½ÃÀ庸°í¼­
»óǰÄÚµå
1639541

¾×Ƽºê µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ½ÃÀå Á¡À¯À² ºÐ¼®, »ê¾÷ µ¿Çâ ¹× Åë°è, ¼ºÀå ¿¹Ãø(2025-2030³â)

Active Data Warehousing - Market Share Analysis, Industry Trends & Statistics, Growth Forecasts (2025 - 2030)

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Mordor Intelligence | ÆäÀÌÁö Á¤º¸: ¿µ¹® | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

¾×Ƽºê µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ½ÃÀå ±Ô¸ð´Â 2025³â¿¡ 111¾ï 2,000¸¸ ´Þ·¯·Î ÃßÁ¤µÇ¸ç, ¿¹Ãø ±â°£(2025-2030³â) µ¿¾È 11.1%ÀÇ CAGR·Î 2030³â¿¡´Â 188¾ï 2,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

Active Data Warehousing-Market-IMG1

¶ÇÇÑ, ½ÅÈï±¹ ½ÃÀåÀÇ ¼ö¿ä Áõ°¡´Â ¿¹Ãø ±â°£ µ¿¾È ¾×Ƽºê µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ½ÃÀå¿¡ »õ·Î¿î ±âȸ¸¦ Á¦°øÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ÁÖ¿ä ÇÏÀ̶óÀÌÆ®

  • ¾×Ƽºê µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ½ÃÀåÀº Â÷¼¼´ë ºñÁî´Ï½º ÀÎÅÚ¸®Àü½º¿¡ ´ëÇÑ Áö¼ÓÀûÀÎ ¼ö¿ä¿Í Á¶Á÷¿¡¼­ »ý¼ºµÇ´Â µ¥ÀÌÅÍÀÇ ¾çÀÌ Áõ°¡ÇÔ¿¡ µû¶ó Å« º¯È­¸¦ °Þ°í ÀÖÀ¸¸ç, ADW¸¦ ÅëÇØ »ç¿ëÀÚ´Â ¹æ´ëÇÏ°í º¹ÀâÇÑ Á¤º¸¿¡ ½Ç½Ã°£À¸·Î ¾×¼¼½º ÇÒ ¼ö ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍ´Â È¿À²ÀûÀ̰í ÀûÀýÇÏ°Ô Á¤¸®µÇ¾î ¿¹Ãø ±â°£ µ¿¾È ½ÃÀå ¼ºÀåÀ» ÃËÁøÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±â¾÷ °æ¿µ¿¡¼­ ºñÁî´Ï½º ÀÎÅÚ¸®Àü½ºÀÇ ¿ªÇÒ Áõ°¡¿Í ÇÔ²² Àú Áö¿¬ ¹× °í¼Ó ºÐ¼®¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ½ÃÀå ¼ö¿ä¸¦ Å©°Ô °ßÀÎÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
  • ¶ÇÇÑ Oracle¿¡ µû¸£¸é, Àα¸ÀÇ 90%°¡ µµ½Ã¿¡ °ÅÁÖÇÏ´Â ºê¶óÁú¿¡¼­ SKY BrasilÀº °¡Á¤¿ë À§¼º Á÷¼ö½Å ¼­ºñ½º ½ÃÀå Á¡À¯À² ¾à 29%¸¦ Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. ÀÌ È¸»ç´Â OracleÀÇ Siebel CRM¿¡ ÅëÇÕµÈ Oracle Ŭ¶ó¿ìµå ÀÎÇÁ¶ó¿¡¼­ ½ÇÇàµÇ´Â OracleÀÇ Autonomous Data Warehouse¸¦ ¼±ÅÃÇØ ½Ç½Ã°£ °í±Þ ¸¶ÄÉÆÃ ºÐ¼®À» ¼öÇàÇß½À´Ï´Ù. ÀÌ µµÀÔ ±â¾÷Àº ÀÌÀü ¿ÂÇÁ·¹¹Ì½º ¼Ö·ç¼Ç ´ëºñ µµÀÔ ¹× °¡µ¿¿¡ ¼Ò¿äµÇ´Â ½Ã°£À» 90% ´ÜÃàÇϰí, µ¿½Ã¿¡ ÀÎÇÁ¶ó ºñ¿ëÀ» 60% Àý°¨ÇÏ´Â µ¥ ¼º°øÇß½À´Ï´Ù. ¶ÇÇÑ, ADW´Â µ¥ÀÌÅ͸¦ ÇÑ °÷¿¡ ¸ðÀ¸´Â °Í°ú ÇÔ²² ÄÄÇ»ÆÃ ºñ¿ëÀ» Å©°Ô Àý°¨ÇÒ ¼ö ÀÖ½À´Ï´Ù.
  • ¶ÇÇÑ, ADW´Â µ¥ÀÌÅ͸¦ ÇÑ °÷¿¡ ¸ðÀ¸´Â °Í°ú ÇÔ²² ÄÄÇ»ÆÃ ºñ¿ëÀ» Å©°Ô Àý°¨ÇÒ ¼ö ÀÖ¾î ½ÃÀå ¼ºÀå¿¡ ±àÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼¿Í ÇÔ²² Àü ¼¼°èÀûÀ¸·Î ±â¾÷ ³» ºòµ¥ÀÌÅÍ Æ®·»µå°¡ Å©°Ô Áõ°¡Çϸ鼭 ºÐ¼® ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, ÀÌ ¶ÇÇÑ ½ÃÀå ¼ºÀåÀ» °ßÀÎÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶ÇÇÑ, ¼ö¿ä¿¡ ¸ÂÃç ÄÄÇ»ÆÃ ¿ë·®À» È®ÀåÇÏ°í »ç¿ë·®ÀÌ ÃÖ°íÁ¶¿¡ ´ÞÇßÀ» ¶§ ½±°Ô ±Ô¸ð¸¦ Ãà¼ÒÇÒ ¼ö ÀÖµµ·Ï Ŭ¶ó¿ìµå µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 º¥´õµéÀº ¸®¼Ò½º »ç¿ë·® ±â¹Ý ¸ðµ¨À» äÅÃÇϰí ÀÖ½À´Ï´Ù. ÀÌ´Â º¥´õ°¡ ¿øÇÏ´Â ±Ô¸ðÀÇ °æÁ¦¿Í °í°´ÀÌ ¿øÇÏ´Â À¯¿¬¼ºÀÇ ¹®Á¦¸¦ ÇØ°áÇÏ´Â °ÍÀÔ´Ï´Ù. ±×·¯³ª °íÁ¤µÈ ¿ë·®ÀÇ µ¥ÀÌÅÍ ¿þ¾îÇϿ콺´Â Á¶Á÷ÀÌ ÇÊ¿äÇÑ °Íº¸´Ù ´õ ¸¹Àº ÄÄÇ»ÆÃ ¿ë·®À» ±¸¸ÅÇϵµ·Ï °­¿äÇÕ´Ï´Ù.
  • µ¥ÀÌÅÍ ¿þ¾îÇϿ콺´Â ƯÈ÷ ±ÝÀ¶, ºñÁî´Ï½º, ÀÇ·á ¹× ±âŸ »ê¾÷¿¡¼­ µ¥ÀÌÅÍ °ü¸® ¹× º¹À⼺ Áõ°¡¿¡ ´ëÇÑ ¿ì·Á°¡ Ä¿Áö¸é¼­ ½ÇÁ¦ Àû¿ë¿¡ Å« °ü½ÉÀ» ¹Þ°í ÀÖ½À´Ï´Ù. ±â¾÷ ÇÁ·Î¼¼½ºÀÇ µðÁöÅÐÈ­·Î ÀÎÇØ IT »ê¾÷Àº µ¥ÀÌÅÍ ºÐ¼® ±â´ÉÀ» °®Ãá »õ·Î¿î ±â¼úÀûÀ¸·Î Áøº¸µÈ ¾÷¹«¸¦ äÅÃÇÏ°Ô µÇ¾ú½À´Ï´Ù. ±× °á°ú, Ãֽе¥ÀÌÅÍ ¿þ¾îÇϿ콺 ½Ã½ºÅÛÀº µðÁöÅÐ ºñÁî´Ï½º ¿î¿µ¿¡ ÇÊ¿äÇÑ ½Ç½Ã°£ ±â¾÷ ±Ô¸ðÀÇ ºÐ¼® ¹× Á¤º¸ ÀλçÀÌÆ® °³¹ßÀ» ÃËÁøÇÕ´Ï´Ù.
  • ±×·¯³ª µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ½ÃÀåÀº ³ôÀº µµÀÔ ºñ¿ë°ú »çÀ̹ö À§ÇùÀÇ Áõ°¡ µî ´Ù¾çÇÑ ¿äÀÎÀ¸·Î ÀÎÇØ Ȱ¼ºÈ­°¡ ÀúÇØµÇ°í ÀÖ½À´Ï´Ù.
  • COVID-19´Â ½ÃÀå¿¡ ´Ù¾çÇÑ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ¿¹¸¦ µé¾î, Bartsworks¿Í International Institute for Analytics(IIA)°¡ ¹Ì±¹ ºÐ¼® Àü¹®°¡ 300¸íÀ» ´ë»óÀ¸·Î ½Ç½ÃÇÑ ¼³¹®Á¶»ç¿¡ µû¸£¸é, ÀÀ´äÀÚÀÇ 43% ÀÌ»óÀÌ COVID-19 ¹®Á¦¿¡ ´ëÇÑ º»ÁúÀûÀÎ ¼±Åÿ¡ ÀÖ¾î ºÐ¼®ÀÌ Áß¿äÇÑ ¿ä¼Ò¶ó°í ´äÇß½À´Ï´Ù. ¶ó°í ÀÀ´äÇÑ °ÍÀ¸·Î ³ªÅ¸³µ½À´Ï´Ù. ±â¾÷µéÀº COVID-19 »çÅ·ΠÀÎÇØ ¾÷¹«¸¦ Ãà¼ÒÇϰí, ºñ¿ëÀ» Àý°¨Çϰí, »ç¹«½ÇÀ» Æó¼âÇß½À´Ï´Ù. ÀçÅñٹ« ÆÐ·¯´ÙÀÓÀÇ È®»êÀº ±â¾÷µé¿¡°Ô ¾î·Á¿òÀ» ¾È°ÜÁÖ°í ÀÖ½À´Ï´Ù. Ŭ¶ó¿ìµå ±â¹Ý µ¥ÀÌÅÍ ¿þ¾îÇϿ콺ÀÇ µµÀÔÀº ÀÌ·¯ÇÑ ¹ßÀüÀ¸·Î ÀÎÇØ °¡¼ÓÈ­µÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. COVID-19´Â ºñ¿ë È¿À²¼º, ´ë±Ô¸ð Àη Ǯ¿¡ ´ëÇÑ Á¢±Ù¼º, È®À强 °­È­ µî µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 µµÀÔ¿¡ ¸¹Àº ÀÌÁ¡À» °¡Á®´ÙÁÖ¾ú½À´Ï´Ù.

¾×Ƽºê µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ½ÃÀå µ¿Çâ

½º¸¶Æ®ÆùÀÇ º¸±ÞÀÌ ½ÃÀå ¼ºÀåÀ» °ßÀÎ

  • ÈÞ´ë ÀüÈ­, ƯÈ÷ ½º¸¶Æ®ÆùÀº ´Ù¾çÇÑ »ç¶÷µé »çÀÌ¿¡¼­ Á¡Á¡ ´õ ³Î¸® º¸±ÞµÇ°í ÀÖ½À´Ï´Ù. GSMA¿¡ µû¸£¸é Áö³­ÇØ ±âÁØ Àü ¼¼°èÀûÀ¸·Î 62¾ï ´ë ÀÌ»óÀÇ iOS ¹× ¾Èµå·ÎÀÌµå ½º¸¶Æ®ÆùÀÌ È°¼ºÈ­µÇ¾î ÀÖÀ¸¸ç, 2025³â¿¡´Â 74¾ï ´ë¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶ÇÇÑ µ¥ÀÌÅÍ ¿þ¾îÇϿ콺(DW), ºñÁî´Ï½º ÀÎÅÚ¸®Àü½º(BI) ½Ã½ºÅÛ, µ¥ÀÌÅÍ ºÐ¼® ½Ã½ºÅÛ µî ´Ù¾çÇÑ ÄÄÇ»ÅÍ ½Ã½ºÅÛ¿¡¼­ ¸ð¹ÙÀÏ ±â¼úÀÇ È°¿ëÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
  • ÈÞ´ëÆùÀº µ¥ÀÌÅͺ£À̽º ¿ªÇÒÀ» Çϸç, »ó´çÇÑ ¾çÀÇ »ç¿ëÀÚ µ¥ÀÌÅͰ¡ ÀúÀåµË´Ï´Ù. ÀúÀåµÈ µ¥ÀÌÅÍ´Â »ç¿ëÀÚ°¡ ½ÂÀÎÇÑ T&C¿¡ µû¶ó ºÐ¼®ÇÒ ¼ö ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍ´Â ´Ù¾çÇÑ ¾×Ƽºê µ¥ÀÌÅÍ ¿þ¾îÇϿ콺¿¡ ÀÇÇØ °Ë»ö ¹× ºÐ¼®µÇ¾î »ç¿ëÀÚÀÇ ¿©·¯ Ư¡À» ¼öÁýÇÒ ¼ö ÀÖ½À´Ï´Ù. ½º¸¶Æ®Æù »ç¿ëÀÚ´Â µ¥ÀÌÅÍ ¾×¼¼½º¸¦ À§ÇØ ¹æ´ëÇÑ Å¬¶ó¿ìµå µ¥ÀÌÅͺ£À̽º¸¦ ÇÊ¿ä·Î Çϱ⠶§¹®¿¡ µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ¼Ö·ç¼ÇÀÌ ÇÊ¿äÇϸç, ÀÌ´Â ½ÃÀå ¼ºÀåÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
  • ¶ÇÇÑ, Áß±¹, ºê¶óÁú, Àεµ µî ½ÅÈï±¹¿¡¼­ ½º¸¶Æ®Æù »ç¿ëÀÌ Áõ°¡ÇÏ°í ¼Ò¼È ¹Ìµð¾î Æ®·¡ÇÈÀÌ Áõ°¡ÇÔ¿¡ µû¶ó µ¥ÀÌÅÍ ½ºÆ®¸²ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ½Ç½Ã°£ µ¥ÀÌÅÍ ÀúÀå µî ´õ ¸¹Àº ±â´ÉÀÌ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù.
  • ¶ÇÇÑ, ´Ù¾çÇÑ ±¹°¡¿¡¼­ ½º¸¶Æ®Æù ÀÌ¿ëÀÌ Áõ°¡Çϰí ÀÖ´Â °Íµµ ½ÃÀå ¼ºÀåÀ» ÃËÁøÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¿¹¸¦ µé¾î, Á¤º¸¹æ¼ÛºÎ¿¡ µû¸£¸é 2022³â 11¿ù ÀεµÀÇ ÈÞ´ëÀüÈ­ °¡ÀÔÀÚ ¼ö´Â 12¾ï ¸íÀ» ³Ñ¾î¼¹À¸¸ç, ±× Áß 6¾ï ¸íÀÇ ½º¸¶Æ®Æù »ç¿ëÀÚ°¡ Æ÷ÇԵǾî ÀÖ½À´Ï´Ù. ¶ÇÇÑ, µ¥ÀÌÅÍ Åë½Å ¿ä±ÝÀÌ »ó´ëÀûÀ¸·Î Àú·ÅÇÑ µ¥´Ù ½º¸¶Æ®ÆùÀÇ º¸±ÞÀ¸·Î °³ÀÎÀÌ ¸ð¹ÙÀÏ ±â±â¸¦ ÅëÇØ ¸¹Àº Á¤º¸¿Í ¿£ÅÍÅ×ÀÎ¸ÕÆ®¸¦ ¼ÒºñÇÏ°Ô µÈ °ÍÀÌ ÁÖ¿ä ¿øÀÎÀ¸·Î ²ÅÈü´Ï´Ù.

ºÏ¹Ì°¡ Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»ó

  • ¹Ì±¹ Á¶Á÷Àº À¯·´À̳ª ¾Æ½Ã¾Æ Á¶Á÷¿¡ ºñÇØ ¿©·¯ ¾÷Á¾¿¡ °ÉÃÄ ºÐ¼®À» ¸¹ÀÌ µµÀÔÇϰí ÀÖ½À´Ï´Ù. ¹Ì±¹Àº »ó´çÇÑ ¼ö¿ä°¡ ÀÖ°í, °ø±Þ¾÷üµµ Á¸ÀçÇϱ⠶§¹®¿¡ ½ÃÀå¿¡¼­´Â ÇʼöÀûÀÎ ±¹°¡·Î ¿©°ÜÁö°í ÀÖ½À´Ï´Ù. GSMA¿¡ µû¸£¸é Áö³­ÇØ ºÏ¹ÌÀÇ ¸ð¹ÙÀÏ ¼­ºñ½º °¡ÀÔÀÚ´Â 3¾ï 2,900¸¸ ¸íÀ¸·Î Àüü Àα¸ÀÇ 84%¿¡ ÇØ´çÇÕ´Ï´Ù. ÀÌ Áö¿ªÀÇ ½Å±Ô ¼ø°í°´Àº ´ëºÎºÐ ¹Ì±¹¿¡¼­ À¯ÀԵǰí ÀÖ¾î, ÀÌ Áö¿ªÀÇ Åë½Å»ç¾÷ÀÚµéÀÌ ´ëÀÀÇÒ ¼ö ÀÖ´Â ½ÃÀå Àüü°¡ Æ÷È­»óÅ¿¡ °¡±î¿öÁö°í ÀÖ½À´Ï´Ù. ¹Ì±¹Àº 2025³â±îÁö ÀÌ Áö¿ª¿¡¼­ Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â 1,200¸¸ ¸íÀÇ »ç¿ëÀÚ Áß 75%¸¦ Á¦°øÇÏ°Ô µË´Ï´Ù.
  • ¶ÇÇÑ, Áß±¹ ¼ÒºñÀÚµéÀº ½Ç½Ã°£À¸·Î ¹®Á¦¿¡ ´ëÀÀÇÒ ¼ö ÀÖ´Â °ø±Þ¾÷ü¸¦ ³ôÀÌ Æò°¡Çϰí ÀÖ½À´Ï´Ù. µû¶ó¼­ ¸¹Àº ¼Ò¸Å¾÷üµéÀÌ ¾×Ƽºê µ¥ÀÌÅÍ ¿þ¾îÇϿ콺ÀÇ °³³äÀ» µµÀÔÇÏ¿© ¼ÒºñÀÚ ÀΰÔÀÌÁö¸ÕÆ®¿¡ Áß¿äÇÑ ¿ªÇÒÀ» ÇÏ´Â ·Î¿­Æ¼ °ü¸® ¿ëµµ¸¦ °­È­Çϰí ÀÖ½À´Ï´Ù.
  • ¸ð¹ÙÀÏ ±¤´ë¿ªÀÇ È®»êÀº ºòµ¥ÀÌÅÍ ºÐ¼®°ú Ŭ¶ó¿ìµå ÄÄÇ»ÆÃÀÇ Áõ°¡·Î À̾îÁ³À¸¸ç, 2022³â ¹Ì±¹¿¡¼­´Â »ó´ç¼öÀÇ ±â¾÷ÀÌ ºÐ¼®À» µµÀÔÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ¿©·¯ ±â¾÷ÀÌ ¿ÂÇÁ·¹¹Ì½º¿¡¼­ Ŭ¶ó¿ìµå ±â¹ÝÀ¸·Î ÀüȯÇÏ¿© µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 µµÀÔ¿¡ ´ëÀÀÇÏ´Â ½ÃÀåÀ¸·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À¸·Î ÃßÁ¤µË´Ï´Ù. ¶ÇÇÑ, ¹«¿ª Ȱµ¿ÀÇ Áõ°¡¿Í ±¹³» ±â¾÷ ¼öÀÇ Áõ°¡¿¡ µû¶ó ¹°·ù Ȱµ¿µµ Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±×·¯³ª °è¼Ó ´Ã¾î³ª´Â °ø°øºÎä°¡ ÀÎÇ÷¹À̼ÇÀ²À» ³ô¿© ¼Ò±Ô¸ð º¥´õµéÀÇ È°µ¿À» ¾ïÁ¦ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
  • Microsoft¿¡ µû¸£¸é, AI¸¦ Ȱ¿ëÇÑ °¡»ó ¿¡ÀÌÀüÆ®´Â ½ÅÈï ä³Î¿¡ Å©°Ô ±â¿©Çϰí ÀÖ´Ù°í ÇÕ´Ï´Ù. ÀÚ¿¬¾î ó¸® ¹× ±â°è ÇнÀ°ú °°Àº ±â´ÉÀº 24½Ã°£ 365ÀÏ ½º¸¶Æ®Çϰí, ´ëÈ­ÇüÀ̸ç, ½Å¼ÓÇÑ ¼Ö·ç¼ÇÀ» Á¦°øÇÒ ¼ö ÀÖ´Â ´É·ÂÀ» °¡Áö°í ÀÖ½À´Ï´Ù. ÀÌ´Â ±â¾÷ÀÌ °í°´ ¸¸Á·µµ Çâ»óÀ» Áß¿äÇÏ°Ô ¿©±â°í ÅõÀÚÇϰí ÀÖ´Ù´Â °ÍÀ» º¸¿©ÁÝ´Ï´Ù. µû¶ó¼­ ÀÌ·¯ÇÑ Á¤±³ÇÑ Ç÷§Æû°ú ºÐ¼®¿¡ ´ëÇÑ ¼ö¿ä´Â ¾×Ƽºê µ¥ÀÌÅÍ ¿þ¾îÇϿ콺ÀÇ ²ÙÁØÇÑ ¼ºÀå·üÀ» ±â·ÏÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.
  • ½ÃÀåÀÇ ¶Ç ´Ù¸¥ ÁÖ¿ä ÃËÁø¿äÀÎÀº BI ±â´ÉÀ» °®Ãá ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡ÀÔ´Ï´Ù. Áúº´ ¹ß°ß ¹× ¿¹¹æ°ú °°Àº ÀÏÂ÷ ÀǷḦ °³¼±Çϱâ À§ÇÑ Á¤ºÎÀÇ ³ë·Â°ú ÀÇ»çµéÀÇ µ¥ÀÌÅÍ ºÐ¼® Áõ°¡°¡ ½ÃÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ÀÌ¿¡ µû¶ó ¸¹Àº ÀÇ·á ±â°üµéÀº ºñ¿ë Àý°¨À» È®´ëÇϱâ À§ÇØ µ¥ÀÌÅÍ ¿þ¾îÇϿ콺¿¡ ´ëÇÑ Àû±ØÀûÀÎ ÁöÃâÀ» ´Ã¸®°í ÀÖ½À´Ï´Ù. ¿¹Ãø ±â°£ µ¿¾È º¸Çè»ç ¹× ±âŸ BFSI ±â¾÷ÀÇ ½Ç½Ã°£ ºÐ¼® ¹× BI¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡´Â ¹Ì±¹ ³» ADW ¼ö¿ä¸¦ °­È­ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¾×Ƽºê µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 »ê¾÷ °³¿ä

¾×Ƽºê µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ½ÃÀåÀº ¸Å¿ì ¼¼ºÐÈ­µÇ¾î ÀÖÀ¸¸ç, Microsoft Corporation, Oracle Corporation, SAP SE µî ±¹³»¿ÜÀÇ ¸¹Àº ±â¾÷µéÀÌ °æÀïÇϰí ÀÖ½À´Ï´Ù. ±â¼úÀÇ ¹ßÀüÀº ±â¾÷¿¡°Ô Å« °æÀï ¿ìÀ§¸¦ °¡Á®´ÙÁÖ°í ÀÖÀ¸¸ç, ½ÃÀå¿¡¼­´Â ¿©·¯ Á¦ÈÞµµ º¼ ¼ö ÀÖ½À´Ï´Ù.

2022³â 5¿ù, Dell Technologies Inc.¿Í Snowflake Inc.´Â ÀÚ»çÀÇ ¿ÂÇÁ·¹¹Ì½º ½ºÅ丮Áö Æ÷Æ®Æú¸®¿ÀÀÇ µ¥ÀÌÅ͸¦ Snowflake Data Cloud¿Í ¿¬µ¿ÇÏ´Â »õ·Î¿î ÇÁ·ÎÁ§Æ®¿¡ ´ëÇÑ Á¦ÈÞ¸¦ ¹ßÇ¥Çß½À´Ï´Ù. Data Cloud¶ó´Â Ŭ¶ó¿ìµå ³×ÀÌÆ¼ºê Ç÷§ÆûÀº ±â¾÷ Àüü¿¡¼­ ¾ÈÀüÇÑ µ¥ÀÌÅÍ °øÀ¯¸¦ °¡´ÉÇÏ°Ô Çϸ鼭 °³º° µ¥ÀÌÅÍ ·¹ÀÌÅ©¿Í ¿þ¾îÇϿ콺ÀÇ Çʿ伺À» ¾ø¾Ö´Â °ÍÀ» ¸ñÇ¥·Î Çϰí ÀÖ½À´Ï´Ù. ´Ù¾çÇÑ ¼­ºñ½ºÇü ¼ÒÇÁÆ®¿þ¾î(Software-as-a-Service)¿Í Ŭ¶ó¿ìµå Ç÷§ÆûÀÇ µ¥ÀÌÅͼ¼Æ®¸¦ ÅëÇÕÇÏ¿© ¸ðµç »ç¿ëÀÚ°¡ ÀÌ¿ëÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. ¶ÇÇÑ, 2022³â 5¿ù, Oracle°ú ¿£ÅÍÇÁ¶óÀÌÁî Ŭ¶ó¿ìµå µ¥ÀÌÅÍ °ü¸® ºÐ¾ßÀÇ ¼±µµÀû ±â¾÷ÀÎ Informatica´Â InformaticaÀÇ µ¥ÀÌÅÍ ÅëÇÕ ¹× °Å¹ö³Í½º ¼Ö·ç¼ÇÀ» Oracle Cloud Infrastructure¿¡¼­ »ç¿ëÇÒ ¼ö ÀÖµµ·Ï ÇÏ´Â Àü·«À» ¹ßÇ¥ÇÏ¿´½À´Ï´Ù. Àü·«À» ¹ßÇ¥Çß½À´Ï´Ù. ¶ÇÇÑ, OracleÀº Informatica¸¦ OCI »óÀÇ µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ¹× ·¹ÀÌÅ©ÇϿ콺 ¼Ö·ç¼ÇÀ» À§ÇÑ ¿£ÅÍÇÁ¶óÀÌÁî Ŭ¶ó¿ìµå µ¥ÀÌÅÍ °Å¹ö³Í½º ¹× ÅëÇÕÀ» À§ÇÑ Ãßõ ÆÄÆ®³Ê·Î ÁöÁ¤Çß½À´Ï´Ù.

±âŸ ÇýÅÃ

  • ¿¢¼¿ Çü½ÄÀÇ ½ÃÀå ¿¹Ãø(ME) ½ÃÆ®
  • 3°³¿ù°£ÀÇ ¾Ö³Î¸®½ºÆ® Áö¿ø

¸ñÂ÷

Á¦1Àå ¼Ò°³

  • Á¶»ç °¡Á¤°ú ½ÃÀå Á¤ÀÇ
  • Á¶»ç ¹üÀ§

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå °³¿ä
  • »ê¾÷ ¹ë·ùüÀÎ ºÐ¼®
  • »ê¾÷ÀÇ ¸Å·Â Porter's Five Forces ºÐ¼®
    • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
    • ±¸¸ÅÀÚÀÇ ±³¼··Â
    • ½Å±Ô Âü¿©¾÷üÀÇ À§Çù
    • ´ëüǰÀÇ À§Çù
    • °æÀï ±â¾÷ °£ÀÇ °æÀï °­µµ
  • COVID-19ÀÇ ½ÃÀå¿¡ ´ëÇÑ ¿µÇâ Æò°¡

Á¦5Àå ½ÃÀå ¿ªÇÐ

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • ´Ù¾çÇÑ »ê¾÷ÀÇ ºñÁî´Ï½º ÀÎÅÚ¸®Àü½º¿Í ºòµ¥ÀÌÅÍ ºÐ¼® ¼Ö·ç¼Ç ä¿ë Áõ°¡
    • ½º¸¶Æ®Æù º¸±ÞÀÌ ½ÃÀå ¼ºÀåÀ» ÃËÁøÇÒ °¡´É¼º
  • ½ÃÀå °úÁ¦
    • µµÀÔ¿¡ ÇÊ¿äÇÑ ÀÚ¿ø°ú ½Ã°£ ¼Ò¸ð°¡ ³ôÀ½
    • »çÀ̹ö À§Çù Áõ´ë°¡ ½ÃÀå ¼ºÀåÀ» ¾ïÁ¦ÇÒ °¡´É¼º

Á¦6Àå ½ÃÀå ¼¼ºÐÈ­

  • µµÀÔ ¹æ½Äº°
    • ¿ÂÇÁ·¹¹Ì½º
    • Ŭ¶ó¿ìµå
    • ÇÏÀ̺긮µå
  • ±â¾÷ ±Ô¸ðº°
    • Áß¼Ò±â¾÷
    • ´ë±â¾÷
  • »ê¾÷º°
    • BFSI
    • Á¦Á¶¾÷
    • ÀÇ·á
    • ¼Ò¸Å
    • ±âŸ »ê¾÷º°
  • Áö¿ª
    • ºÏ¹Ì
      • ¹Ì±¹
      • ij³ª´Ù
    • À¯·´
      • ¿µ±¹
      • µ¶ÀÏ
      • ÇÁ¶û½º
      • ½ºÆäÀÎ
      • ±âŸ À¯·´
    • ¾Æ½Ã¾ÆÅÂÆò¾ç
      • Áß±¹
      • ÀϺ»
      • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ±âŸ

Á¦7Àå °æÀï ±¸µµ

  • ±â¾÷ °³¿ä
    • Treasure Data Inc.
    • Cloudera Inc.
    • Snowflake Computing Inc.
    • Oracle Corporation
    • Hewlett Packard Enterprise Company
    • Microsoft Corporation
    • SAP SE
    • Amazon Web Services, Inc.
    • VMware Inc.(Pivotal Software Inc.)
    • Huawei Technologies Co. Ltd
    • Teradata Corporation
    • Kognitio Ltd
    • IBM Corporation

Á¦8Àå ÅõÀÚ ºÐ¼®

Á¦9Àå ½ÃÀå Àü¸Á

ksm 25.02.10

The Active Data Warehousing Market size is estimated at USD 11.12 billion in 2025, and is expected to reach USD 18.82 billion by 2030, at a CAGR of 11.1% during the forecast period (2025-2030).

Active Data Warehousing - Market - IMG1

Additionally, the growth in demand from developing nations is anticipated to open up new opportunities for the active data warehousing market throughout the projection period.

Key Highlights

  • The active data warehousing market is poised for a significant shift, owing to factors like the ongoing demand for next-gen business intelligence coupled with the growing amount of data organizations generate. ADW allows users to access an enormous range of complex information in real-time. The data is organized efficiently and relevantly, which is anticipated to aid market growth over the forecast period. The rising demand for low latency and high-speed analytics, combined with the growing role of business intelligence in enterprise management, is expected to drive the market demand significantly.
  • Further, according to Oracle, in Brazil, with nearly 90% of the population living in urban areas, SKY Brasil has approximately 29% market share for direct-to-home satellite services. The company opted for Oracle's Autonomous Data Warehouse running on Oracle Cloud Infrastructure, integrated into Oracle's Siebel CRM, to perform real-time, sophisticated marketing analytics. The deployer achieved 90% less time in deployment and commencing production than its previous on-premise solution while realizing 60% of infrastructure cost savings. Furthermore, ADW significantly diminishes the cost of computing, coupled with combining data in a single location, which is further projected to impact market growth positively.
  • Additionally, ADW substantially decreases the cost of computing, coupled with combining data in a single location, which is also expected to impact the market growth positively. Along with these factors, globally, the significant rise in the Big Data trend in organizations is leading to the increasing demand for analytics, which is also projected to aid market growth. Also, to scale the computing capacity to match the demand and effortlessly scale back down when the usage peaks, vendors in the market have been following resource usage-based models for the pricing of cloud data warehousing. It addresses the issues of economies of scale that vendors may look for and the flexibility that clients demand. However, fixed-capacity data warehouses force organizations to buy more computing capacity than needed.
  • Data warehousing has generated a lot of interest in real-world applications, notably in finance, business, healthcare, and other industries, as a result of growing concerns about data management and rising complexity. Digitalizing corporate processes led to the adoption of new technologically advanced operations with data analytics capabilities in the IT industry. As a result, modern data warehouse systems facilitate the development of the real-time, enterprise-scale analytics and information insights required for digital business operations.
  • However, the market for active data warehousing is being restrained by various factors, including high installation costs and increased cyber threats.
  • COVID-19 created a mixed impact on the market. For instance, in a survey of 300 analytics professionals in the US, Burtch Works and the International Institute for Analytics (IIA) revealed that over 43% of respondents said that analytics was a crucial factor in their actions to make essential choices in response to the COVID-19 problem. Companies scaled back operations due to the pandemic epidemic, reduced expenses, and closed offices. The widespread adoption of the work-from-home paradigm presents another difficulty for firms. Cloud-based data warehouse installations are anticipated to be accelerated by such developments. The pandemic provided numerous advantages for adopting data warehousing, including cost-effectiveness, access to a large skill pool, and enhanced scalability.

Active Data Warehousing Market Trends

Rising Penetration of Smartphones may Drive the Market Growth

  • Mobile phones, especially smartphones, are becoming increasingly widespread among various people. Users may get essential information rapidly owing to modern information and communication technology (ICT). According to the GSMA, there are more than 6.2 billion active iOS and Android smartphones worldwide as of last year, and it is expected to reach 7.4 billion by 2025. Additionally, the usage of mobile technology is increasing across a range of computer systems, including Data Warehouse (DW), Business Intelligence (BI) systems, and Data Analytic systems.
  • Mobile phones act as a database, where a considerable amount of user data is stored. The stored data can be subjected to analysis as per the T&C approval by the user. The data can be retrieved and analyzed by various active data warehouses to collect multiple traits of the user. Smartphone users need a vast cloud database for data access, thereby needing data warehousing solutions, driving market growth.
  • Further, an increasing data stream necessitates more capabilities, including real-time data storage, as a result of the rising smartphone usage in emerging nations like China, Brazil, and India, as well as the increased social media traffic.
  • Moreover, the growing smartphone usage across various countries is anticipated to drive market growth. For instance, according to the Ministry of Information and Broadcasting, in November 2022, India had more than 1.2 billion mobile phone subscribers, including 600 million smartphone users. Furthermore, it was mentioned that in addition to having relatively cheap data rates, the widespread usage of smartphones has led to individuals consuming a lot of information and entertainment on their mobile devices.

North America is Expected to Hold a Significant Market Share

  • The United States organizations are significant adopters of analytics across several verticals, compared with European or Asian organizations. The United States is considered an essential country in the market because of the considerable demand and presence of vendors. Also, according to GSMA, there were 329 million mobile service subscribers in North America last year, or 84% of the total population. With most of the region's new unique customers coming from the United States, the total addressable market for the operators in the area is approaching close to saturation. The United States would provide 75% of the 12 million more users anticipated in the region by 2025.
  • Also, consumers in the country value vendors that provide real-time assistance with their issues; hence, many retail organizations are adopting active data warehousing concepts to enhance loyalty management applications that play a crucial role in retaining consumers.
  • The growth of mobile broadband led to increased Big Data analytics and cloud computing in the country. The United States, with a considerable number of analytics adopters in 2022, encouraged multiple enterprises to switch from on-premise to cloud-based deployment, which is estimated to be an addressable market for data warehouse installations. Furthermore, logistics activities are expected to increase with the rise in trade activities and the growing number of businesses in the country. However, the ever-increasing public debt of the country is expected to drive the inflation rate up, thus curtailing small vendors' activities.
  • As per Microsoft, AI-driven virtual agents have contributed significantly toward emerging channels. Features like natural language processing and machine learning possess capabilities to deliver smart, conversational, and fast solutions 24/7. It indicates the importance and spending that companies direct toward improving customer satisfaction. Therefore, the demand for such sophisticated platforms and analytics will continue to help register a steady growth rate of active data warehousing.
  • Another key driver in the market is the increasing need for solutions with BI capabilities. Government initiatives and increased data analytics physicians use for improved primary care, such as the detection and prevention of diseases, are driving the market. Thus, many healthcare organizations have started spending more on active data warehousing to increase cost savings. Over the forecast period, the increasing demand for real-time analytics and BI from insurance and other BFSI companies is expected to bolster the demand for ADW in the United States.

Active Data Warehousing Industry Overview

The Active Data Warehousing Market is highly fragmented, with several domestic and international players in a fairly-contested market space, including Microsoft Corporation, Oracle Corporation, SAP SE, etc. Technological advancements are also bringing considerable competitive advantage to companies, and the market is also witnessing multiple partnerships.

In May 2022, Dell Technologies Inc. and Snowflake Inc. announced a partnership on a new project to link data from its on-premises storage portfolio with the Snowflake Data Cloud. A cloud-native platform called Snowflake Data Cloud is intended to do away with the need for separate data lakes and warehouses while enabling safe data sharing throughout enterprises. It allows users to aggregate datasets from various software-as-a-service and cloud platforms and make them available to any user. Also, in May 2022, Oracle and Informatica, a prominent provider of enterprise cloud data management, announced a strategic relationship that will enable Informatica's data integration and governance solutions to be used with Oracle Cloud Infrastructure. Additionally, Oracle has designated Informatica as a recommended partner for enterprise cloud data governance and integration for data warehouse and lakehouse solutions on OCI.

Additional Benefits:

  • The market estimate (ME) sheet in Excel format
  • 3 months of analyst support

TABLE OF CONTENTS

1 INTRODUCTION

  • 1.1 Study Assumptions and Market Definition
  • 1.2 Scope of the Study

2 RESEARCH METHODOLOGY

3 EXECUTIVE SUMMARY

4 MARKET INSIGHTS

  • 4.1 Market Overview
  • 4.2 Industry Value Chain Analysis
  • 4.3 Industry Attractiveness Porter's Five Forces Analysis
    • 4.3.1 Bargaining Power of Suppliers
    • 4.3.2 Bargaining Power of Buyers
    • 4.3.3 Threat of New Entrants
    • 4.3.4 Threat of Substitute Products
    • 4.3.5 Intensity of Competitive Rivalry
  • 4.4 Assessment of the Impact of COVID-19 on the Market

5 MARKET DYNAMICS

  • 5.1 Market Drivers
    • 5.1.1 Increase in the Adoption of Business Intelligence and Big Data Analytics Solutions in Various Industries
    • 5.1.2 Rising Penetration of Smartphones may Drive the Market Growth
  • 5.2 Market Challenges
    • 5.2.1 High Consumption of Resources and Time Required for Implementation
    • 5.2.2 Growing Cyber Threats may Restrain the Market Growth

6 MARKET SEGMENTATION

  • 6.1 By Type of Deployment
    • 6.1.1 On-premise
    • 6.1.2 Cloud
    • 6.1.3 Hybrid
  • 6.2 By Size of Enterprise
    • 6.2.1 Small and Medium-sized Enterprises
    • 6.2.2 Large Enterprises
  • 6.3 By Industry Vertical
    • 6.3.1 BFSI
    • 6.3.2 Manufacturing
    • 6.3.3 Healthcare
    • 6.3.4 Retail
    • 6.3.5 Other Industry Verticals
  • 6.4 Geography
    • 6.4.1 North America
      • 6.4.1.1 United States
      • 6.4.1.2 Canada
    • 6.4.2 Europe
      • 6.4.2.1 United Kingdom
      • 6.4.2.2 Germany
      • 6.4.2.3 France
      • 6.4.2.4 Spain
      • 6.4.2.5 Rest of Europe
    • 6.4.3 Asia-Pacific
      • 6.4.3.1 China
      • 6.4.3.2 Japan
      • 6.4.3.3 Rest of Asia-Pacific
    • 6.4.4 Rest of the World

7 COMPETITIVE LANDSCAPE

  • 7.1 Company Profiles
    • 7.1.1 Treasure Data Inc.
    • 7.1.2 Cloudera Inc.
    • 7.1.3 Snowflake Computing Inc.
    • 7.1.4 Oracle Corporation
    • 7.1.5 Hewlett Packard Enterprise Company
    • 7.1.6 Microsoft Corporation
    • 7.1.7 SAP SE
    • 7.1.8 Amazon Web Services, Inc.
    • 7.1.9 VMware Inc. (Pivotal Software Inc.)
    • 7.1.10 Huawei Technologies Co. Ltd
    • 7.1.11 Teradata Corporation
    • 7.1.12 Kognitio Ltd
    • 7.1.13 IBM Corporation

8 INVESTMENT ANALYSIS

9 FUTURE OF THE MARKET

ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦