and consulting, partnered with Microsoft Cloud for Retail. Retail organizations will be able to rapidly reimagine consumer experiences, refresh processes, and amplify systems with cloud and data due to this partnership. Infosys cloud solutions and industry services for retailers would be made available as a Microsoft Cloud for Retail partners, complementing Microsoft Cloud products within Infosys Cobalt.

Additional Benefits:

  • The market estimate (ME) sheet in Excel format
  • 3 months of analyst support

TABLE OF CONTENTS

1 INTRODUCTION

  • 1.1 Study Assumptions and Market Definition
  • 1.2 Scope of the Study

2 RESEARCH METHODOLOGY

3 EXECUTIVE SUMMARY

4 MARKET DYNAMICS

  • 4.1 Market Overview
  • 4.2 Market Drivers
    • 4.2.1 Increased Emphasis on Predictive Analysis
    • 4.2.2 Sustained Increase in Volume of Data
    • 4.2.3 Growing Demand for Sales Forecasting
  • 4.3 Restraints
    • 4.3.1 Lack of General Awareness and Expertise in Emerging Regions
    • 4.3.2 Standardization and Integration Issues
  • 4.4 Industry Value Chain Analysis
  • 4.5 Industry Attractiveness - Porter's Five Forces Analysis
    • 4.5.1 Threat of New Entrants
    • 4.5.2 Bargaining Power of Buyers
    • 4.5.3 Bargaining Power of Suppliers
    • 4.5.4 Threat of Substitute Products
    • 4.5.5 Intensity of Competitive Rivalry

5 MARKET SEGMENTATION

  • 5.1 By Mode of Deployment
    • 5.1.1 On-Premise
    • 5.1.2 Cloud
  • 5.2 By Type
    • 5.2.1 Solutions (Analytics, Visualization Tools, Data Management, etc.)
    • 5.2.2 Services (Integration, Support & Consulting)
  • 5.3 By Module Type
    • 5.3.1 Strategy & Planning (Macro Trends, KPI, Value Analysis)
    • 5.3.2 Marketing (Pricing, Loyalty and Segment Analysis)
    • 5.3.3 Financial Management (Accounts Management)
    • 5.3.4 Store Operations (Fraud Detection, Workforce Analytics)
    • 5.3.5 Merchandising (Assortment Optimization, Shopper Path Analytics)
    • 5.3.6 Supply Chain Management (Inventory, Vendor and Supply-Demand Modelling)
    • 5.3.7 Other Module Types
  • 5.4 By Business Type
    • 5.4.1 Small & Medium Enterprises
    • 5.4.2 Large-scale organizations
  • 5.5 By Country
    • 5.5.1 United Kingdom
    • 5.5.2 Germany
    • 5.5.3 France
    • 5.5.4 Other Countries

6 COMPETITIVE LANDSCAPE

  • 6.1 Company Profiles
    • 6.1.1 SAP SE
    • 6.1.2 Oracle Corporation
    • 6.1.3 Qlik Technologies, Inc.
    • 6.1.4 Zoho Corporation
    • 6.1.5 IBM Corporation
    • 6.1.6 Retail Next, Inc.
    • 6.1.7 Alteryx, Inc.
    • 6.1.8 Tableau Software, Inc.
    • 6.1.9 Adobe Systems Incorporated
    • 6.1.10 Microstrategy, Inc.
    • 6.1.11 Prevedere Software, Inc.
    • 6.1.12 Targit
    • 6.1.13 Pentaho Corporation
    • 6.1.14 ZAP Business Intelligence
    • 6.1.15 Fuzzy Logix

7 INVESTMENT ANALYSIS

  • 7.1 Recent Mergers & Acquisitions
  • 7.2 Investment Outlook

8 FUTURE TRENDS IN EUROPE RETAIL ANALYTICS MARKET

ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦