½ÃÀ庸°í¼­
»óǰÄÚµå
1341022

¼¼°èÀÇ ¼ö¼Ò °¡½º ÀúÀå ½ÃÀå : »óź°, ÀúÀå À¯Çüº°, ±â¼úº°, ÃÖÁ¾ »ç¿ëÀÚº°, Áö¿ªº° ±âȸ ¹× ¿¹Ãø(2016-2030³â)

Hydrogen Gas Storage Market Assessment, By State, By Storage Type, By Technology, By End-user, By Region, Opportunities and Forecast, 2016-2030F

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Market Xcel - Markets and Data | ÆäÀÌÁö Á¤º¸: ¿µ¹® 121 Pages | ¹è¼Û¾È³» : 3-5ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

¼ö¼Ò °¡½º ÀúÀå ½ÃÀå ±Ô¸ð´Â 2022³â 25¾ï 1,114¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú°í, 2023³âºÎÅÍ 2030³â ¿¹Ãø±â°£¿¡ 8.3%ÀÇ CAGR·Î ÃßÀÌÇÏ¿©, 2030³â¿¡´Â 47¾ï 5,220¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¼ö¼Ò ¿ø¼Ò´Â ÁÖ±âÀ²Ç¥ÀÇ Ã¹ ¹øÂ° ¿ø¼ÒÀÌ¸ç °¡º±°í ¿¡³ÊÁö ¹Ðµµ°¡ ³ô°í ÀúÀå °¡´ÉÇÏ¸ç ¿©·¯ ¿µ¿ª¿¡ °ÉÄ£ ´Ù¾çÇÑ ÇüÅÂÀÇ ÀÀ¿ë¿¡ ÀûÇÕÇÕ´Ï´Ù. ´Ù¸¥ ¿ø¼Ò¿Í ´Þ¸® ¼ö¼Ò´Â ´Ù¸¥ ¿¬·á¿¡ ºñÇØ Áú·® ´ç ¿¡³ÊÁö°¡ °¡Àå ³ô½À´Ï´Ù. Ŭ¸° ¼ö¼Ò´Â ¼¼°èÀÇ ´Ù¾çÇÑ ÇÁ·ÎÁ§Æ®¿¡ ÇʼöÀûÀÎ ¿¬·á¿øÀ¸·Î ¿©°ÜÁö°í ÀÖÀ¸¸ç, Á¶»ç¿¡ ÀÇÇØ ±â¼úÀÇ È®´ë°¡ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. ¹ßÀü¿¡ À־´Â ¼ö¼Ò ÀúÀåÀº Àç»ý °¡´É ¿¡³ÊÁöÀÇ ÀúÀåÀ¸·Î ¿¬°áµÇ¾î °¡½º Åͺ󿡼­ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

ź¼Ò ±â¹Ý ¿¬·áÀÇ »ç¿ë°ú ¹èÃâÀ» ÁÙÀ̱â À§ÇÑ Áö¼ÓÀûÀÎ ¼¼°è ³ë·ÂÀ¸·Î ¼ö¼Ò ¿¬·áÀüÁöÀÇ Á߿伺Àº ¼ÒÇü ÀüÀÚ±â±â¿¡¼­ °Å´ëÇÑ ¿î¹Ý Â÷·®, Ç×°ø ¹× Àΰ£ »çȸ¸¦ Æ÷ÇÔÇÑ Àü·Â °³¹ß ÇÁ·ÎÁ§Æ®¿¡ º¸´Ù ȯ°æ ģȭÀûÀÎ ¼Ö·ç¼ÇÀ» ¸¸µå´Â µ¥ µµ¿òÀ̵Ǵ °ÍÀ¸·Î ¼³¸íÇÒ ¼ö ÀÖ½À´Ï´Ù. ¼ö¼Ò´Â ¿ëµµ¿¡ µû¶ó ¾×ü ¶Ç´Â ±âü·Î¼­ ÀúÀåµÉ ¼ö ÀÖ½À´Ï´Ù. ¼ö¼Ò¸¦ ±âü·Î ÀúÀåÇÏ·Á¸é ÀϹÝÀûÀ¸·Î °í¾Ð ÅÊÅ©(5000-10000psi)°¡ ÇÊ¿äÇÏ¸ç ¾×ü·Î ÀúÀåÇÏ·Á¸é ±ØÀú¿ÂÀÌ ÇÊ¿äÇÕ´Ï´Ù. ¼ö¼Ò´Â ¶ÇÇÑ ÈíÂø ¶Ç´Â ÈíÂøÀ̶ó°í ºÒ¸®´Â °íü ¹°ÁúÀÇ ³»ºÎ ¶Ç´Â Ç¥¸é¿¡ ÀúÀåÇÒ ¼ö ÀÖ½À´Ï´Ù.

¼ö¼ÒÀÇ ÀúÀåÀÌ ¾î·Á¿î °ÍÀº üÀû ¿¡³ÊÁö ¹Ðµµ°¡ ³·°í Çï·ýº¸´Ù °¡º­¿î ¿ø¼ÒÀÎ µî ´Ù¾çÇÑ ÆÄ¶ó¹ÌÅͰ¡ °ü·ÃµÇ¾î ÀÖ½À´Ï´Ù. ¾×ü ¼ö¼Ò´Â ¿ìÁÖ ¿©Çà¿¡¼­ ³Î¸® »ç¿ëµÇ±â ¶§¹®¿¡ ¼ö¿ä°¡ ÀÖÁö¸¸ ƯÀ¯ÀÇ °úÁ¦°¡ ÀÖÀ¸¸ç °¡Àå ÀϹÝÀûÀÎ °ÍÀº ÀúÀå ¿Âµµ°¡ ³·´Ù´Â °ÍÀÔ´Ï´Ù. ¾×ü ¼ö¼Ò°¡ ±âü·Î º¯ÇÏ´Â °ÍÀ» ¸·±â À§Çؼ­´Â -252.8¡É ÀÌÇÏ·Î ÇØ¾ß ÇÕ´Ï´Ù. ±× ÈÄ, ¼ö¼Ò¸¦ ¾ÐÃàÇϱâ Àü¿¡ ³Ã°¢ÇÏ´Â ¾ÐÃà ¹æ¹ýÀº ±ØÀú¿Â ³Ã°¢°ú ÇÔ²² °³¹ßµÈ ¼ö¼Ò ÀúÀå °øÁ¤ÀÔ´Ï´Ù. ÀÌ °øÁ¤¿¡ ÇÊ¿äÇÑ ¿¡³ÊÁö´Â ¾ÐÃà¿¡ ÀÌ¿ë °¡´ÉÇÑ ¿¡³ÊÁöÀÇ 9-12%, ¾×È­¿¡ ÀÌ¿ë °¡´ÉÇÑ ¿¡³ÊÁöÀÇ ¾à 30%¿¡ ÇØ´çÇÕ´Ï´Ù.

¶ÇÇÑ ¼ö¼Ò´Â ´Ù¾çÇÑ °øÁ¤¿¡¼­ Àç·á¸¦ »ç¿ëÇÏ¿© ÀúÀåÇÒ ¼ö ÀÖ½À´Ï´Ù. °íü ¹°Áú°ú ¾×ü¸¦ »ç¿ëÇÏ´Â ¼ö¼ÒÈ­¹° ÀúÀåÀº ¼ö¼Ò ÀúÀå¿¡ ³Î¸® »ç¿ëµË´Ï´Ù. »ê¾÷Àû ±Ô¸ð¿¡¼­´Â ¼Ò±ÝÀÇ µ¿±¼, ¼®À¯ ¹× °¡½ºÀÇ Æó¿ì¹°, ´ë¼öÃþÀ» »ç¿ëÇÏ¿© ÁöÇϼö¼Ò ÀúÀåÀ» ÇÒ ¼ö ÀÖ½À´Ï´Ù. À׿© ¼ö¼Ò´Â º¹¼öÀÇ °¡½º ³×Æ®¿öÅ©¿¡ »ðÀÔµÇ¾î ¼ö¼Ò°¡ dzºÎÇÑ Ãµ¿¬ °¡½º(HENG)¸¦ »ý¼ºÇÒ ¼ö ÀÖ½À´Ï´Ù.

¼ö¼Ò´Â ÀϹÝÀûÀ¸·Î ¿Â½Ç°¡½º ¹èÃâÀÌ °ÅÀÇ 0ÀÌ µÉ ¼ö ÀÖ´Â ¿¬·á·Î º¸ÀÔ´Ï´Ù. ¼ö¼Ò´Â ´Ù¾çÇÑ ÀÚ¿øÀ¸·ÎºÎÅÍ »ý¼ºµÉ ¼ö ÀÖÀ¸¸ç, ´Ù¸¥ ¿¬·áÀüÁö¿¡¼­ Àü·ÂÀ» »ý»êÇÒ ¼ö ÀÖ½À´Ï´Ù. ¹èÃâµÇ´Â °ÍÀº ¼öÁõ±â¿Í µû¶æÇÑ °ø±â»ÓÀ̸ç, ¼ö¼Ò´Â ¼ø¼öÇϰí ģȯ°æ ¿¬·áÀÔ´Ï´Ù. ¼®Åº, õ¿¬°¡½º, ž翡³ÊÁö, dz·Â µî ´Ù¾çÇÑ Áö¿ªÀÇ Ãµ¿¬ÀÚ¿øÀº ¼ö¼Ò¸¦ »ý»êÇϱâ À§ÇÑ À¯·ÂÇÑ °ø±Þ¿øÀÌ µÇ¾î ½ÇÁúÀûÀ¸·Î Àü±âÀÚµ¿Â÷ÀÇ ¿¬·áÀüÁö ¿ªÇÒÀ» ÇÕ´Ï´Ù. ¼ö¼Ò ¿¬·á´Â ¼¼°èÀÇ ¿¡³ÊÁö ¾Èº¸¸¦ °­È­ÇÏ°í ¼®À¯ ¸ÅÀå·®À» º¸ÀüÇÏ¸ç ¿¡³ÊÁö ¼ö¼ÛÀ» ´õ ³ªÀº °ÍÀ¸·Î ¹Ù²ß´Ï´Ù. ±âÁ¸ÀÇ ¿¬·á°¡ ÀÚµ¿Â÷¿¡¼­ ¹èÃâµÇ´Â °Í°ú´Â ´Þ¸®, À¯ÇØÇÑ ¾Æ»êÈ­Áú¼Ò, źȭ¼ö¼Ò, ±×¸®°í ½É°¢ÇÑ ¿À¿°¹°ÁúÀÌ µÇ´Â ºÒÇÊ¿äÇÑ ¹Ì¸³ÀÚ ¹°ÁúÀÌ ¹èÃâµË´Ï´Ù. ±×·¯³ª ¼ö¼Ò¸¦ ¿¬·á·Î ÇÏ´Â ÀÚµ¿Â÷´Â ¹°°ú µû¶æÇÑ °ø±â¸¸ ¹èÃâÇϱ⠶§¹®¿¡ ÀÚ¿¬À» »ç¶ûÇÏ´Â ÀÚµ¿Â÷°¡ µË´Ï´Ù. µû¶ó¼­ ¼ö¼Ò´Â 2050³â±îÁö Àü ¼¼°èÀûÀ¸·Î ź¼Ò ¼ø¹èÃâ Á¦·Î¸¦ ´Þ¼ºÇϱâ À§ÇÑ Áß´ëÇÑ °úÁ¦¸¦ ÇØ°áÇÒ ¼ö ÀÖ´Â ÀáÀç·ÂÀ» Áö´Ï°í ÀÖ½À´Ï´Ù.

¼¼°èÀÇ ¼ö¼Ò °¡½º ÀúÀå(Hydrogen Gas Storage)½ÃÀå¿¡ ´ëÇØ Á¶»çÇßÀ¸¸ç, ½ÃÀå °³¿ä/»óź°, ÀúÀå À¯Çüº°, ±â¼úº°¡¤ÃÖÁ¾ »ç¿ëÀÚº°¡¤Áö¿ªº° µ¿Çâ/½ÃÀå ÁøÃâ ±â¾÷ °³¿ä µîÀ» Á¦°øÇÕ´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¿¬±¸ ¹æ¹ý·Ð

Á¦2Àå ÇÁ·ÎÁ§Æ®ÀÇ ¹üÀ§¿Í Á¤ÀÇ

Á¦3Àå COVID-19°¡ ¼ö¼Ò °¡½º ÀúÀå ½ÃÀå¿¡ ¹ÌÄ¡´Â ¿µÇâ

Á¦4Àå ·¯½Ã¾Æ¡¤¿ìÅ©¶óÀ̳ª ÀüÀïÀÇ ¿µÇâ

Á¦5Àå ÁÖ¿ä ¿ä¾à

Á¦6Àå °í°´ÀÇ ¸ñ¼Ò¸®

Á¦7Àå ¼ö¼Ò °¡½º ÀúÀå ½ÃÀå Àü¸Á(2016-2030³â)

  • ½ÃÀå ±Ô¸ð ¹× ¿¹Ãø
  • »óź°
    • ¹°¸® º£À̽º
    • Àç·á º£À̽º
  • ÀúÀå À¯Çüº°
    • °¡¾Ð º¹ÇÕ ¿ë±â
    • ¼¶À¯ °­È­ º¹ÇÕ ¿ë±â
    • Àú¿Â ¾ÐÃà ¿ë±â
    • ±âŸ
  • ±â¼úº°
    • ÁöÁúÇÐ ±â¹Ý
    • ¾ÐÃà
    • ¾×È­
    • Àç·á º£À̽º
    • ±âŸ
  • ÃÖÁ¾ »ç¿ëÀÚº°
    • ¿¡³ÊÁö¿Í »ê¾÷
    • À̵¿¼º
    • ¿ìÁÖ Å½»ç
    • ±âŸ
  • Áö¿ªº°
    • ºÏ¹Ì
    • À¯·´
    • ³²¹Ì
    • ¾Æ½Ã¾Æ ÅÂÆò¾ç
    • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
  • ±â¾÷º° ½ÃÀå Á¡À¯À²(%, 2022³â)

Á¦8Àå ¼ö¼Ò °¡½º ÀúÀå ½ÃÀå Àü¸Á(2016-2030³â), Áö¿ªº°

  • ºÏ¹Ì
  • À¯·´
  • ³²¹Ì
  • ¾Æ½Ã¾Æ ÅÂÆò¾ç
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦9Àå °ø±ÞÃø ºÐ¼®

Á¦10Àå ½ÃÀå ¸ÅÇÎ(2022³â)

Á¦11Àå °Å½ÃÀû ȯ°æ ¹× »ê¾÷ ±¸Á¶

  • ¼ö±Þ ºÐ¼®
  • ¼öÃâÀÔ ºÐ¼®-¾ç°ú ±Ý¾×
  • °ø±Þ/°¡Ä¡ üÀÎ ºÐ¼®
  • PESTEL ºÐ¼®
  • Porter's Five Forces ºÐ¼®

Á¦12Àå ½ÃÀå ¿ªÇÐ

Á¦13Àå ÁÖ¿ä ÁøÀÔ ±â¾÷ ȯ°æ

Á¦14Àå °¡°Ý ºÐ¼®

Á¦15Àå »ç·Ê ¿¬±¸

Á¦16Àå ÁÖ¿ä ±â¾÷ Àü¸Á

  • ITM Power
  • Air Liquide
  • Cummins Inc.
  • Aramco
  • FuelCell Energy Inc.
  • Air Products and Chemicals Inc.
  • Linde plc
  • Shell plc
  • NPROXX
  • GRZ Technologies

Á¦17Àå Àü·«Àû ±ÇÀå»çÇ×

Á¦18Àå ¹®ÀÇ ¹× ¸éÃ¥»çÇ×

LYJ 23.09.11

The Hydrogen Gas Storage Market size was valued at USD 2511.14 million in 2022, expected to reach USD 4752.2 million in 2030 with a CAGR of 8.3% for the forecast period between 2023 and 2030. The hydrogen element is the first one in the periodic table, which is light, energy-dense, storable, and commensurate with its application in various forms across multi-domains. Unlikely other elements, hydrogen has the highest energy per mass compared to other fuels. Clean hydrogen is considered an essential source of fuel for various projects across the globe, and research is driving us to scale up technologies. In power generation, hydrogen storage leads to storing renewable energy, which can be used in gas turbines.

With the continuous global efforts to reduce emissions and the use of carbon-based fuels, the importance of hydrogen fuel cells can be accounted for as it assists in creating a greener solution to the power development projects, including small electronic devices to huge-carrying vehicles, aviation, and the human community. Hydrogen can be stored as liquid or gas according to the required applications. High-pressure tanks (5000-10000 psi) are usually needed for storing hydrogen in gaseous form, while cryogenic temperatures drive hydrogen storage in liquid form. Hydrogen can also be stored within solid materials or on the surface, called absorption and adsorption.

Demand for Hydrogen Storage Facilities

The various parameters, such as low volumetric energy density and lightest element than Helium, account for the difficulty in storing hydrogen. Liquid hydrogen, which is in demand for being used extensively in space travel, has specific challenges; the most common is low storage temperature. Cryogenically, hydrogen can be stored in liquid form where the temperature must be lower than -252.8°C to prevent liquid hydrogen from converting into gaseous form. Subsequently, compression, along with cryogenic cooling, is an advanced developed process for storing hydrogen where the hydrogen is cooled before compressing it. The energy required using this process is equivalent to 9-12% of the energy available for compression and around 30% liquefaction.

To a further extent, hydrogen can also be stored using materials with different processes. Hydride storage, which uses solid materials and liquid, has been extensively used for storing hydrogen. On an industrial scale, underground hydrogen storage can be obtained using salt caverns, abandoned oil and gas wells, or aquifers. Surplus hydrogen can be inserted into the multiple gas network to generate hydrogen-enriched natural gas (HENG), which could be an alternative to underground cavern storage.

Hydrogen Benefits and Energy Security

Hydrogen is generally considered a potential fuel that is on the mark of near-zero greenhouse gas emissions. It can be generated from diverse resources that impulse to produce electric power in a different fuel cell. The emitted elements are only water vapor and warm air, making hydrogen a pure, environmentally friendly fuel. Locally various natural resources such as coal, natural gas, solar energy, wind, etc., can be a prominent source to produce hydrogen, substantially serving as a fuel cell for electric vehicles. Hydrogen fuel strengthens global energy security, preserves petroleum reserves, and transforms energy transportation into a better one. Unlikely emissions from conventional fuels from vehicles are harmful nitrous oxides, hydrocarbons, and unwanted particulates, which is considered a significant pollutant. Still, hydrogen-powered fuel vehicles indispensably produce only water and warm air, ultimately making them nature-loving. Consequently, hydrogen carries the potential to circumvent significant challenges to meet net zero emissions globally by 2050.

With the increasing demand for the mobility of compressed hydrogen systems, the capacities and pressure of tube trailers has significantly increased to 1000 kg of hydrogen at 500 bar, the largest. Cryostars' transferable system is very effective as their systems are equipped with a wide range of compressed hydrogen container filling pumps with larger capacities and lower power consumptions than usual compressors.

Impact of COVID-19

The COVID-19 pandemic has led to unprecedented economic crises, affecting the clean hydrogen sector. During the outbreak, a significant lagging has occurred in the adoption and commercial roll-out of pure hydrogen. The momentum of building hydrogen storage infrastructure has slowed as annual installations of energy storage subsequently declined-the structures of the power grid scale fell by around 20%, which created uncertainties around battery safety. The COVID-19 outbreak has impacted several clean hydrogen projects using CCUS technology due to supply chain disruptions, a global economic downturn, and a fall in effective capital investment across energy sectors. Despite various troubles and uncertainties with the growth, there are more rising opportunities to mobilize investments toward clean hydrogen energy storage.

Impact of Russia-Ukraine War

The annexation of Russia on Ukraine has developed sternness in energy security globally, which resembles the center of the geopolitical conversation. The International Renewable Energy Agency (IRENA) has proposed a strategy for the emergence of clean hydrogen as a mainstream source which aims to reevaluate global trade relations, minimize the dependence, and shift the power far away from oil and gas-dominating countries, including Russia and gulf regions. The invasion has soared energy prices globally, which drives 25 countries to commit an investment of around USD 73 billion in fresh lower-cost green hydrogen. A progressive acceleration in the buy to produce clean hydrogen assets has inspired investors across the globe as they are looking at hydrogen as an alternative fuel source.

In October 2022, the cost of pure green hydrogen ranges between USD3.8 to 5.8 per kg, and the impact of war has led to lower prices in a very short time interval. Massive energy importers like Morocco, Chile, and Namibia have already developed strategies to become green hydrogen producers and exporters.

Key Players Landscape and Outlook

Prominent companies are heavily investing in sustainability goals to develop technologies for producing green energy. FuelCell Energy Inc., a key player in the green hydrogen industry, offers an environmentally friendly alternative to conventional energy generation. The company's specifications can be admired in different applications such as designing, manufacturing, and operating fuel cell power plants. The company has already implemented operations in over 50 countries, from which only 21 power plants are established in South Korea. It uses trigeneration technology to generate green hydrogen from natural gas or biogas, extending its domain to serve commercial and industrial clients across the globe.

Table of Contents

1. Research Methodology

2. Project Scope & Definitions

3. Impact of COVID-19 on the Hydrogen Gas Storage Market

4. Impact of Russia-Ukraine War

5. Executive Summary

6. Voice of Customer

  • 6.1. Market Awareness and Product Information
  • 6.2. Brand Awareness and Loyalty
  • 6.3. Factors Considered in Purchase Decision
    • 6.3.1. Brand Name
    • 6.3.2. Quality
    • 6.3.3. Quantity
    • 6.3.4. Price
    • 6.3.5. Product Specification
    • 6.3.6. Application Specification
    • 6.3.7. VOC/Toxicity Content
    • 6.3.8. Availability of Product
  • 6.4. Frequency of Purchase
  • 6.5. Medium of Purchase

7. Hydrogen Gas Storage Market Outlook, 2016-2030F

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
    • 7.1.2. By Volume
  • 7.2. By State
    • 7.2.1. Physical-based
      • 7.2.1.1. Gas
      • 7.2.1.2. Liquid
      • 7.2.1.3. Others
    • 7.2.2. Material-based
      • 7.2.2.1. Chemical Hydrogen
      • 7.2.2.2. Adsorbent
      • 7.2.2.3. Interstitial Hydride
      • 7.2.2.4. Others
  • 7.3. By Storage Type
    • 7.3.1. Pressurized Composite Vessels
    • 7.3.2. Fiber Reinforced Composite Vessels
    • 7.3.3. Cryo-Compressed Vessels
    • 7.3.4. Others
  • 7.4. By Technology
    • 7.4.1. Geological Based
    • 7.4.2. Compression
    • 7.4.3. Liquefaction
    • 7.4.4. Material Based
    • 7.4.5. Others
  • 7.5. By End-user
    • 7.5.1. Energy & Industry
      • 7.5.1.1. Nuclear Plant
      • 7.5.1.2. Power Grids
      • 7.5.1.3. Others
    • 7.5.2. Mobility
      • 7.5.2.1. Shipment
      • 7.5.2.2. Heavy Transport
      • 7.5.2.3. Others
    • 7.5.3. Space Exploration
    • 7.5.4. Others
  • 7.6. By Region
    • 7.6.1. North America
    • 7.6.2. Europe
    • 7.6.3. South America
    • 7.6.4. Asia-Pacific
    • 7.6.5. Middle East and Africa
  • 7.7. By Company Market Share (%), 2022

8. Hydrogen Gas Storage Market Outlook, By Region, 2016-2030F

  • 8.1. North America*
    • 8.1.1. By State
      • 8.1.1.1. Physical-based
      • 8.1.1.1.1. Gas
      • 8.1.1.1.2. Liquid
      • 8.1.1.1.3. Others
      • 8.1.1.2. Material-based
      • 8.1.1.2.1. Chemical Hydrogen
      • 8.1.1.2.2. Adsorbent
      • 8.1.1.2.3. Interstitial Hydride
      • 8.1.1.2.4. Others
    • 8.1.2. By Storage Type
      • 8.1.2.1. Pressurized Composite Vessels
      • 8.1.2.2. Fiber Reinforced Composite Vessels
      • 8.1.2.3. Cryo-Compressed Vessels
      • 8.1.2.4. Others
    • 8.1.3. By Technology
      • 8.1.3.1. Geological Based
      • 8.1.3.2. Compression
      • 8.1.3.3. Liquefaction
      • 8.1.3.4. Material Based
      • 8.1.3.5. Others
    • 8.1.4. By End-user
      • 8.1.4.1. Energy
      • 8.1.4.1.1. Nuclear Plant
      • 8.1.4.1.2. Power Grids
      • 8.1.4.1.3. Others
      • 8.1.4.2. Mobility
      • 8.1.4.2.1. Shipment
      • 8.1.4.2.2. Heavy Transport
      • 8.1.4.2.3. Others
      • 8.1.4.3. Space Exploration
      • 8.1.4.4. Others
    • 8.1.5. United States*
      • 8.1.5.1. By State
      • 8.1.5.1.1. Physical-based
      • 8.1.5.1.1.1. Gas
      • 8.1.5.1.1.2. Liquid
      • 8.1.5.1.1.3. Others
      • 8.1.5.1.2. Material-based
      • 8.1.5.1.2.1. Chemical Hydrogen
      • 8.1.5.1.2.2. Adsorbent
      • 8.1.5.1.2.3. Interstitial Hydride
      • 8.1.5.1.2.4. Others
      • 8.1.5.2. By Storage Type
      • 8.1.5.2.1. Pressurized Composite Vessels
      • 8.1.5.2.2. Fiber Reinforced Composite Vessels
      • 8.1.5.2.3. Cryo-Compressed Vessels
      • 8.1.5.2.4. Others
      • 8.1.5.3. By Technology
      • 8.1.5.3.1. Geological Based
      • 8.1.5.3.2. Compression
      • 8.1.5.3.3. Liquefaction
      • 8.1.5.3.4. Material Based
      • 8.1.5.3.5. Others
      • 8.1.5.4. By End-user
      • 8.1.5.4.1. Energy
      • 8.1.5.4.1.1. Nuclear Plant
      • 8.1.5.4.1.2. Power Grids
      • 8.1.5.4.1.3. Others
      • 8.1.5.4.2. Mobility
      • 8.1.5.4.2.1. Shipment
      • 8.1.5.4.2.2. Heavy Transport
      • 8.1.5.4.2.3. Others
      • 8.1.5.4.3. Space Exploration
      • 8.1.5.4.4. Others
    • 8.1.6. Canada
    • 8.1.7. Mexico

All segments will be provided for all regions and countries covered

  • 8.2. Europe
    • 8.2.1. Germany
    • 8.2.2. France
    • 8.2.3. Italy
    • 8.2.4. United Kingdom
    • 8.2.5. Russia
    • 8.2.6. Netherlands
    • 8.2.7. Spain
    • 8.2.8. Turkey
    • 8.2.9. Poland
  • 8.3. South America
    • 8.3.1. Brazil
    • 8.3.2. Argentina
  • 8.4. Asia-Pacific
    • 8.4.1. India
    • 8.4.2. China
    • 8.4.3. Japan
    • 8.4.4. Australia
    • 8.4.5. Vietnam
    • 8.4.6. South Korea
    • 8.4.7. Indonesia
    • 8.4.8. Philippines
  • 8.5. Middle East & Africa
    • 8.5.1. Saudi Arabia
    • 8.5.2. UAE
    • 8.5.3. South Africa

9. Supply Side Analysis

  • 9.1. Capacity, By Company
  • 9.2. Production, By Company
  • 9.3. Operating Efficiency, By Company
  • 9.4. Key Plant Locations (Up to 25)

10. Market Mapping, 2022

  • 10.1. By State
  • 10.2. By Storage Type
  • 10.3. By Technology
  • 10.4. By End-user
  • 10.5. By Region

11. Macro Environment and Industry Structure

  • 11.1. Supply Demand Analysis
  • 11.2. Import Export Analysis - Volume and Value
  • 11.3. Supply/Value Chain Analysis
  • 11.4. PESTEL Analysis
    • 11.4.1. Political Factors
    • 11.4.2. Economic System
    • 11.4.3. Social Implications
    • 11.4.4. Technological Advancements
    • 11.4.5. Environmental Impacts
    • 11.4.6. Legal Compliances and Regulatory Policies (Statutory Bodies Included)
  • 11.5. Porter's Five Forces Analysis
    • 11.5.1. Supplier Power
    • 11.5.2. Buyer Power
    • 11.5.3. Substitution Threat
    • 11.5.4. Threat from New Entrant
    • 11.5.5. Competitive Rivalry

12. Market Dynamics

  • 12.1. Growth Drivers
  • 12.2. Growth Inhibitors (Challenges, Restraints)

13. Key Players Landscape

  • 13.1. Competition Matrix of Top Five Market Leaders
  • 13.2. Market Revenue Analysis of Top Five Market Leaders (in %, 2022)
  • 13.3. Mergers and Acquisitions/Joint Ventures (If Applicable)
  • 13.4. SWOT Analysis (For Five Market Players)
  • 13.5. Patent Analysis (If Applicable)

14. Pricing Analysis

15. Case Studies

16. Key Players Outlook

  • 16.1. ITM Power
    • 16.1.1. Company Details
    • 16.1.2. Key Management Personnel
    • 16.1.3. Products & Services
    • 16.1.4. Financials (As reported)
    • 16.1.5. Key Market Focus & Geographical Presence
    • 16.1.6. Recent Developments
  • 16.2. Air Liquide
  • 16.3. Cummins Inc.
  • 16.4. Aramco
  • 16.5. FuelCell Energy Inc.
  • 16.6. Air Products and Chemicals Inc.
  • 16.7. Linde plc
  • 16.8. Shell plc
  • 16.9. NPROXX
  • 16.10. GRZ Technologies

Companies mentioned above DO NOT hold any order as per market share and can be changed as per information available during research work

17. Strategic Recommendations

18. About Us & Disclaimer

ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦