½ÃÀ庸°í¼­
»óÇ°ÄÚµå
1388504

»ý¼º AI°¡ Åë½Å ¾÷°è¸¦ ¼®±Ç : ³×Æ®¿öÅ© ÃÖÀûÈ­¿Í Â÷º°È­µÈ °í°´ °æÇèÀº À¯¸ÁÇÑ Ãâ¹ßÁ¡ÀÌ µÇ³ª, ±ÔÁ¦»ó ºÒÈ®½Ç¼ºÀÌ Å« Àå¾Ö

Gen AI Hype Grips Telecom Industry as Telcos Unravel its Potential: Network Optimization and Differentiated Customer Experience are Promising Starting Points, but Regulatory Uncertainty Will Be a Major Impediment

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: MTN Consulting, LLC | ÆäÀÌÁö Á¤º¸: ¿µ¹® 13 Pages | ¹è¼Û¾È³» : Áï½Ã¹è¼Û

    
    
    



¡Ø º» »óÇ°Àº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

µÎ À¯ÇüÀÇ Åë½Å ºÐ¾ß¿¡¼­ »ý¼º AI¿¡ ÀÇÇÑ º¯ÇõÀÇ °¡´É¼º¿¡ ´ëÇØ Å½±¸ÇÏ°í, Åë½Å ±â¾÷ÀÇ ³»ºÎ¿¡¼­ »ý¼º AI °³¹ß ³ë·Â ¹× »ý¼º AIÀÇ µµÀÔ¿¡ ¼ö¹ÝÇÏ´Â ³ëµ¿·ÂÀÇ µ¿Çâ, Åë½Å ±â¾÷ÀÇ »ý¼º AI µµÀÔ¿¡ ¼ö¹ÝÇÏ´Â ±ÔÁ¦¸éÀÇ ¿µÇâ, ±â¼úÀÇ ÅëÇÕ¡¤µµÀÔÀ» ¼º°ø½ÃÅ°±â À§ÇÑ º¥´õÀÇ ¿ªÇÒ µî¿¡ ´ëÇØ ³íÀÇÇÏ°í ÀÖ½À´Ï´Ù.

º»¹®Áß µµÇ¥

Áö³­ÇØ ¸», »ý¼ºÇü AI°¡ ChatGPT¿Í °°Àº ÀϹÝÀοë Ç÷§ÆûÀ» ÅëÇØ ÁÖ·ù¿¡ µîÀåÇÑ ÀÌÈÄ, ±× ȹ±âÀûÀÎ ´É·ÂÀº ¸¹Àº »ç¶÷µéÀÇ °ü½ÉÀ» ²ø¾ú½À´Ï´Ù. ³î¶øÁö ¾Ê°Ôµµ Åë½Å ¾÷°è ÀÓ¿øµéÀº »ý¼ºÇü AI°¡ ºü¸¥ ¼Óµµ·Î ÁøÈ­ÇÏ°í ÀÖÀ½¿¡µµ ºÒ±¸ÇÏ°í »ý¼ºÇü AI¸¦ ½ÃÇèÇغ¸°í ½Í¾îÇϴ ȣ±â½É ¸¹Àº °üÂûÀÚ Áß ÇÑ ¸íÀÔ´Ï´Ù. ±×·¯³ª Åë½Å »ê¾÷°ú AIÀÇ °áÇÕÀº »õ·Î¿î °ÍÀÌ ¾Æ´Õ´Ï´Ù. Áö³­ ¼ö³â°£ ¸¹Àº Åë½Å»çµéÀÌ ÀüÅëÀûÀÎ AI Åø¿Í ¿ëµµÀ» µµÀÔÇßÁö¸¸, »ý¼ºÇü AI´Â Åë½Å»çµéÀÌ ±âÁ¸ AIº¸´Ù ÈξÀ ´õ ¸¹Àº °¡Ä¡¸¦ Á¦°øÇÒ ¼ö ÀÖ´Â ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù. ÀϺΠ´ëÇü Åë½Å»çµéÀº 'ÇöÁöÈ­'¿¡ ÃÊÁ¡À» ¸ÂÃß¾î »ý¼ºÇü AI¿¡ ´ëÇÑ Å½±¸¸¦ ½ÃÀÛÇß½À´Ï´Ù. Åë½Å»çµéÀº »ý¼ºÇü AI¸¦ È°¿ëÇÑ ÇÁ·Î¼¼½º ÇöÁöÈ­¸¦ ÅëÇØ ¾ð¾î À庮À» ¾ø¾Ö°í, ƯÈ÷ ¿µ¾î°¡ Áö¹èÀûÀÎ ¾ð¾î°¡ ¾Æ´Ñ °¢ ¿µ¾÷ ½ÃÀå¿¡¼­ °í°´ Âü¿©¸¦ Çâ»ó½ÃÅ°°íÀÚ ÇÕ´Ï´Ù.

Åë½Å»ç´Â ´Ù¾çÇÑ ±â´É¿¡¼­ »ý¼ºÇü AIÀÇ ÈûÀ» È°¿ëÇÒ ¼ö ÀÖÁö¸¸, »ý¼ºÇü AIÀÇ Çõ½Å °¡´É¼ºÀ» °¡Àå Àß º¼ ¼ö ÀÖ´Â µÎ °¡Áö Áß¿äÇÑ Åë½Å ºñÁî´Ï½º ¿µ¿ªÀº ³×Æ®¿öÅ©¿Í °í°´ ¼­ºñ½ºÀÔ´Ï´Ù. ÀÌ µÎ ¿µ¿ªÀº ¸ðµÎ ¸Å¿ì Áß¿äÇϸç, ³×Æ®¿öÅ©¿¡ ´ëÇÑ ¼ö¿ä´Â º¹À⼺°ú ÇÔ²² Àü·Ê ¾ø´Â ¼Óµµ·Î Áõ°¡ÇÏ°í ÀÖÀ¸¸ç, Â÷º°È­µÈ °í°´ °æÇèÀ» Á¦°øÇÏ´Â °ÍÀº Åë½Å»ç¿¡°Ô ½ÇÇö ºÒ°¡´ÉÇÑ ¾ß¸ÁÀ¸·Î ³²¾ÆÀÖ½À´Ï´Ù. ÀÌ µÎ °¡Áö Åë½Å »ç¾÷ ¿µ¿ª¿¡¼­ ÀÌ·¯ÇÑ °úÁ¦¸¦ ÇØ°áÇϱâ À§ÇØ ¿©·¯ °¡Áö »ý¼ºÇü AI ÀÌ¿ë »ç·Ê°¡ µîÀåÇÏ°í ÀÖ½À´Ï´Ù. ³×Æ®¿öÅ© ¿µ¿ª¿¡¼­´Â ÅäÆú·ÎÁö ÃÖÀûÈ­, ³×Æ®¿öÅ© ¿ë·® °èȹ, ¿¹Áöº¸Àü µîÀ» ¿¹·Î µé ¼ö ÀÖ½À´Ï´Ù. °í°´ Áö¿ø ¿µ¿ª¿¡¼­´Â ÇöÁöÈ­µÈ °¡»ó ºñ¼­, °³ÀÎÈ­µÈ Áö¿ø, ÄÁÅü¾ÅÍ ¹®¼­È­ µîÀ» ¿¹·Î µé ¼ö ÀÖ½À´Ï´Ù.

»ý¼ºµÈ AI ¿ëµµÀ» È°¿ëÇÏ´Â ´ëºÎºÐÀÇ ÀÌ¿ë »ç·Ê´Â ³×Æ®¿öÅ© °ü·ÃÀÌµç °í°´ °ü·ÃÀÌµç ±â¹Ð µ¥ÀÌÅ͸¦ ´Ù·ç°Ô µË´Ï´Ù. ÀÌ´Â ±ÔÁ¦ Ãø¸é¿¡¼­µµ Å« ¿µÇâÀ» ¹ÌÄ¡¸ç, ±ÔÁ¦ À̽´´Â Åë½Å»çÀÇ »ý¼ºÇü AI µµÀÔ ¹× ¹èÆ÷ Àü·«À» Á¦¾àÇÏ´Â ¿äÀÎÀ¸·Î ÀÛ¿ëÇÕ´Ï´Ù. °¡Àå Å« ¹®Á¦´Â ´Ù¾çÇÑ ½ÃÀå¿¡ ÆÛÁ® ÀÖ´Â º¹ÀâÇÏ°í ±î´Ù·Î¿î ±ÔÁ¦ÀÇ ÁýÇÕüÀ̸ç, Åë½Å»ç´Â ÀÌ·¯ÇÑ ½ÃÀå¿¡¼­ »ý¼ºÇü AI ÀÌ¿ë »ç·Ê¸¦ µµÀÔÇÒ ¶§ À̸¦ ÀÌÇØÇÏ°í ÁؼöÇØ¾ß ÇÑ´Ù´Â Á¡ÀÔ´Ï´Ù. ÀÌ ºÐ¾ß¿¡¼­ Á¦3ÀÚ º¥´õµéÀº °¢ ½ÃÀåÀÇ ±ÔÁ¦¸¦ ÁؼöÇÏ´Â »ý¼ºÇü AI ¼Ö·ç¼ÇÀ» Á¦°øÇÔÀ¸·Î½á ÀÌÀÍÀ» ¾òÀ¸·Á ÇÏ°í ÀÖ½À´Ï´Ù. º¥´õµéÀº ¶ÇÇÑ Áß¼ÒÇü Åë½Å»çµéÀÌ »ý¼ºÇü AI¸¦ µµÀÔÇÒ ¶§ ±â¼ú Àü¹® Áö½Ä, HW/SW ¸®¼Ò½º, ¼÷·ÃµÈ Àη ºÎÁ·À¸·Î ÀÎÇÑ Á¦¾àÀ» ¾ø¾Ö°í OPEX ºñ¿ë ºÎ´ãÀ» ÁÙ¿©ÁÖ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. »ý¼ºÇü AI ºÐ¾ß¿¡¼­ ÁÖ¸ñÇØ¾ß ÇÒ ÁÖ¿ä º¥´õ´Â ´ë±Ô¸ð ¾ð¾î ¸ðµ¨(LLM) ÇнÀ¿¡ ÇÊ¿äÇÑ Å¬¶ó¿ìµå ÄÄÇ»Æà ¸®¼Ò½º¿Í »çÀü ÇнÀµÈ ¸ðµ¨À» ÅëÇØ Á¦°øµÇ´Â »ý¼ºÇü AI Àü¹® Áö½ÄÀ» °áÇÕÇÑ ÀÌ»óÀûÀÎ Á¶ÇÕÀ» Á¦°øÇÏ´Â À¥½ºÄÉÀÏ ÇÁ·Î¹ÙÀÌ´õµéÀÔ´Ï´Ù.

º»¹®¿¡¼­ ¾ð±ÞµÈ ±â¾÷

  • Amazon
  • Amazon Web Services(AWS)
  • Amdocs
  • Apple
  • AT&T
  • BT
  • BT Digital
  • China Mobile
  • China Telecom
  • Deutsche Telekom
  • Distributed
  • e&(Etisalat)
  • Google
  • Google Cloud
  • IBM
  • Juniper Networks
  • KT
  • NEC
  • Netcracker
  • NVIDIA
  • OpenAI
  • Orange
  • Reliance Jio
  • Safaricom
  • Salesforce
  • Samsung
  • Singtel
  • SK Telecom
  • Telefonica
  • Telia
  • Veon
  • Verizon
  • Vodafone

¸ñÂ÷

  • ¿ä¾à
  • »ý¼º AIÀÇ ¹°°áÀ» Ÿ´Â Åë½Å ±â¾÷
  • ³×Æ®¿öÅ© ¿î¿µ°ú °í°´ Áö¿øÀÌ ÁÖ¿ä º¯Çõ ºÐ¾ß°¡ µÈ´Ù.
  • »ý¼º AI ½Ã´ë¿¡ Åë½Å ±â¾÷ÀÇ Á÷¿øÀº °£¼ÒÈ­µÇ³ª, ½º¸¶Æ®ÇØÁø´Ù.
  • ¾ö°ÝÇÑ ±ÔÁ¦°¡ Åë½Å ±â¾÷¿¡°Ô Å« À庮ÀÌ µÈ´Ù.
  • »ý¼º AI ÅëÇÕÀÇ ¿­¼è°¡ µÇ´Â º¥´õ : À¥½ºÄÉÀÏ ÇÁ·Î¹ÙÀÌ´õ°¡ ´õ ¸¹Àº Åë½Å ±â¾÷ÀÇ ÀÌÀÍÀ» Áغñ
  • ·ÏÀÎ ¸®½ºÅ©¿Í ¼ÒÇÁÆ®¿þ¾î ºñ¿ëÀÇ »ó½Â : º¥´õ ¼±Åýà Áß¿äÇÑ °í·Á»çÇ×
  • ºÎ·Ï
KSA 23.12.08

This brief report explores the transformative potential of generative artificial intelligence (Gen AI) in two specific telco domains. The report also discusses the in-house Gen AI development efforts of telcos, workforce trends arising from Gen AI implementation, regulatory impact of telcos deploying Gen AI, and the role of vendors in successful integration and adoption of the technology.

VISUALS

Ever since Gen AI burst into the mainstream through public-facing platforms (e.g. ChatGPT) late last year, its groundbreaking capabilities have caught the attention of many. Not surprisingly, telecom industry execs are among the curious observers wanting to try Gen AI even as it continues to evolve at a rapid pace. The telecom industry's bond with AI is not new though. Many telcos have deployed conventional AI tools and applications in the past several years, but Gen AI presents opportunities for telcos to deliver significant incremental value over existing AI. A few large telcos have kickstarted their quest for Gen AI by focusing on "localization". Through localization of processes using Gen AI, telcos vow to eliminate language barriers and improve customer engagement in their respective operating markets, especially where English as a spoken language is not dominant.

Telcos can harness the power of Gen AI across a wide range of different functions, but the two vital telco domains likely to witness transformative potential of Gen AI are networks and customer service. Both these domains are crucial: network demands are rising at an unprecedented pace with increased complexity, and delivering differentiated customer experiences remains an unrealized ambition for telcos. Several Gen AI use cases are emerging within these two telco domains to address these challenges. In the network domain, these include topology optimization, network capacity planning, and predictive maintenance, for example. In the customer support domain, they include localized virtual assistants, personalized support, and contact center documentation.

Most of the use cases leveraging Gen AI applications involve dealing with sensitive data, be it network-related or customer-related. This will have major implications from the regulatory point of view, and regulatory concerns will constrain telcos' Gen AI adoption and deployment strategies. The big challenge is the mosaic of complex and strict regulations prevalent in different markets that telcos will have to understand and adhere to when implementing Gen AI use cases in such markets. This is an area where third-party vendors will try to cash in by offering Gen AI solutions that are compliant with regulations in the respective markets. Vendors will also play a key role for small- and medium-sized telcos in Gen AI implementation, by eliminating constraints due to the lack of technical expertise and HW/SW resources, skilled manpower, along with opex costs burden. Key vendors to watch out for in the Gen AI space are webscale providers who possess the ideal combination of providing cloud computing resources required to train large language models (LLM) coupled with their Gen AI expertise offered through pre-trained models.

Companies Mentioned:

  • Accenture
  • Amazon
  • Amazon Web Services (AWS)
  • Amdocs
  • Apple
  • AT&T
  • BT
  • BT Digital
  • China Mobile
  • China Telecom
  • Deutsche Telekom
  • Distributed
  • e& (Etisalat)
  • Google
  • Google Cloud
  • IBM
  • Juniper Networks
  • KT
  • Microsoft
  • NEC
  • Netcracker
  • NVIDIA
  • OpenAI
  • Orange
  • Reliance Jio
  • Safaricom
  • Salesforce
  • Samsung
  • Singtel
  • SK Telecom
  • Telefonica
  • Telia
  • Veon
  • Verizon
  • Vodafone

Table of Contents

  • Summary
  • Telcos surf the Gen AI wave
  • Network operations and customer support will be key transformative areas
  • Telco workforce will become leaner but smarter in the Gen AI era
  • Strict regulations will be a major barrier for telcos
  • Vendors key to Gen AI integration; webscale providers set for more telco gains
  • Lock-in risks and rising software costs are key considerations in choosing vendors
  • Appendix

Figures:

  • Figure 1: Telco employee base, and labor cost per employee (US$K, annualized)

Tables:

  • Table 1: Self-developed Gen AI-based tools of select telcos
  • Table 2: Gen AI-based tools of select telco vendors
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óÇ°À» ¼±Åà Áß
»óÇ° ºñ±³Çϱâ
Àüü»èÁ¦