시장보고서
상품코드
1697884

일본의 항공기 MRO 시장 : 유형별, 산업별, 항공기 유형별, 주기성별, 사업자별, 지역별, 기회, 예측(2019-2033년)

Japan Aircraft MRO Market Assessment, By Type, By Industry, By Aircraft Type, By Periodicity, By Operator, By Region, Opportunities, and Forecast, FY2019-FY2033F

발행일: | 리서치사: Markets & Data | 페이지 정보: 영문 144 Pages | 배송안내 : 3-5일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

일본의 항공기 MRO 시장 규모는 2026-2033년의 예측 기간 동안 5.50%의 연평균 복합 성장률(CAGR)로 확대되어 2025년 67억 1,000만 달러에서 2033년 103억 달러로 성장할 것으로 예상됩니다. 일본의 항공기 MRO 시장은 일본이 탄소중립과 에너지 안보를 추진함에 따라 엄격한 환경 규제와 운항 비용 상승에 대응하기 위해 연비 효율이 높은 시스템에 초점을 맞추었습니다. 수소 적합성 엔진 및 하이브리드 전기 시스템과 같은 첨단 추진 기술의 개조는 노후화된 항공기 및 차세대 항공기의 연료 소비를 줄이기 위한 경량 복합재료의 통합과 함께 MRO 제공업체의 초점이 되고 있습니다. 일본 항공 문화에 내재된 고유의 정밀 엔지니어링 관행은 세계 배출 기준을 충족하는 세밀한 업그레이드와 항공기 수명주기 효율을 향상시킬 수 있습니다. 항공 여행 및 국제 물류 요구 사항 증가로 인한 상업용 및 화물 항공기 증가는 노후화된 자산과 차세대 항공기의 통합을 처리할 수 있는 확장 가능한 솔루션에 대한 수요를 촉진하고 있습니다. 배출량 감축을 위한 개조 및 순환 경제 전략과 같은 지속가능성에 대한 요구로 인해 MRO는 운영 탄력성과 환경적 책임의 균형을 맞추는 중심에 서 있습니다.

2025년 3월, MTU Aero Engines AG와 중국남방항공(ANA)의 합작회사인 MTU Maintenance Zhuhai Co. 수리 및 정비(MRO) 계약을 체결하였습니다. 이 계약은 2032년까지 유효하며 약 100대의 엔진에 적용되며, 15년간의 파트너십을 강화하는 것입니다. MTU Maintenance Zhuhai는 전문 서비스를 제공하여 ANA의 협폭동체 항공기의 운항 효율을 보장합니다.

일본의 항공기 MRO 시장에 대해 조사했으며, 시장 개요와 함께 유형별/산업별/항공기 유형별/주기별/사업자별/지역별 동향, 시장 진출기업 프로파일 등의 정보를 전해드립니다.

목차

제1장 프로젝트의 범위와 정의

제2장 조사 방법

제3장 주요 요약

제4장 고객 소리

제5장 일본의 항공기 MRO 시장 전망(2019년-2033년)

  • 시장 규모 분석과 예측
  • 시장 점유율 분석과 예측
  • 2025년 시장 맵 분석
    • 유형별
    • 산업별
    • 항공기 유형별
    • 주기성별
    • 사업자별
    • 지역별

제6장 Porter의 Five Forces 분석

제7장 PESTLE 분석

제8장 시장 역학

  • 시장 성장 촉진요인
  • 시장이 해결해야 할 과제

제9장 시장 동향과 발전

제10장 사례 연구

제11장 경쟁 구도

  • 시장 리더 TOP 5의 경쟁 매트릭스
  • 참여 기업 TOP 5의 SWOT 분석
  • 시장 진출기업 TOP 6의 상황
    • Mitsubishi Heavy Industries Aero Engines Ltd.(MHIAEL)
    • IHI Corporation
    • ANA HOLDINGS INC.
    • Japan Airlines Co., Ltd.(JAL Engineering Co., Ltd.
    • Kawasaki Heavy Industries, Ltd.
    • MRO Japan Corporation

제12장 전략적 제안

제13장 리서치사에 대해 & 면책사항

LSH 25.04.16

Japan aircraft MRO market is projected to witness a CAGR of 5.50% during the forecast period FY2026-FY2033F, growing from USD 6.71 billion in FY2025 to USD 10.30 billion in FY2033F. Japan aircraft MRO market is focusing on fuel-efficient systems in response to severe environmental regulations and the rise in operating costs, since Japan has been a proponent for carbon neutrality and energy security. Retrofitting advanced propulsion technologies such as hydrogen-compatible engines and hybrid-electric systems, along with integration of lightweight composite materials for diminishing fuel consumption in aging fleets and next-generation ones, is the focus for MRO providers. Unique precision engineering practices embedded in the aviation culture of Japan allow for meticulous upgrades in conformity with global emission standards and upgrading aircraft lifecycle efficiency. Increased commercial and cargo fleets, fueled by increasing air travel and international logistics requirements, are fueling demand for scalable solutions to cope with aging assets and next-generation aircraft integration. Sustainability imperatives such as emission-mitigating retrofits and circular economy strategies place MRO at the center of balancing operational resilience with environmental responsibility.

In March 2025, MTU Maintenance Zhuhai Co., Ltd., a joint venture between MTU Aero Engines AG and China Southern Airlines Company Limited, signed a long-term maintenance, repair, and overhaul (MRO) agreement with All Nippon Airways Co., Ltd. (ANA) for the CFM International CFM56-7B engines powering ANA's Boeing 737NG fleet. The contract, effective until 2032, covers approximately 100 engines and strengthens their 15-year partnership. Specialized services will be provided by MTU Maintenance Zhuhai, ensuring operational efficiency for ANA's narrow body aircraft.

Focus on Fuel Efficient Systems Driving the Japan Aircraft MRO Market

The transformations in the Japan aircraft MRO market are being influenced by the growing emphasis on fuel-efficient systems in the aviation industry due to both sustainability mandates and pressures to minimize cost. Airlines and operators are taking precautionary steps to upgrade systems to improve fuel efficiency or lower carbon footprints, which would eventually propel MROs to seek innovative ways of maintenance and retrofitting advanced propulsion systems, lightweight composite structures, and aerodynamic enhancements into their products. Predictive analytics and IoT-based monitoring tools will complement MRO measures undertaken to optimize engine performance, reduce fuel consumption, and prolong the life of components through accurate scheduling of maintenance. Moreover, retrofitting old fleets with new fuel-saving technologies, installation of advanced winglets, or energy-efficient auxiliary systems will likely be booming trends soon since such activities also comply with stricter environmental standards. Hence, the partnership between an MRO company, an OEM, and a technology developer will drive the development of AI-enabled applications and green repair processes to meet new efficiency standards. As the main enabler for greener air transport ecosystems, this strategic focus on fuel efficiency will not only alleviate operational cost pressure but will also bolster Japan's commitment to sustainable aviation.

For instance, in September 2024, All Nippon Airways Co., Ltd. (ANA) introduced its first Boeing 777 equipped with AeroSHARK technology, inspired by sharkskin, to reduce drag and enhance fuel efficiency. This innovation is expected to save approximately 250 metric tons of fuel and 800 metric tons of CO2 annually per aircraft. ANA is the first airline to implement this technology on both passenger and freighter versions of the Boeing 777.

Growing Fleet Size Fuels Market Growth

Japan aircraft MRO market is witnessing strong growth fueled by the parallel growth of its commercial and defense aviation industry. The increasing passenger demand and cargo volume are driving airlines to upgrade their fleets with new-generation aircraft, necessitating the need for scalable maintenance solutions. In parallel, defense modernization efforts, focusing on next-generation combat and transport assets, are pushing specialized, secure MRO infrastructure requirements to meet mission-critical readiness. The respective growth of these sectors is driving demand for flexible, technology-enabled services that can cover a wide range of aircraft systems and strict safety standards. MRO players are turning back to strategic investment in advanced training initiatives, modular facilities, and digital solutions to optimize workflows and technical competency.

For instance, in March 2024, Japan Airlines Co., Ltd. (JAL) announced plans to introduce 42 new aircraft, including Airbus A350-900, A321neo, and Boeing 787-9, as part of its fleet renewal strategy. This move aims to enhance the airline's international operations, focusing on regions such as North America and Asia.

Engine Maintenance Propels the Growth of the Market

Japan aircraft MRO market is fueled by engine maintenance requirements, a foundation of operations and environmental policy. As airlines focus on fuel efficiency and stringent emission standards, maximizing lifecycle management sophistication to optimize engine performance is the top priority. MRO service providers are adopting advanced technology such as predictive maintenance software, IoT-enabled sensors, and artificial intelligence-based analytics to live monitor the condition of the engines. This is a proactive method that increases the predictability of wear and tear for better maintenance schedules with less downtime. Moving to condition-based maintenance means there is less downtime, less spend over the life of the machine, and support for sustainability targets by preventing unnecessary part replacement. With next-generation engines being designed with elaborate and new materials, MRO suppliers are investing more in specialized knowledge, advanced repair methods, and modular test equipment to support changing technical requirements. Collaborative innovation also drives uptake of better problem-solving solutions, meeting global safety regulations while realizing optimum operational lifecycles.

For instance, in March 2023, Mitsubishi Heavy Industries Aero Engines (MHIAEL) expanded its aero engine maintenance facility in Komaki, Aichi, Chubu (Central Japan), to meet growing global demand for maintenance, repair, and overhaul (MRO) services. The facility's capacity will increase from 5-6 units of engine MRO per month to over 15 units by 2026, focusing on engines like Pratt & Whitney PW4000 engines used in Boeing 747s, V2500 engines powering Airbus A320s, and PW1100G-JM engines for the Airbus A320neo family. This expansion includes advanced technology and optimized layouts to enhance efficiency and support future growth.

Central Japan Holds a Significant Share of the Japan Aircraft MRO Market

Japan's central region, comprising Kanto and Chubu, is the strategic center of the country's aircraft MRO sector, particularly in engine overhauls. The concentration of aerospace expertise, cutting-edge manufacturing clusters, and proximity to major aviation hubs provide a robust environment for sophisticated engine overhaul and repair services. The well-developed infrastructure across the region is the foundation for the adoption of new technologies such as additive production, digital duplicates, and AI diagnostics, which provide accuracy in engine life-cycle management, resulting in the least turnaround time possible. Coordination among MRO providers and aerospace manufacturers with skilled labor ensures safeguarding against omitting high degrees of safety and sustainability demands to the next era of engine technology. Investments in local development of modular facilities and automation further root the region in capturing growing demand for high-efficiency engine maintenance on the back of global decarbonization initiatives and fleet modernization. Current MRO activities highlight cooperative action to build up advanced engine MRO capability localized to expand Japan's role of leadership in green aviation maintenance.

For instance, in February 2024, Marubeni Aerospace Corporation, a subsidiary of Marubeni Corporation, collaborated with ShinMaywa Industries, Ltd. to establish JAMS Co., Ltd. (Japan Aircraft Maintenance Services). This joint venture will provide high-quality maintenance services for business jets at Central Japan International Airport, starting operations in April 2024.

Future Market Scenario (FY2026 - FY2033F)

Expansion of Digital MRO Solutions: AI, IoT, and blockchain integration will streamline predictive maintenance, improve data accuracy significantly, and ease in decision-making is simplified, resulting in lower operational costs and enhanced fleet performance.

Green MRO Growth: Eemphasis on green procedures, including instituting green technologies, use of sustainable materials, and carbon-neutral maintenance practices, as part of overall global sustainability efforts.

OEM-MRO Alliance Strengthening: OEM and MRO firm alliances will grow, focusing on the development of standardized maintenance practices for future aircraft, enhancing service capabilities, and addressing evolving regulatory compliance.

Key Players Landscape and Outlook

The Japan aircraft MRO market has a dynamic competitive landscape with a mix of global legacy players, and domestic aerospace industry majors. Although the market is comparatively mid-sized fragmented, collaboration is at the center of growth strategies, with key players forming strategic alliances to introduce advanced technology, expand service portfolios, and enhance regional reach.

Collaborations between MRO suppliers, technology drivers, and OEMs are propelling the application of AI-based diagnostics, predictive maintenance software, and eco-friendly repair methods. Concurrently, R&D expenditures are growing, focusing on digitalization, automation, and eco-efficient solutions to address global decarbonization requirements and shifting regulatory environments. For instance, in November 2024, MRO Japan teamed up with Elbe Flugzeugwerke GmbH, a German aerospace company, to carry out A320P2F and A321P2F passenger-to-freighter conversions. This partnership represents a significant expansion of Japan's MRO capabilities.

Market players are also emphasizing vertical integration and innovation, launching custom solutions such as modular maintenance ecosystems and digital twin platforms to meet diverse fleet requirements. The competitive environment is upbeat, driven by public-private efforts to boost Japan's aerospace self-reliance and position Japan as a regional MRO center. Long-term growth will rely on achieving the balance between cost-effectiveness and tech responsiveness, facilitating workforce upskilling, and maintaining alignment with global sustainability norms. For instance, in November 2023, MRO Japan commenced heavy maintenance services for Airbus A320 and Airbus A321 aircraft under European Union Aviation Safety Agency (EASA) certification. This milestone makes MRO Japan the first company in Japan to perform such maintenance, enhancing its global reputation for high-quality aircraft services.

Table of Contents

1. Project Scope and Definitions

2. Research Methodology

3. Executive Summary

4. Voice of Customers

  • 4.1. Product and Market Intelligence
  • 4.2. Mode of Brand Awareness
  • 4.3. Factors Considered in Purchase Decisions
    • 4.3.1. Features and Other Value-Added Service
    • 4.3.2. Compatibility
    • 4.3.3. Efficiency of Aircraft Maintenance Services
    • 4.3.4. After-Sales Support
  • 4.4. Consideration of Privacy and Regulations

5. Japan Aircraft MRO Market Outlook, FY2019-FY2033F

  • 5.1. Market Size Analysis & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share Analysis & Forecast
    • 5.2.1. By Type
      • 5.2.1.1. Maintenance
        • 5.2.1.1.1. Line Maintenance
        • 5.2.1.1.2. Component Maintenance
        • 5.2.1.1.3. Airframe Maintenance
        • 5.2.1.1.4. Engine Maintenance
      • 5.2.1.2. Repair and Overhaul
    • 5.2.2. By Industry
      • 5.2.2.1. Passenger
      • 5.2.2.2. Cargo
      • 5.2.2.3. Military and Defense
    • 5.2.3. By Aircraft Type
      • 5.2.3.1. Commercial Aircraft
        • 5.2.3.1.1. Wide Body
        • 5.2.3.1.2. Narrow Body
        • 5.2.3.1.3. Regional Jets
      • 5.2.3.2. Business Jets
      • 5.2.3.3. General Aviation Aircraft
      • 5.2.3.4. Military Aircraft
      • 5.2.3.5. Helicopters
    • 5.2.4. By Periodicity
      • 5.2.4.1. Scheduled Maintenance
      • 5.2.4.2. Unscheduled Maintenance
    • 5.2.5. By Operator
      • 5.2.5.1. Original Equipment Manufacturer
      • 5.2.5.2. Aftermarket
    • 5.2.6. By Region
      • 5.2.6.1. North [Hokkaido and Tohoku]
      • 5.2.6.2. Central [Kanto and Chubu]
      • 5.2.6.3. South [Kansai, Chugoku, Shikoku, and Kyushu & Okinawa]
    • 5.2.7. By Company Market Share Analysis (Top 5 Companies and Others - By Value, FY2025)
  • 5.3. Market Map Analysis, FY2025
    • 5.3.1. By Type
    • 5.3.2. By Industry
    • 5.3.3. By Aircraft Type
    • 5.3.4. By Periodicity
    • 5.3.5. By Operator
    • 5.3.6. By Region

All segments will be provided for all regions

6. Porter's Five Forces Analysis

7. PESTLE Analysis

8. Market Dynamics

  • 8.1. Market Drivers
  • 8.2. Market Challenges

9. Market Trends and Developments

10. Case Studies

11. Competitive Landscape

  • 11.1. Competition Matrix of Top 5 Market Leaders
  • 11.2. SWOT Analysis for Top 5 Players
  • 11.3. Key Players Landscape for Top 6 Market Players
    • 11.3.1. Mitsubishi Heavy Industries Aero Engines Ltd. (MHIAEL)
      • 11.3.1.1. Company Details
      • 11.3.1.2. Key Management Personnel
      • 11.3.1.3. Products and Services
      • 11.3.1.4. Financials (As Reported)
      • 11.3.1.5. Key Market Focus and Geographical Presence
      • 11.3.1.6. Recent Developments/Collaborations/Partnerships/Mergers and Acquisition
    • 11.3.2. IHI Corporation
    • 11.3.3. ANA HOLDINGS INC.
    • 11.3.4. Japan Airlines Co., Ltd. (JAL Engineering Co., Ltd.
    • 11.3.5. Kawasaki Heavy Industries, Ltd.
    • 11.3.6. MRO Japan Corporation

Companies mentioned above DO NOT hold any order as per market share and can be changed as per information available during research work.

12. Strategic Recommendations

13. About Us and Disclaimer

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제