½ÃÀ庸°í¼­
»óǰÄÚµå
1641946

½Ç¸®ÄÜÄ«¹ÙÀ̵åÀü·Â¹ÝµµÃ¼ ½ÃÀå Á¡À¯À² ºÐ¼®, »ê¾÷ µ¿Çâ°ú Åë°è, ¼ºÀå ¿¹Ãø(2025-2030³â)

Silicon Carbide Power Semiconductor - Market Share Analysis, Industry Trends & Statistics, Growth Forecasts (2025 - 2030)

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Mordor Intelligence | ÆäÀÌÁö Á¤º¸: ¿µ¹® | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

½Ç¸®ÄÜ Ä«¹ÙÀÌµå ÆÄ¿ö ¹ÝµµÃ¼ ½ÃÀå ±Ô¸ð´Â 2025³â¿¡ 27¾ï 3,000¸¸ ´Þ·¯·Î ÃßÁ¤µÇ¸ç, ¿¹Ãø ±â°£(2025-2030³â)ÀÇ CAGRÀº 25.24%·Î, 2030³â¿¡´Â 84¾ï 1,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù.

Silicon Carbide Power Semiconductor-Market-IMG1

ÆÒµ¥¹ÍÀÇ ¹ß»ýÀº ¼¼°èÀÇ Áß¼Ò,´ë±Ô¸ð »ê¾÷¿¡ °æÁ¦Àû È¥¶õÀ» °¡Á®¿Ô½À´Ï´Ù. Á¦Á¶¾÷ÀÇ ´ëºÎºÐÀº »ý»ê¼ºÀ» ³ôÀ̱â À§ÇØ »ç¶÷µéÀÌ ¹ÐÁ¢ÇÏ°Ô Á¢ÃËÇÏ´Â °øÀå ÇöÀå¿¡¼­ÀÇ ÀÛ¾÷À» Æ÷ÇÔÇϱ⠶§¹®ÀÔ´Ï´Ù.

ÁÖ¿ä ÇÏÀ̶óÀÌÆ®

  • SiC(½Ç¸®ÄÜ Ä«¹ÙÀ̵å)´Â ¹êµå °¸ÀÌ ³Ð±â ¶§¹®¿¡ °íÃâ·Â ¿ëµµ·Î »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. SiC¿¡´Â ´Ù¾çÇÑ Æú¸® À¯Çü(´ÙÇü)ÀÌ Á¸ÀçÇÏÁö¸¸ 4H-SiC´Â ÆÄ¿ö µð¹ÙÀ̽º¿¡ °¡Àå ÀÌ»óÀûÀÔ´Ï´Ù. Àç·á ´É·Â Çâ»óÀ» ¸ñÇ¥·Î ÇÏ´Â R&D Ȱµ¿ Áõ°¡´Â ½ÃÀå ¼ºÀåÀÇ °­·ÂÇÑ ¿øµ¿·ÂÀÌ µÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¿¹¸¦ µé¾î, ¹Ì±¹ ¿¡³ÊÁöºÎ(DOE)ÀÇ Advanced Research Projects AgencyEnergy(ARPA-E)´Â Creation Innovative and Reliable Circuits Using Inventive Topologies and Semiconductors(CIRCUITS) ÇÁ·Î±×·¥ÀÇ ÀÏȯÀ¸·Î 21°³ ÇÁ·ÎÁ§Æ®¿¡ 3,000¸¸ ´Þ·¯ÀÇ ÀÚ±Ý Á¦°øÀ» ¹ßÇ¥Çß½À´Ï´Ù. ¶ÇÇÑ SiC ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½ºÀÇ Á¦Á¶ ºñ¿ë Àý°¨À» ¸ñÇ¥·Î ÇÏ´Â NREL ÁÖµµ ¿¬±¸¿¡ ´ëÇÑ ¹Ì±¹ DOE ÅõÀÚ¿Í °°Àº ÀÌ´Ï¼ÅÆ¼ºê´Â ÀÌ·¯ÇÑ Ãß¼¼¸¦ ´õ¿í Çâ»ó½ÃŰ°í º¸´Ù °ß°íÇÑ SiC ±â¹Ý µð¹ÙÀ̽ºÀÇ ¹üÀ§¸¦ È®´ëÇÒ ¼ö ÀÖ½À´Ï´Ù.
  • Àü±âÀÚµ¿Â÷´Â ÀÚµ¿Â÷ »ê¾÷¿¡¼­ Ç׼ӰŸ®, ÃæÀü½Ã°£, ¼º´É Çâ»ó µî °í°´ÀÇ ±â´ë¿¡ ºÎÀÀÇÏ´Â ÀÏÁ¤ÇÑ ÀÌÁ¡À» ±âÀçÇϰí ÀÖ½À´Ï´Ù. ±×·¯³ª Àü±âÀÚµ¿Â÷¿¡´Â °í¿Â¿¡¼­ È¿À²ÀûÀ̰í È¿°úÀûÀ¸·Î ÀÛµ¿ÇÏ´Â Àü·Â ÀüÀÚ ÀåÄ¡°¡ ÇÊ¿äÇÕ´Ï´Ù. µû¶ó¼­ ¿ÍÀÌµå ¹êµå°¸ SiC ±â¼úÀ» ÀÌ¿ëÇÑ ÆÄ¿ö ¸ðµâÀÇ °³¹ßÀÌ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù.
  • Àü±âÀÚµ¿Â÷´Â °¡°Ý Ç϶ô°ú Ç׼ӰŸ®°¡ ´Ã¾î³²¿¡ µû¶ó ¿À´Ã³¯¿¡´Â ÈçÈ÷ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ±¹Á¦¿¡³ÊÁö±â±¸ÀÇ º¸°í¼­ Global EV Àü¸Á 2021¿¡ µû¸£¸é 2020³â¿¡´Â 1,020¸¸´ë ÀÌ»óÀÇ ¼ÒÇü Àü±â½Â¿ëÂ÷°¡ µµ·Î¸¦ ´Þ¸®°í ÀÖ¾ú½À´Ï´Ù. ¶ÇÇÑ Àü±âÂ÷ µî·Ï ´ë¼ö´Â 2020³â¿¡ 41% Áõ°¡ÇÏ¿© ½ÃÀå¿¡ ¼ºÀå ±âȸ¸¦ °¡Á®¿À°í ÀÖ½À´Ï´Ù.
  • ¹ÝµµÃ¼´Â ¶ÇÇÑ ¿¡³ÊÁö ¼Õ½ÇÀ» ÁÙÀ̰í ž翡³ÊÁö¿Í dz·Â¿¡³ÊÁöÀÇ Àü·Â º¯È¯±â¸¦ ±ä ¼ö¸íÈ­Çϱâ À§ÇØ SiC¸¦ »ç¿ëÇÕ´Ï´Ù. ¿¹¸¦ µé¾î, ž籤 ¿¡³ÊÁö´Â ÁÖ·Î È¿À², Àü·Â ¹Ðµµ ¹× ½Å·Ú¼ºÀ» ³ôÀ̱â À§ÇØ °íÃâ·Â, Àú¼Õ½Ç, °í¼Ó ½ºÀ§Äª ¹× °í½Å·Ú¼º ¹ÝµµÃ¼ ÀåÄ¡°¡ ÇÊ¿äÇÕ´Ï´Ù. µû¶ó¼­ SiC µð¹ÙÀ̽º´Â Áõ°¡ÇÏ´Â ¿¡³ÊÁö ¼ö¿ä¸¦ ÃæÁ·½Ã۱â À§ÇÑ Å¾籤 ¿¡³ÊÁö ¿ä±¸»çÇ׿¡ ´ëÇÑ À¯¸ÁÇÑ ¼Ö·ç¼ÇÀ» ±â¼úÇϰí ÀÖ½À´Ï´Ù.
  • Ŭ¸°ÅØ ¼ö¿ä°¡ °¡Á®¿Ã °¡´É¼ºÀ» Ȱ¿ëÇϱâ À§ÇØ ¿©·¯ ±â¾÷ÀÌ SiC ÆÄ¿ö ¹ÝµµÃ¼ ½ÃÀå¿¡ ÁøÃâÇϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, 2021³â 4¿ù, ´º¿å ÁÖ¸³´ëÇÐ Æú¸®Å×Å©´Ð ·¦(SUNY Poly)¿¡¼­ ½ºÇÉ¿ÀÇÁÇÑ NoMIS Power GroupÀº SiC ÆÄ¿ö ¹ÝµµÃ¼ µð¹ÙÀ̽º, ¸ðµâ ¹× Àü·Â °ü¸® Á¦Ç° °³¹ßÀÚ¿¡°Ô Áö¿øÀ» Á¦°øÇÏ´Â ¼­ºñ½º¸¦ ¼³°è, Á¦Á¶ ¹× ÆÇ¸ÅÇÒ °èȹÀ̶ó°í ¹ßÇ¥Çß½À´Ï´Ù.
  • ¶Ç, SiC ÆÄ¿ö ¹ÝµµÃ¼´Â °íÁ֯İ¡ µÇ¸é ±â»ý ¿ë·®À̳ª ÀδöÅϽº°¡ Ä¿Á®, º»·¡ÀÇ ¼º´ÉÀ» ¹ßÈÖÇÒ ¼ö ¾ø°Ô µË´Ï´Ù. ÀÌ·¯ÇÑ Á¡¿¡¼­ SiCÀÇ º¸±Þ¿¡´Â Á¦Á¶ ¼³ºñÀÇ °»½ÅÀÌ ÇÊ¿äÇÒ °¡´É¼ºÀÌ ÀÖ¾î, ÇöÀçÀÇ °³¹ß ÆäÀ̽º¿¡¼­´Â ½ÇÇöÇÒ ¼ö ¾ø½À´Ï´Ù.

½Ç¸®ÄÜ Ä«¹ÙÀÌµå ÆÄ¿ö ¹ÝµµÃ¼ ½ÃÀå µ¿Çâ

ÀÚµ¿Â÷»ê¾÷ÀÌ Å« ¼ºÀåÀ» ±â·ÏÇÒ Àü¸Á

  • ÀÚµ¿Â÷ ÆÄ¿öÆ®·¹ÀÎ ³»¿¡¼­ ½Ç¸®ÄÜ Ä«¹ÙÀ̵å(SiC) µð¹ÙÀ̽ºÀÇ »ç¿ë¿¡ °üÇÑ Á¶»ç Ȱµ¿ÀÌ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. ±×·¯³ª ÃÖ±ÙÀÇ ¹ßÀüÀ¸·Î Á¡Â÷ ½ÇÇö °¡´ÉÇÑ ¼Ö·ç¼ÇÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ºü¸¥ ÃæÀü ¼Ö·ç¼ÇÀ» äÅÃÇÑ Tesla´Â ÇöÀç SiC¸¦ ÀÚµ¿Â÷ ¾ÆÅ°ÅØÃ³¿¡ »ç¿ëÇϰí ÀÖ½À´Ï´Ù. °Ô´Ù°¡ Àü±âÂ÷´Â °¡°ÝÀÌ Ç϶ôÇϰí Ç׼ӰŸ®°¡ ´Ã¾î³ª±â ¶§¹®¿¡ ÃÖ±Ù¿¡´Â ÀϹÝÀûÀ¸·Î µÇ°í ÀÖ½À´Ï´Ù. ±¹Á¦¿¡³ÊÁö±â±¸(IEA)¿¡ µû¸£¸é 2021³â Àü ¼¼°è Ç÷¯±×ÀÎ Àü±âÂ÷ ÆÇ¸Å·®Àº ¾à 660¸¸´ë¿¡ ´ÞÇÒ Àü¸ÁÀÔ´Ï´Ù.
  • SiC ¹ÝµµÃ¼´Â Ç÷¯±×ÀÎ ÇÏÀ̺긮µå ÀÚµ¿Â÷(PHEV) ¹× ¿ÏÀü Àü±âÀÚµ¿Â÷(EV)¿¡¼­ »ç¿ëµÇ´Â ÀÚµ¿Â÷ ÃæÀü±â ¹× ÀιöÅÍ¿Í °°Àº ¿ëµµ¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. ±× ¿¡³ÊÁö È¿À²Àº ±âÁ¸ ½Ç¸®ÄÜ¿¡ ºñÇØ ÈξÀ ³ô±â ¶§¹®ÀÔ´Ï´Ù.
  • ¶ÇÇÑ EV°¡ Àå°Å¸®¸¦ ÁÖÇàÇϰí ÇÕ¸®ÀûÀÎ ½Ã°£ ÇÁ·¹ÀÓ ³»¿¡¼­ ÃæÀüÇÒ ¼ö ÀÖµµ·Ï ÇÏ·Á¸é Â÷·®ÀÇ ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º°¡ °í¿Â¿¡ ´ëÀÀÇÒ ¼ö ÀÖ¾î¾ß ÇÕ´Ï´Ù. SiC ¹ÝµµÃ¼´Â 95% ÀÌ»óÀÇ ¿¡³ÊÁö È¿À²À̶ó´Â ÀåÁ¡ÀÌ ÀÖ½À´Ï´Ù. °íÃâ·Â ±Þ¼Ó ÃæÀü±â¿¡ ÀÇÇÑ ÃæÀü µî Àü·Â º¯È¯ ½Ã ¿­·Î ¼Õ½ÇµÇ´Â ¿¡³ÊÁö´Â ºÒ°ú 5%ÀÔ´Ï´Ù.
  • ÀϺ»¿¡¼­´Â µµÄì´ëÇÐÀÌ Mitsubishi Electric Corporation°ú °øµ¿À¸·Î SiC ¹ÝµµÃ¼ µð¹ÙÀ̽ºÀÇ ½Å·Ú¼º Çâ»óÀ» À§ÇØ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù. ÀÌ¿¡ ¾Õ¼­ Mitsubishi ElectricÀº ÇÏÀ̺긮µå ÀÚµ¿Â÷¿ëÀ¸·Î ¼³°èµÈ »õ·Î¿î ÃʼÒÇü SiC ÀιöÅ͸¦ °ø°³ÇØ 2021³â°æÀÇ ¾ç»êÈ­¸¦ ¸ñÇ¥·Î Çϰí ÀÖ½À´Ï´Ù.
  • ¶ÇÇÑ Delphi Technologies¿Í Cree´Â Á¦ÈÞÇÏ¿© CreÀÇ SiC MOSFETÀ» °áÇÕÇÑ ÀüÀÚ ÀιöÅ͸¦ °³¹ßÇß½À´Ï´Ù. À̸¦ ÅëÇØ ÇÏÀ̺긮µå ÀÚµ¿Â÷ ¹× ¿ÏÀü Àü±âÀÚµ¿Â÷ÀÇ Ç×¼Ó °Å¸® ¿¬ÀåÀ» Áö¿øÇÏ´Â °íÃâ·ÂÀ» °¡´ÉÇÏ°Ô Çϸ鼭 Àüü ÆÄ¿ö ¸ðµâÀÇ ¿Âµµ¸¦ Å©°Ô ÁÙ¿´½À´Ï´Ù. ¶ÇÇÑ ÀÌ·¯ÇÑ ÀιöÅÍ´Â °æÀï ¸ðµ¨º¸´Ù 40% °¡º±°í 30% ÄÄÆÑÆ®ÇÕ´Ï´Ù.
  • ¶ÇÇÑ Infineon Technologies´Â 2021³â 5¿ù ÀÚµ¿Â÷¿ë CoolSiC MOSFET ±â¼úÀ» žÀçÇÑ »õ·Î¿î ÆÄ¿ö ¸ðµâÀ» ¹ßÇ¥Çß½À´Ï´Ù. Si ´ë½Å SiC¸¦ »ç¿ëÇÏ¿© Àü±âÀÚµ¿Â÷ ÄÁ¹öÅÍÀÇ °íÈ¿À²È­¸¦ ½ÇÇöÇϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î Çö´ëÂ÷±×·ìÀº ÀÎÇǴϾðÀÇ CoolSiC ÆÄ¿ö¸ðµâÀ» žÀçÇÑ Æ®·¢¼Ç ÀιöÅ͸¦ ÅëÇØ Si ±â¹Ý ¼Ö·ç¼Ç¿¡ ºñÇØ ÀÌ SiC ¼Ö·ç¼ÇÀÇ Àú¼Õ½Ç·Î ÀÎÇÑ È¿À² Çâ»óÀ¸·Î Â÷·®ÀÇ Ç׼ӰŸ®¸¦ 5% ÀÌ»ó ´Ã¸± ¼ö ÀÖ¾ú½À´Ï´Ù°í º¸°íÇß½À´Ï´Ù.
  • °Ô´Ù°¡ 2021³â 3¿ù ¿µ±¹ Á¤ºÎ´Â ¿µ±¹ ¿¬±¸,À̳뺣ÀÌ¼Ç ÁÖµµÀÇ »ê¾÷ Àü·« 縰Áö ±â±ÝÀÇ ÀÏȯÀ¸·Î¼­ ½Ç¸®ÄÜ Ä«¹ÙÀ̵å(SiC) ÆÄ¿ö ¹ÝµµÃ¼ µð¹ÙÀ̽º¸¦ Á¦Á¶ÇØ, ¼ö¼Û, °¡Á¤, »ê¾÷¿ëÀÇ º¸´Ù È¿À²ÀûÀÎ ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º¸¦ ÀÛ¼ºÇØ, ±¹°¡°¡ ³Ý Á¦·ÎÀÇ ¾ß¸ÁÀ» ´Þ¼ºÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù.

¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå ºü¸¥ ¼ºÀåÀ» º¸À̰í ÀÖ½À´Ï´Ù.

  • ¾Æ½Ã¾ÆÅÂÆò¾çÀº ¼¼°èÀÇ SiC ÆÄ¿ö ¹ÝµµÃ¼ ½ÃÀåÀ» µ¶Á¡Çϰí ÀÖÀ¸¸ç, ÀÌ´Â ¼¼°è ¹ÝµµÃ¼ ½ÃÀåÀÇ ¼ºÀå°ú °ü·ÃÀÌ ÀÖÀ¸¸ç Á¤ºÎ ½ÃÃ¥¿¡µµ µÞ¹ÞħµË´Ï´Ù. °Ô´Ù°¡ ÀÌ Áö¿ªÀÇ ¹ÝµµÃ¼ »ê¾÷Àº Áß±¹, ´ë¸¸, ÀϺ», Çѱ¹ÀÌ °ßÀÎÇϰí ÀÖÀ¸¸ç, À̵éÀ» ÇÕÄ¡¸é ¼¼°èÀÇ ¹ÝµµÃ¼ ½ÃÀåÀÇ ¾à 65%¸¦ Â÷ÁöÇÕ´Ï´Ù. À̿ʹ ´ëÁ¶ÀûÀ¸·Î ű¹, º£Æ®³², ½Ì°¡Æ÷¸£, ¸»·¹ÀÌ½Ã¾Æ µîµµ ÀÌ Áö¿ª ½ÃÀå Áö¹è¿¡ Å©°Ô ±â¿©Çϰí ÀÖ½À´Ï´Ù.
  • Àεµ ÀüÀÚ ¹ÝµµÃ¼ Çùȸ¿¡ µû¸£¸é ÀεµÀÇ ¹ÝµµÃ¼ ºÎǰ ½ÃÀåÀº 2025³â±îÁö 323¾ï 5,000¸¸ ´Þ·¯ ±Ô¸ð°¡ µÇ°í, CAGRÀº 10.1%(2018-2025³â)°¡ µÉ °ÍÀ¸·Î ¿¹»óµÇ°í ÀÖ½À´Ï´Ù. ÀÌ ³ª¶ó´Â ¼¼°èÀÇ ¿¬±¸°³¹ß¼¾ÅÍ¿¡ À¯¸®ÇÑ ÁøÃâóÀÔ´Ï´Ù. µû¶ó¼­ Á¤ºÎ°¡ ÁøÇàÇÏ´Â Make In India ÀÌ´Ï¼ÅÆ¼ºê´Â ¹ÝµµÃ¼ ½ÃÀå¿¡ ´ëÇÑ ÅõÀÚ·Î À̾îÁú °ÍÀ¸·Î ±â´ëµË´Ï´Ù.
  • ¶ÇÇÑ, ÀÌ Áö¿ªÀº ÀüÀÚÀÇ ÇãºêÀ̸ç, ±âŸ ±¹°¡·ÎÀÇ ¼öÃâ°ú ÀÌ Áö¿ªÀÇ ¼Òºñ¸¦ À§ÇØ ¸Å³â ¼ö¹é¸¸ °³ÀÇ ÀüÀÚ ±â±â¸¦ »ý»êÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÀüÀÚºÎǰ ¹× ÀüÀÚ±â±âÀÇ ³ôÀº »ý»ê·®Àº Á¶»ç ´ë»ó ½ÃÀå Á¡À¯À²¿¡ Å©°Ô ±â¿©Çϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î ÀεµÀÇ ¼ÒºñÀÚ ÀüÀÚ±â±â ¼ö¿ä Áõ°¡µµ ÀÌ Áö¿ª ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù. IBEF¿¡ µû¸£¸é ÀεµÀÇ ÀüÀÚ±â±â Çϵå¿þ¾î¿¡ ´ëÇÑ ¼ö¿ä´Â 2024³âµµ±îÁö 4,000¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ÀÌ´Â ½ÃÀå ¼ºÀåÀ» ´õ¿í ÃËÁøÇÕ´Ï´Ù.
  • Áß±¹Àº ¼¼°è ÃÖ´ëÀÇ Àü·Â »ý»ê±¹ÀÔ´Ï´Ù. ÀÌ ³ª¶óÀÇ ¿¡³ÊÁö ¼ö¿ä´Â Áõ°¡ÇÏ°í ±× °á°ú ¿¡³ÊÁö »ý»ê·®µµ Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¿¹¸¦ µé¾î IEA¿¡ µû¸£¸é Áß±¹¿¡¼­´Â Àü±âÂ÷ ÆÇ¸Å ´ë¼ö°¡ 2¹è ÀÌ»óÀ¸·Î Áõ°¡Çϰí ÀÖÀ¸¸ç, 2021³â¿¡´Â ±âŸ ±¹°¡º¸´Ù ¾à 330¸¸´ë ¸¹Àº Àü±âÂ÷°¡ ÆÇ¸ÅµË´Ï´Ù.
  • Áß±¹¿¡¼­´Â ÀÚµ¿Â÷ »ê¾÷ÀÌ Áõ°¡Çϰí ÀÖÀ¸¸ç ¼¼°è ÀÚµ¿Â÷ ½ÃÀå¿¡¼­ Á¡Á¡ ´õ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. Áß±¹ Á¤ºÎ´Â ÀÚµ¿Â÷ ºÎǰ ºÎ¹®À» Æ÷ÇÔÇÑ ÀÚµ¿Â÷ »ê¾÷À» ±â°£ »ê¾÷ÀÇ Çϳª·Î ÀÚ¸® ¸Å±èÇϰí ÀÖ½À´Ï´Ù. Á¤ºÎ´Â Áß±¹ÀÇ ÀÚµ¿Â÷ »ý»ê·®ÀÌ 2020³â±îÁö 3,000¸¸´ë, 2025³â±îÁö 3,500¸¸´ë¿¡ À̸¦ °ÍÀ¸·Î Àü¸ÁÇϰí ÀÖ½À´Ï´Ù.
  • ¶ÇÇÑ Àεµ¿¡¼­´Â Á¤ºÎÀÇ ¾ß½ÉÂù °èȹ°ú ³ë·ÂÀ¸·Î Àü±âÀÚµ¿Â÷ ½ÃÀåÀÌ ±â¼¼¸¦ ´Ã¸®°í ÀÖ½À´Ï´Ù. ÀεµÀÇ °ø°ø±â°üÀº Áö³­ ¸î ³â°£ Àü±âÂ÷ °ü·Ã ½ÃÃ¥À» ¹ßÇ¥Çϰí ÀÖÀ¸¸ç, ÀÌ ³ª¶ó¿¡¼­ Àü±âÂ÷ÀÇ º¸±Þ¿¡ ´ëÇÑ °­ÇÑ Çå½Å, ±¸Ã¼ÀûÀÎ Çൿ, Å« ¾ß½ÉÀ» º¸¿©ÁÖ°í ÀÖ½À´Ï´Ù.

½Ç¸®ÄÜ Ä«¹ÙÀÌµå ÆÄ¿ö ¹ÝµµÃ¼ »ê¾÷ °³¿ä

½Ç¸®ÄÜ Ä«¹ÙÀÌµå ÆÄ¿ö ¹ÝµµÃ¼ ½ÃÀåÀÇ °æÀïÀº Ä¡¿­ÇÕ´Ï´Ù. Infineon Technologies AG, Texas Instruments Inc., ST Microelectronics NV, Hitachi Power Semiconductor Device Ltd., NXP Semiconductor, ÈÄÁö Àü±â, Semikron International GmbH, Cre Inc., ON Semiconductor Corporation, Mitsubishi Electric Corporation µîÀÔ´Ï´Ù. ÀÌ È¸»çµéÀº ½ÃÀå Á¡À¯À²À» È®´ëÇϱâ À§ÇØ ½ÅÁ¦Ç°À» ÅõÀÔ, Á¦ÈÞ ¹× ÀμöÇÕ´Ï´Ù.

  • 2021³â 6¿ù - ÀϺ»ÀÇ ÀÏ·ºÆ®·Î´Ð½º ±â¾÷ÀÎ Hitachi´Â ÈúÁî¹ö·¯¿¡¼­ ±âÁ¸ÀÇ Á¸À縦 È®´ëÇÏ°í ¹Ì±¹ÀÇ Á¦Á¶ °í°´°ú Çù·ÂÇÏ¿© ½Å±â¼úÀ» âÃâÇϱâ À§ÇÑ ´ë±Ô¸ð ¹ÝµµÃ¼ ½ÇÇè½ÇÀ» °Ç¼³ÇÒ °èȹÀ» ¹ßÇ¥.
  • 2021³â 4¿ù - Infineon TechnologiesAG´Â 1200V Á¦Ç° ¶óÀο¡ »õ·Î¿î EasyPACK 2B ¸ðµâÀ» Ãâ½ÃÇß½À´Ï´Ù. ÀÌ ¸ðµâÀº CoolSiC MOSFET, TRENCHSTOP IGBT7 µð¹ÙÀ̽º, NTC ¿Âµµ ¼¾¼­, PressFIT Á¢ÃË ±â¼ú ÇÉÀ» Æ÷ÇÔÇÑ 3·¹º§ ¾×Ƽºê NPC(ANPC) ÅäÆú·ÎÁö¸¦ Á¦°øÇÕ´Ï´Ù.

±âŸ ÇýÅÃ

  • ¿¢¼¿ Çü½Ä ½ÃÀå ¿¹Ãø(ME) ½ÃÆ®
  • 3°³¿ùÀÇ ¾Ö³Î¸®½ºÆ® ¼­Æ÷Æ®

¸ñÂ÷

Á¦1Àå ¼­·Ð

  • Á¶»çÀÇ ÀüÁ¦Á¶°Ç°ú ½ÃÀå Á¤ÀÇ
  • Á¶»ç ¹üÀ§

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå °³¿ä
  • »ê¾÷ ¹ë·ùüÀÎ ºÐ¼®
  • »ê¾÷ÀÇ ¸Å·Â - Porter's Five Forces ºÐ¼®
    • °ø±Þ±â¾÷ÀÇ Çù»ó·Â
    • ¼ÒºñÀÚÀÇ Çù»ó·Â
    • ½Å±Ô ÁøÀÔ¾÷ÀÚÀÇ À§Çù
    • °æÀï ±â¾÷°£ °æÀï °ü°è
    • ´ëüǰÀÇ À§Çù
  • ½ÃÀå¿¡ ´ëÇÑ COVID-19ÀÇ ¿µÇâ
  • ±â¼ú ½º³À¼¦

Á¦5Àå ½ÃÀå ¿ªÇÐ

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • ¼ÒºñÀÚ ÀÏ·ºÆ®·Î´Ð½º¿Í ¹«¼± Åë½Å ¼ö¿ä Áõ°¡
    • ¿¡³ÊÁö È¿À²ÀÌ ³ôÀº ¹èÅ͸® ±¸µ¿ ÈÞ´ë ±â±â¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡
  • ½ÃÀåÀÇ °úÁ¦
    • ½Ç¸®ÄÜ ¿þÀÌÆÛÀÇ ºÎÁ·°ú ±¸µ¿ ¿ä°ÇÀÇ º¯È­

Á¦6Àå ½ÃÀå ¼¼ºÐÈ­

  • ÃÖÁ¾ »ç¿ëÀÚ »ê¾÷º°
    • ÀÚµ¿Â÷(xEV ¹× EV ÃæÀü ÀÎÇÁ¶ó)
    • IT ¹× Åë½Å
    • Àü·Â(Àü¿ø, UPS, PV, dz·Â µî)
    • »ê¾÷¿ë(¸ðÅÍ µå¶óÀ̺ê)
    • ±âŸ ÃÖÁ¾ »ç¿ëÀÚ »ê¾÷(öµµ, ¼®À¯ ¹× °¡½º, ±º»ç, ÀÇ·á, ¿¬±¸ °³¹ß µî)
  • Áö¿ªº°
    • ¾Æ¸Þ¸®Ä«
    • À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • ¾Æ½Ã¾ÆÅÂÆò¾ç

Á¦7Àå °æÀï ±¸µµ

  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Infineon technologies AG
    • UnitedSiC
    • ST Microelectronics NV
    • ON Semiconductor Corporation
    • GeneSiC Semiconductor Inc.
    • Danfoss A/S
    • Microsemi Corporation
    • Toshiba Corporation
    • Mitsubishi Electric Corporation
    • Fuji Electric Co. Ltd
    • Semikron International

Á¦8Àå ÅõÀÚ ºÐ¼®

Á¦9Àå ½ÃÀåÀÇ ¹Ì·¡

SHW 25.02.19

The Silicon Carbide Power Semiconductor Market size is estimated at USD 2.73 billion in 2025, and is expected to reach USD 8.41 billion by 2030, at a CAGR of 25.24% during the forecast period (2025-2030).

Silicon Carbide Power Semiconductor - Market - IMG1

The pandemic outbreak created economic turmoil for small, medium, and large-scale industries worldwide. Adding to the woes, the country-wide lockdown inflicted by the governments across the globe (to minimize the spread of the virus) further resulted in industries taking a hit and disruption in supply chain and manufacturing operations across the world, as a large part of manufacturing includes the work on the factory floor, where people are in close contact as they collaborate to boost the productivity.

Key Highlights

  • SiC (Silicon Carbide) is used for high-power applications due to the wide bandgap offered. While various polytypes (polymorphs) of SiC exist, 4H-SiC is the most ideal for power devices. The increase in R&D activities that target enhanced material capabilities is expected to provide a strong impetus for market growth. For instance, the United States Department of Energy's (DOE) Advanced Research Projects AgencyEnergy (ARPA-E) has announced a funding of USD 30 million for 21 projects as part of the Creating Innovative and Reliable Circuits Using Inventive Topologies and Semiconductors (CIRCUITS) program. Also, initiatives such as investment by US DOE for NREL-Led research with an intent to reduce SiC power electronics manufacturing costs could further support such trends and expand the scope of more robust SiC-based devices.
  • Electric vehicles provide certain advantages within the automotive industry, such as increased range, charge-time, and performance, to meet customer expectations. However, they require power electronic devices capable of efficient and effective operation at elevated temperatures. Hence, power modules are being developed using wide-bandgap SiC technologies.
  • Electric cars are becoming common on the road nowadays with prices coming down and range going up. As per the International Energy Agency's report Global EV Outlook 2021, over 10.2 million light-duty electric passenger cars were on the roads in 2020. In addition, electric car registration increased by 41% in 2020, which creates growth opportunities for the market.
  • Semiconductors also use SiC for reduced energy loss and longer life solar and wind energy power converters. For instance, photovoltaic energy mainly requires high power, low loss, faster switching, and reliable semiconductor devices to increase efficiency, power density, and reliability. Thus, SiC devices provide a promising solution to photovoltaic energy requirements to meet the increasing energy demand.
  • To tap the potential brought by the demand for cleantech, several players are entering the market for SiC power semiconductors. For instance, in April 2021, NoMIS Power Group, a spin-off from the State University of New York Polytechnic Institute (SUNY Poly), announced that it plans to design, manufacture and sell SiC power semiconductor devices, modules, and services for providing support to power management product developers.
  • Moreover, parasitic capacitance and inductance become too great as soon as high frequencies are used, preventing the SiC-based power device from realizing its full potential. In such a regard, widespread usage of SiC may require updates to manufacturing facilities, something which cannot be achieved at the current pace of development.

Silicon Carbide Power Semiconductor Market Trends

Automotive Industry is Expected to Register Significant Growth

  • Research activities are being conducted into the usage of silicon carbide (SiC) devices within automotive powertrains. However, due to recent advancements, it is gradually becoming a feasible solution. For instance, Tesla, which uses a rapid charging solution, is already using SiC within their vehicle architectures currently. In addition, electric cars are becoming common on the road nowadays with prices coming down and range going up. According to the International Energy Agency, plug-in electric light vehicle sales across the globe reached around 6.6 million in 2021.
  • SiC semiconductors are ideal for applications, such as onboard chargers and inverters, being used within the plug-in hybrid (PHEV) and fully electric vehicles (EVs). This is because their energy efficiency is significantly higher compared to traditional silicon.
  • Also, to ensure that EVs can operate over long distances and charge within a reasonable timeframe, the vehicle's power electronics must be capable of handling high temperatures. SiC semiconductors benefit from more than 95% energy efficiency. Only 5% of energy is lost as heat during power conversion, such as recharging the vehicle with a high-power rapid-charger.
  • In Japan, the University of Tokyo has been working with Mitsubishi Electric Corporation to enhance the reliability of SiC semiconductor devices. Earlier, Mitsubishi Electric revealed a new ultra-compact SiC inverter designed for hybrid vehicles, with mass commercialization targeted around 2021.
  • Moreover, Delphi Technologies and Cree have partnered to create the former's inverters, combined with Cree's SiC MOSFETs. It has significantly reduced the power module's overall temperature while enabling higher power outputs to support an extended range for hybrid and fully electric automobiles. These inverters are also 40% lighter and 30% more compact than competing models.
  • Further, in May 2021, Infineon Technologies launched a new power module with CoolSiC MOSFET technology for automotive applications. The use of SiC instead of Si ensures higher efficiency in converters in electric vehicles. For example, Hyundai Motor Group reported that it was able to increase the range of its vehicles by more than 5% because of efficiency gains resulting from the lower losses of this SiC solution compared to the Si-based solution, with the help of the traction inverters based on Infineon's CoolSiC power module.
  • Moreover, in March 2021, as part of the Industrial Strategy Challenge Fund led by the UK Research and Innovation, the UK government awarded GBP 4.8 million to Swansea University to manufacture silicon carbide (SiC) power semiconductor devices and create more efficient power electronics for transportation, homes, and industry, and help the nation achieve its net-zero ambitions.

Asia Pacific to Witness the Fastest Growth

  • The Asia Pacific dominates the global SiC power semiconductor market, pertaining to global semiconductor market growth, which is also supported by government policies. Furthermore, the region's semiconductor industry is driven by China, Taiwan, Japan, and South Korea, which together account for around 65% of the global discrete semiconductor market. In contrast, others like Thailand, Vietnam, Singapore, and Malaysia also contribute significantly to the region's dominance in the market.
  • According to the Indian Electronics and Semiconductor Association, India's semiconductor component market is expected to be worth USD 32.35 billion by 2025, displaying a CAGR of 10.1% (2018-2025). The country is a lucrative destination for worldwide R&D centers. Therefore, the government's ongoing Make In India initiative is expected to result in investments in the semiconductor market.
  • Moreover, the region is an electronics hub that produces millions of electronic devices every year for exporting to other countries and consumption in the area. This high production of electronic components and devices largely contributes to the market share of the studied market. For instance, the increasing demand for consumer electronics in India has also facilitated the regional market's growth. According to IBEF, demand for electronics hardware in India is expected to reach USD 400 billion by FY2024, which will further drive market growth.
  • China is the world's largest producer of electricity. The country's energy demand is expected to increase, thereby resulting in growth in energy production. For instance, according to the IEA, in China, sales of electric vehicles have more than doubled; further, in 2021, it sold approximately 3.3 million more electric cars than in other countries.
  • The automotive industry has been increasing in China, and the country is playing an increasingly important role in the global automotive market. The Government of China sees its automotive industry, including the auto parts sector, as one of its pillar industries. The government expects China's automobile output to reach 30 million units by 2020 and 35 million units by 2025.
  • Further, the electric vehicle market is gaining momentum in India, owing to the government's ambitious plans and initiatives. Public authorities in India have made several electric vehicle-related policy announcements over the past few years, showing strong commitment, concrete action, and significant ambition to deploy electric vehicles in the country.

Silicon Carbide Power Semiconductor Industry Overview

The silicon carbide power semiconductor market is highly competitive. It consists of several significant players, including Infineon Technologies AG, Texas Instruments Inc., ST Microelectronics NV, Hitachi Power Semiconductor Device Ltd, NXP Semiconductor, Fuji Electric Co. Ltd, Semikron International GmbH, Cree Inc., ON Semiconductor Corporation, Mitsubishi Electric Corporation, and others. These companies are introducing new products, partnerships, and acquisitions, to increase their market share.

  • June 2021 - Hitachi, a Japanese electronics company, announced plans to extend its existing presence in Hillsboro by building a big semiconductor research lab to cooperate with manufacturing clients in the United States to create new technologies.
  • April 2021 - Infineon Technologies AG launched a new EasyPACK 2B module to its 1200 V product line. The module offers a three-level Active NPC (ANPC) topology, including CoolSiC MOSFETs, TRENCHSTOP IGBT7 devices, NTC temperature sensor, and PressFIT contact technology pins.

Additional Benefits:

  • The market estimate (ME) sheet in Excel format
  • 3 months of analyst support

TABLE OF CONTENTS

1 INTRODUCTION

  • 1.1 Study Assumptions and Market Definition
  • 1.2 Scope of the Study

2 RESEARCH METHODOLOGY

3 EXECUTIVE SUMMARY

4 MARKET INSIGHT

  • 4.1 Market Overview
  • 4.2 Industry Value Chain Analysis
  • 4.3 Industry Attractiveness - Porter's Five Forces Analysis
    • 4.3.1 Bargaining Power of Suppliers
    • 4.3.2 Bargaining Power of Consumers
    • 4.3.3 Threat of New Entrants
    • 4.3.4 Intensity of Competitive Rivalry
    • 4.3.5 Threat of Substitutes
  • 4.4 Impact of COVID-19 on the Market
  • 4.5 Technology Snapshot

5 MARKET DYNAMICS

  • 5.1 Market Drivers
    • 5.1.1 Increase in the Demand for Consumer Electronics and Wireless Communications
    • 5.1.2 Growing Demand for Energy-Efficient Battery-Powered Portable Devices
  • 5.2 Market Challenges
    • 5.2.1 Shortage of Silicon Wafers and Variable Driving Requirements

6 MARKET SEGMENTATION

  • 6.1 By End-user Industry
    • 6.1.1 Automotive (xEVs and EV Charging Infrastructure)
    • 6.1.2 IT and Telecommunication
    • 6.1.3 Power (Power Supply, UPS, PV, Wind etc.)
    • 6.1.4 Industrial (Motor drives)
    • 6.1.5 Other End-user Industries (Rail, Oil & Gas, Military, Medical, R&D etc.)
  • 6.2 By Geography
    • 6.2.1 Americas
    • 6.2.2 Europe, Middle East and Africa
    • 6.2.3 Asia Pacific

7 COMPETITIVE LANDSCAPE

  • 7.1 Company Profiles
    • 7.1.1 Infineon technologies AG
    • 7.1.2 UnitedSiC
    • 7.1.3 ST Microelectronics NV
    • 7.1.4 ON Semiconductor Corporation
    • 7.1.5 GeneSiC Semiconductor Inc.
    • 7.1.6 Danfoss A/S
    • 7.1.7 Microsemi Corporation
    • 7.1.8 Toshiba Corporation
    • 7.1.9 Mitsubishi Electric Corporation
    • 7.1.10 Fuji Electric Co. Ltd
    • 7.1.11 Semikron International

8 INVESTMENT ANALYSIS

9 FUTURE OF THE MARKET

ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦