½ÃÀ庸°í¼­
»óǰÄÚµå
1652712

¼¼Æ÷ ¿ëÇØ ¹× ÆÄ±« ½ÃÀå : ¼¼°è »ê¾÷ ºÐ¼®, ±Ô¸ð, Á¡À¯À², ¼ºÀå, µ¿Çâ, ¿¹Ãø(2025-2032³â)

Cell Lysis and Disruption Market: Global Industry Analysis, Size, Share, Growth, Trends, and Forecast, 2025 - 2032

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Persistence Market Research | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200 Pages | ¹è¼Û¾È³» : 2-5ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Persistence Market Research´Â ÃÖ±Ù ¼¼°è ¼¼Æ÷ ¿ëÇØ ¹× ÆÄ±« ½ÃÀå¿¡ ´ëÇÑ Á¾ÇÕÀûÀÎ º¸°í¼­¸¦ ¹ßÇ¥Çß½À´Ï´Ù. ÀÌ º¸°í¼­´Â ¼ºÀå ÃËÁø¿äÀÎ, µ¿Çâ, ±âȸ, °úÁ¦ µî ÇʼöÀûÀÎ ½ÃÀå ¿ªÇÐÀ» ÀÚ¼¼È÷ ºÐ¼®ÇÏ°í ½ÃÀå ±¸Á¶¿¡ ´ëÇÑ ½ÉÃþÀûÀÎ ÀλçÀÌÆ®À» Á¦°øÇÕ´Ï´Ù. ÀÌ º¸°í¼­´Â 2025-2032³â ¼¼°è ¼¼Æ÷ ¿ëÇØ ¹× ÆÄ±« ½ÃÀåÀÇ ¼ºÀå ±ËÀûÀ» ¿¹ÃøÇÏ°í µ¶ÀÚÀûÀÎ µ¥ÀÌÅÍ¿Í Åë°è¸¦ Á¦°øÇÕ´Ï´Ù.

ÁÖ¿ä ÀλçÀÌÆ®

  • ¼¼Æ÷ ¿ëÇØ ¹× ÆÄ±« ½ÃÀå ±Ô¸ð(2025E) : 52¾ï 6,000¸¸ ´Þ·¯
  • ¿¹Ãø ½ÃÀå°¡Ä¡(2032F) : 98¾ï 5,000¸¸ ´Þ·¯
  • ¼¼°è ½ÃÀå ¼ºÀå·ü(CAGR 2025-2032³â) : 9.4%

¼¼Æ÷ ¿ëÇØ ¹× ÆÄ±« ½ÃÀå - ¸®Æ÷Æ® ¹üÀ§ :

¼¼Æ÷ ¿ëÇØ ¹× ÆÄ±«´Â »ý¸í°øÇÐ, »ý¸í°úÇÐ ¹× Á¦¾à »ê¾÷¿¡¼­ ¼¼Æ÷ ¼ººÐÀ» ÃßÃâÇÏ´Â µ¥ »ç¿ëµÇ´Â ±âº» ±â¼úÀÔ´Ï´Ù. ÀÌ °úÁ¤Àº ´Ü¹éÁú ÃßÃâ, DNA/RNA ºÐ¸® ¹× ±âŸ ¼¼Æ÷ ±â¹Ý ºÐ¼®°ú °°Àº ¿ëµµ¿¡ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ¼¼Æ÷ ¿ëÇØ ¹× ÆÄ±«¿¡´Â ±â°èÀû, È¿¼ÒÀû, È­ÇÐÀû Á¢±Ù¹ýÀ» Æ÷ÇÔÇÑ ´Ù¾çÇÑ ¹æ¹ýÀÌ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú ½ÃÀåÀº »ý¹°Á¦Á¦, ¸ÂÃãÇü ÀÇ·á ¹× ¼¼Æ÷ ±â¹Ý Ä¡·áÀÇ ¹ßÀü¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ÀÎÇØ ½ÃÀåÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù.

½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ:

¼¼°è ¼¼Æ÷ ¿ëÇØ ¹× ÆÄ±« ½ÃÀåÀº »ý¹°Á¦Á¦ ¹× ¹ÙÀÌ¿ÀÀǾàǰ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿Í °°Àº ¸î °¡Áö Áß¿äÇÑ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ¸ÂÃãÇü ÀÇ·á¿Í ¼¼Æ÷ ±â¹Ý Ä¡·á¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ È¿À²ÀûÀÎ ¼¼Æ÷ ÆÄ±« ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. À¯ÀüüÇÐ, ´Ü¹éÁúüÇÐ, ¹Ì»ý¹°ÇÐ ºÐ¾ßÀÇ ¿¬±¸ Ȱµ¿ÀÇ È®´ë´Â ½ÃÀå ¼ºÀå¿¡ ´õ¿í ±â¿©Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÚµ¿È­¿Í °°Àº ¿ëÇØ ¹× ÆÄ±« ±â¼úÀÇ ±â¼ú ¹ßÀüÀº °øÁ¤ÀÇ È¿À²¼º°ú È®À强À» ³ô¿© ½ÃÀå È®´ë¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ:

±àÁ¤ÀûÀÎ ¼ºÀå Àü¸Á¿¡µµ ºÒ±¸ÇÏ°í ¼¼Æ÷ ¿ëÇØ ¹× ÆÄ±« ½ÃÀåÀº ÷´Ü ÆÄ±« ±â¼ú°ú °ü·ÃµÈ ³ôÀº ºñ¿ë°ú °°Àº ¹®Á¦¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÌ·¯ÇÑ ±â¼úÀ» ƯÁ¤ ¼¼Æ÷Á¾¿¡ ÃÖÀûÈ­ÇÏ´Â µ¥ µû¸£´Â º¹À⼺ÀÌ ´ëÁßÈ­¿¡ °É¸²µ¹ÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀϺΠÁö¿ª¿¡¼­´Â ¾ÈÀü¿¡ ´ëÇÑ ¿ì·Á¿Í ¾ö°ÝÇÑ ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©µµ ½ÃÀå ¼ºÀåÀÇ ÀáÀçÀû À庮À¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù.

½ÃÀå ±âȸ:

¼¼Æ÷ ¿ëÇØ ¹× ÆÄ±« ½ÃÀåÀº ƯÈ÷ ¼¼Æ÷ ±â¹Ý Ä¡·á, Àç»ýÀÇÇÐ, ¸ð³ëŬ·Î³Î Ç×ü »ý»ê°ú °°Àº »õ·Î¿î ¿ëµµ¿¡¼­ Å« ¼ºÀå ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù. º¸´Ù ºü¸£°í È¿À²ÀûÀ̸ç ÀçÇö¼º ³ôÀº °á°ú¸¦ Á¦°øÇÏ´Â ÀÚµ¿È­ ½Ã½ºÅÛ µî ¼¼Æ÷ ¿ëÇØ ÀåºñÀÇ ±â¼ú Çõ½ÅÀº ½ÃÀå Âü¿©Àڵ鿡°Ô À¯¸ÁÇÑ ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ »ý¸í°øÇÐ ±â¾÷ ¹× ¿¬±¸±â°ü°úÀÇ Àü·«Àû ÆÄÆ®³Ê½ÊÀº ÀÌ ½ÃÀå ºÎ¹®ÀÇ Ãß°¡ ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ÀÌ º¸°í¼­¿¡¼­ ´Ù·é ÁÖ¿ä Áú¹®

  • ¼¼Æ÷ ¿ëÇØ ¹× ÆÄ±« ½ÃÀåÀÇ ¼¼°è ¼ºÀåÀ» °¡¼ÓÇÏ´Â ÁÖ¿ä ¿äÀÎÀº ¹«¾ùÀΰ¡?
  • ¼¼Æ÷ ¿ëÇØ ¹× ÆÄ±« ±â¼úÀÇ °¡Àå Å« ¼ÒºñÀÚ´Â ¾î¶² »ê¾÷ ¹× ¿ëµµÀΰ¡?
  • ¼¼Æ÷ ¿ëÇØ ¹× ÆÄ±« ±â¼úÀÇ ¹ßÀüÀº °æÀï ±¸µµ¿¡ ¾î¶² ¿µÇâÀ» ¹ÌÃÆ´Â°¡?
  • ¼¼Æ÷ ¿ëÇØ ¹× ÆÄ±« ½ÃÀå¿¡ ±â¿©ÇÏ´Â ÁÖ¿ä ¾÷ü´Â ¾îµðÀ̸ç, ½ÃÀåÀÇ °ü·Ã¼ºÀ» À¯ÁöÇϱâ À§ÇØ ¾î¶² Àü·«À» äÅÃÇϰí Àִ°¡?
  • ¼¼°è ¼¼Æ÷ ¿ëÇØ ¹× ÆÄ±« ½ÃÀåÀÇ »õ·Î¿î µ¿Çâ°ú Àü¸ÁÀº?

¸ñÂ÷

Á¦1Àå °³¿ä

Á¦2Àå ½ÃÀå °³¿ä

  • ½ÃÀåÀÇ ¹üÀ§¿Í Á¤ÀÇ
  • ½ÃÀå ¿ªÇÐ
    • ÃËÁø¿äÀÎ
    • ¾ïÁ¦¿äÀÎ
    • ±âȸ
    • °úÁ¦
    • ÁÖ¿ä µ¿Çâ
  • ±â¼ú ¼ö¸íÁֱ⠺м®
  • ¼¼°èÀÇ ¼¼Æ÷ ¿ëÇØ ¹× ÆÄ±« ½ÃÀå : ¹ë·ùüÀÎ
    • ¿øÀç·á °ø±Þ¾÷ü ¸®½ºÆ®
    • Á¦Á¶¾÷ü ¸®½ºÆ®
    • ÆÇ¸Å ´ë¸®Á¡ ¸®½ºÆ®
    • ¾ÖÇø®ÄÉÀÌ¼Ç ¸®½ºÆ®
    • ¼öÀͼº ºÐ¼®
  • Porter¡¯s Five ForcesÀÇ ºÐ¼®
  • ÁöÁ¤ÇÐÀû ±äÀå : ½ÃÀå¿¡ ´ëÇÑ ¿µÇâ
  • °Å½Ã°æÁ¦ ¿äÀÎ
    • ¼¼°èÀÇ ºÎ¹®º° Àü¸Á
    • ¼¼°èÀÇ GDP ¼ºÀå Àü¸Á
    • ¼¼°èÀÇ ¸ð½ÃÀå °³¿ä
  • ¿¹Ãø ¿äÀÎ - °ü·Ã¼º°ú ¿µÇâ
  • ±ÔÁ¦¿Í Á¦Ç° À¯ÇüÀÇ »óȲ

Á¦3Àå ¼¼°èÀÇ ¼¼Æ÷ ¿ëÇØ ¹× ÆÄ±« ½ÃÀå Àü¸Á : °ú°Å(2019-2023³â) ¹× ¿¹Ãø(2025-2032³â)

  • ÁÖ¿ä ÇÏÀ̶óÀÌÆ®
    • ½ÃÀå ±Ô¸ð(´ÜÀ§) ¿¹Ãø
    • ½ÃÀå ±Ô¸ð¿Í Àü³â´ëºñ ¼ºÀå·ü
    • Àý´ëÀû ¸ÅÃâ ±âȸ
  • ½ÃÀå ±Ô¸ð(¹é¸¸ ´Þ·¯) ºÐ¼®°ú ¿¹Ãø
    • °ú°Å ½ÃÀå ±Ô¸ð ºÐ¼®, 2019-2023³â
    • ÇöÀç ½ÃÀå ±Ô¸ð ¿¹Ãø, 2025-2032³â
  • ¼¼°èÀÇ ¼¼Æ÷ ¿ëÇØ ¹× ÆÄ±« ½ÃÀå Àü¸Á : ±â¼ú
    • ¼­·Ð/ÁÖ¿ä Á¶»ç °á°ú
    • °ú°Å ½ÃÀå ±Ô¸ð(¹é¸¸ ´Þ·¯)¿Í ¼ö·®(´ÜÀ§) ºÐ¼®, 2019-2023³â, ±â¼úº°
    • ÇöÀç ½ÃÀå ±Ô¸ð(¹é¸¸ ´Þ·¯)¿Í ¼ö·®(´ÜÀ§) ¿¹Ãø, 2025-2032³â, ±â¼úº°
      • ½Ã¾à ±â¹Ý
      • ¼¼Á¦
      • È¿¼Ò
      • ¹°¸®Àû È¥¶õ
      • ±â°èÀû ±ÕÁúÈ­
      • ÃÊÀ½ÆÄ ±ÕÁúÈ­
      • ±âŸ
  • ½ÃÀåÀÇ ¸Å·Â ºÐ¼® : ±â¼ú
  • ¼¼°èÀÇ ¼¼Æ÷ ¿ëÇØ ¹× ÆÄ±« ½ÃÀå Àü¸Á : Á¦Ç° À¯Çü
    • ¼­·Ð/ÁÖ¿ä Á¶»ç °á°ú
    • °ú°Å ½ÃÀå ±Ô¸ð(¹é¸¸ ´Þ·¯)¿Í ¼ö·®(´ÜÀ§) ºÐ¼®, 2019-2023³â, Á¦Ç° À¯Çüº°
    • ÇöÀç ½ÃÀå ±Ô¸ð(¹é¸¸ ´Þ·¯)¿Í ¼ö·®(´ÜÀ§) ¿¹Ãø, 2025-2032³â, Á¦Ç° À¯Çüº°
      • ±â±â
      • ½Ã¾à¡¤¼Ò¸ðǰ
  • ½ÃÀåÀÇ ¸Å·Â ºÐ¼® : Á¦Ç° À¯Çü
  • ¼¼°èÀÇ ¼¼Æ÷ ¿ëÇØ ¹× ÆÄ±« ½ÃÀå Àü¸Á : ¼¿ À¯Çü
    • ¼­·Ð/ÁÖ¿ä Á¶»ç °á°ú
    • °ú°Å ½ÃÀå ±Ô¸ð(¹é¸¸ ´Þ·¯)¿Í ¼ö·®(´ÜÀ§) ºÐ¼®, 2019-2023³â, ¼¿ À¯Çüº°
    • ÇöÀç ½ÃÀå ±Ô¸ð(¹é¸¸ ´Þ·¯)¿Í ¼ö·®(´ÜÀ§) ¿¹Ãø, 2025-2032³â, ¼¿ À¯Çüº°
      • Æ÷À¯·ù ¼¼Æ÷
      • ¼¼±Õ ¼¼Æ÷
      • È¿¸ð/Á¶·ù/±Õ·ù
      • ½Ä¹°¼¼Æ÷
  • ½ÃÀåÀÇ ¸Å·Â ºÐ¼® : ¼¿ À¯Çü
  • ¼¼°èÀÇ ¼¼Æ÷ ¿ëÇØ ¹× ÆÄ±« ½ÃÀå Àü¸Á : ¿ëµµ
    • ¼­·Ð/ÁÖ¿ä Á¶»ç °á°ú
    • °ú°Å ½ÃÀå ±Ô¸ð(¹é¸¸ ´Þ·¯)¿Í ¼ö·®(´ÜÀ§) ºÐ¼®, 2019-2023³â, ¿ëµµº°
    • ÇöÀç ½ÃÀå ±Ô¸ð(¹é¸¸ ´Þ·¯)¿Í ¼ö·®(´ÜÀ§) ¿¹Ãø, 2025-2032³â, ¿ëµµº°
      • ¼¼Æ÷ ¼Ò±â°ü ºÐ¸®
      • ÇÙ»ê ºÐ¸®
  • ½ÃÀåÀÇ ¸Å·Â ºÐ¼® : ¿ëµµ

Á¦4Àå ¼¼°èÀÇ ¼¼Æ÷ ¿ëÇØ ¹× ÆÄ±« ½ÃÀå Àü¸Á : Áö¿ª

  • ÁÖ¿ä ÇÏÀ̶óÀÌÆ®
  • °ú°Å ½ÃÀå ±Ô¸ð(¹é¸¸ ´Þ·¯)¿Í ¼ö·®(´ÜÀ§) ºÐ¼®, 2019-2023³â, Áö¿ªº°
  • ÇöÀç ½ÃÀå ±Ô¸ð(¹é¸¸ ´Þ·¯)¿Í ¼ö·®(´ÜÀ§) ¿¹Ãø, 2025-2032³â, Áö¿ªº°
    • ºÏ¹Ì
    • À¯·´
    • µ¿¾Æ½Ã¾Æ
    • ³²¾Æ½Ã¾Æ¿Í ¿À¼¼¾Æ´Ï¾Æ
    • ¶óƾ¾Æ¸Þ¸®Ä«
    • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
  • ½ÃÀåÀÇ ¸Å·Â ºÐ¼® : Áö¿ª

Á¦5Àå ºÏ¹ÌÀÇ ¼¼°èÀÇ ¼¼Æ÷ ¿ëÇØ ¹× ÆÄ±« ½ÃÀå Àü¸Á : °ú°Å(2019-2023³â) ¹× ¿¹Ãø(2025-2032³â)

Á¦6Àå À¯·´ÀÇ ¼¼°èÀÇ ¼¼Æ÷ ¿ëÇØ ¹× ÆÄ±« ½ÃÀå Àü¸Á : °ú°Å(2019-2023³â) ¹× ¿¹Ãø(2025-2032³â)

Á¦7Àå µ¿¾Æ½Ã¾ÆÀÇ ¼¼°èÀÇ ¼¼Æ÷ ¿ëÇØ ¹× ÆÄ±« ½ÃÀå Àü¸Á : °ú°Å(2019-2023³â) ¹× ¿¹Ãø(2025-2032³â)

Á¦8Àå ³²¾Æ½Ã¾Æ ¹× ¿À¼¼¾Æ´Ï¾ÆÀÇ ¼¼°èÀÇ ¼¼Æ÷ ¿ëÇØ ¹× ÆÄ±« ½ÃÀå Àü¸Á : °ú°Å(2019-2023³â) ¹× ¿¹Ãø(2025-2032³â)

Á¦9Àå ¶óÆ¾¾Æ¸Þ¸®Ä«ÀÇ ¼¼°èÀÇ ¼¼Æ÷ ¿ëÇØ ¹× ÆÄ±« ½ÃÀå Àü¸Á : °ú°Å(2019-2023³â) ¹× ¿¹Ãø(2025-2032³â)

Á¦10Àå Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ¼¼°èÀÇ ¼¼Æ÷ ¿ëÇØ ¹× ÆÄ±« ½ÃÀå Àü¸Á : °ú°Å(2019-2023³â) ¹× ¿¹Ãø(2025-2032³â)

Á¦11Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2024³â
  • ½ÃÀå ±¸Á¶
    • ½ÃÀ庰 °æÀï °ÝÈ­ ¸Ê
    • °æÀï ´ë½Ãº¸µå
    • º¸ÀÌ´Â ±â¼ú ´É·Â
  • ±â¾÷ °³¿ä(»ó¼¼ - °³¿ä, À繫, Àü·«, ÃÖ±Ù µ¿Çâ)
    • Thermo Fisher Scientific, Inc.
    • Merck KGaA
    • Bio-Rad Laboratories, Inc.
    • F. Hoffmann-La Roche Ltd.
    • QIAGEN
    • Danaher
    • Miltenyi Biotec
    • Claremont BioSolutions, LLC
    • IDEX
    • Parr Instrument Company
    • Covaris, LLC
    • Cell Signaling Technology, Inc.
    • Qsonica

Á¦12Àå ºÎ·Ï

  • Á¶»ç ¹æ¹ý
  • Á¶»çÀÇ ÀüÁ¦
  • µÎÀÚ¾î¿Í ¾à¾î
KSA 25.03.13

Persistence Market Research has recently released a comprehensive report on the global cell lysis and disruption market. The report provides an in-depth analysis of essential market dynamics, including growth drivers, trends, opportunities, and challenges, offering detailed insights into the market's structure. This research publication presents exclusive data and statistics, forecasting the growth trajectory of the global cell lysis and disruption market from 2025 to 2032.

Key Insights:

  • Cell Lysis and Disruption Market Size (2025E): US$ 5.26 Bn
  • Projected Market Value (2032F): US$ 9.85 Bn
  • Global Market Growth Rate (CAGR 2025 to 2032): 9.4%

Cell Lysis and Disruption Market - Report Scope:

Cell lysis and disruption are fundamental techniques used in biotechnology, life sciences, and pharmaceutical industries for extracting cellular components. This process is crucial for applications such as protein extraction, DNA/RNA isolation, and other cell-based analyses. Various methods, including mechanical, enzymatic, and chemical approaches, are employed in cell lysis and disruption. The market for these techniques is expanding due to the growing demand for biologics, personalized medicine, and advancements in cell-based therapies.

Market Growth Drivers:

The global cell lysis and disruption market is driven by several key factors, including the increasing demand for biologics and biopharmaceutical products. As the focus shifts towards personalized medicine and cell-based therapies, the need for efficient cell disruption techniques is surging. The expansion of research activities in the fields of genomics, proteomics, and microbiology is further contributing to market growth. Additionally, technological advancements in lysis and disruption techniques, such as automation, are enhancing the efficiency and scalability of the process, driving market expansion.

Market Restraints:

Despite the positive growth outlook, the cell lysis and disruption market faces challenges such as the high costs associated with advanced disruption technologies. Moreover, the complexity of optimizing these techniques for specific cell types can hinder their widespread adoption. Safety concerns and stringent regulatory frameworks in some regions also pose potential barriers to market growth.

Market Opportunities:

The cell lysis and disruption market presents significant growth opportunities, particularly in emerging applications such as cell-based therapies, regenerative medicine, and the production of monoclonal antibodies. Innovations in cell lysis equipment, including automated systems that provide faster, more efficient, and reproducible results, present promising opportunities for market players. Additionally, strategic partnerships between biotechnology companies and research institutions are expected to foster further growth in this market segment.

Key Questions Answered in the Report:

  • What are the primary factors driving the growth of the cell lysis and disruption market globally?
  • Which industries and applications are the largest consumers of cell lysis and disruption technologies?
  • How are advancements in lysis and disruption technologies influencing the competitive landscape?
  • Who are the key players contributing to the cell lysis and disruption market, and what strategies are they adopting to maintain market relevance?
  • What are the emerging trends and future prospects in the global cell lysis and disruption market?

Competitive Intelligence and Business Strategy:

Leading players in the global cell lysis and disruption market, including Thermo Fisher Scientific, Merck KGaA, and QIAGEN, focus on product innovation, strategic acquisitions, and expanding their product portfolios to capture a larger market share. These companies are investing in the development of more efficient and cost-effective cell disruption technologies, with a particular emphasis on automation and scalability. Partnerships with pharmaceutical and biotechnology companies are helping to advance the adoption of cell lysis technologies in drug discovery and manufacturing. Additionally, research into eco-friendly and sustainable cell disruption methods is gaining traction, attracting environmentally conscious stakeholders in the industry.

Key Companies Profiled:

  • Thermo Fisher Scientific, Inc.
  • Merck KGaA
  • Bio-Rad Laboratories, Inc.
  • F. Hoffmann-La Roche Ltd.
  • QIAGEN
  • Danaher
  • Miltenyi Biotec
  • Claremont BioSolutions, LLC
  • IDEX
  • Parr Instrument Company
  • Covaris, LLC
  • Cell Signaling Technology, Inc.
  • Qsonica

Cell Lysis and Disruption Market Research Segmentation

By Technique:

  • Reagent Based
  • Detergent
  • Enzymatic
  • Physical Disruption
  • Mechanical Homogenization
  • Ultrasonic Homogenization

By Product Type:

  • Instruments
  • Reagents & Consumables

By Cell Type:

  • Mammalian Cells
  • Bacterial Cells
  • Yeast/Algae/Fungi
  • Plant Cells

By Application:

  • Cell organelle Isolation
  • Nucleic acid Isolation
  • Cell organelle Isolation
  • Nucleic acid Isolation

By Region:

  • North America
  • Europe
  • East Asia
  • South Asia & Oceania
  • Latin America
  • Middle East & Africa

Table of Contents

1. Executive Summary

  • 1.1. Global Cell Lysis and Disruption Market Snapshot, 2025 - 2032
  • 1.2. Market Opportunity Assessment, 2025 - 2032, US$ Mn
  • 1.3. Key Market Trends
  • 1.4. Future Market Projections
  • 1.5. Premium Market Insights
  • 1.6. Industry Developments and Key Market Events
  • 1.7. PMR Analysis and Recommendations

2. Market Overview

  • 2.1. Market Scope and Definition
  • 2.2. Market Dynamics
    • 2.2.1. Drivers
    • 2.2.2. Restraints
    • 2.2.3. Opportunity
    • 2.2.4. Challenges
    • 2.2.5. Key Trends
  • 2.3. Technique Lifecycle Analysis
  • 2.4. Global Cell Lysis and Disruption Market: Value Chain
    • 2.4.1. List of Raw Material Supplier
    • 2.4.2. List of Manufacturers
    • 2.4.3. List of Distributors
    • 2.4.4. List of Applications
    • 2.4.5. Profitability Analysis
  • 2.5. Porter Five Force's Analysis
  • 2.6. Geopolitical Tensions: Market Impact
  • 2.7. Macro-Economic Factors
    • 2.7.1. Global Sectorial Outlook
    • 2.7.2. Global GDP Growth Outlook
    • 2.7.3. Global Parent Market Overview
  • 2.8. Forecast Factors - Relevance and Impact
  • 2.9. Regulatory and Product Type Landscape

3. Global Cell Lysis and Disruption Market Outlook: Historical (2019 - 2023) and Forecast (2025 - 2032)

  • 3.1. Key Highlights
    • 3.1.1. Market Volume (Units) Projections
    • 3.1.2. Market Size and Y-o-Y Growth
    • 3.1.3. Absolute $ Opportunity
  • 3.2. Market Size (US$ Mn) Analysis and Forecast
    • 3.2.1. Historical Market Size Analysis, 2019 - 2023
    • 3.2.2. Current Market Size Forecast, 2025 - 2032
  • 3.3. Global Cell Lysis and Disruption Market Outlook: Technique
    • 3.3.1. Introduction / Key Findings
    • 3.3.2. Historical Market Size (US$ Mn) and Volume (Units) Analysis By Technique, 2019 - 2023
    • 3.3.3. Current Market Size (US$ Mn) and Volume (Units) Forecast By Technique, 2025 - 2032
      • 3.3.3.1. Reagent Based
      • 3.3.3.2. Detergent
      • 3.3.3.3. Enzymatic
      • 3.3.3.4. Physical Disruption
      • 3.3.3.5. Mechanical Homogenization
      • 3.3.3.6. Ultrasonic Homogenization
      • 3.3.3.7. Others
  • 3.4. Market Attractiveness Analysis: Technique
  • 3.5. Global Cell Lysis and Disruption Market Outlook: Product Type
    • 3.5.1. Introduction / Key Findings
    • 3.5.2. Historical Market Size (US$ Mn) and Volume (Units) Analysis By Product Type, 2019 - 2023
    • 3.5.3. Current Market Size (US$ Mn) and Volume (Units) Forecast By Product Type, 2025 - 2032
      • 3.5.3.1. Instruments
      • 3.5.3.2. Reagents & Consumables
  • 3.6. Market Attractiveness Analysis: Product Type
  • 3.7. Global Cell Lysis and Disruption Market Outlook: Cell Type
    • 3.7.1. Introduction / Key Findings
    • 3.7.2. Historical Market Size (US$ Mn) and Volume (Units) Analysis By Cell Type, 2019 - 2023
    • 3.7.3. Current Market Size (US$ Mn) and Volume (Units) Forecast By Cell Type, 2025 - 2032
      • 3.7.3.1. Mammalian Cells
      • 3.7.3.2. Bacterial Cells
      • 3.7.3.3. Yeast/Algae/Fungi
      • 3.7.3.4. Plant Cells
  • 3.8. Market Attractiveness Analysis: Cell Type
  • 3.9. Global Cell Lysis and Disruption Market Outlook: Application
    • 3.9.1. Introduction / Key Findings
    • 3.9.2. Historical Market Size (US$ Mn) and Volume (Units) Analysis By Application, 2019 - 2023
    • 3.9.3. Current Market Size (US$ Mn) and Volume (Units) Forecast By Application, 2025 - 2032
      • 3.9.3.1. Cell organelle Isolation
      • 3.9.3.2. Nucleic acid Isolation
      • 3.9.3.3. Cell organelle Isolation
      • 3.9.3.4. Nucleic acid Isolation
  • 3.10. Market Attractiveness Analysis: Application

4. Global Cell Lysis and Disruption Market Outlook: Region

  • 4.1. Key Highlights
  • 4.2. Historical Market Size (US$ Mn) and Volume (Units) Analysis By Region, 2019 - 2023
  • 4.3. Current Market Size (US$ Mn) and Volume (Units) Forecast By Region, 2025 - 2032
    • 4.3.1. North America
    • 4.3.2. Europe
    • 4.3.3. East Asia
    • 4.3.4. South Asia and Oceania
    • 4.3.5. Latin America
    • 4.3.6. Middle East & Africa (MEA)
  • 4.4. Market Attractiveness Analysis: Region

5. North America Global Cell Lysis and Disruption Market Outlook: Historical (2019 - 2023) and Forecast (2025 - 2032)

  • 5.1. Key Highlights
  • 5.2. Pricing Analysis
  • 5.3. Historical Market Size (US$ Mn) and Volume (Units) Analysis By Market, 2019 - 2023
    • 5.3.1. By Country
    • 5.3.2. By Technique
    • 5.3.3. By Product Type
    • 5.3.4. By Cell Type
    • 5.3.5. By Application
  • 5.4. Current Market Size (US$ Mn) and Volume (Units) Forecast By Country, 2025 - 2032
    • 5.4.1. U.S.
    • 5.4.2. Canada
  • 5.5. Current Market Size (US$ Mn) and Volume (Units) Forecast By Technique, 2025 - 2032
    • 5.5.1. Reagent Based
    • 5.5.2. Detergent
    • 5.5.3. Enzymatic
    • 5.5.4. Physical Disruption
    • 5.5.5. Mechanical Homogenization
    • 5.5.6. Ultrasonic Homogenization
    • 5.5.7. Others
  • 5.6. Current Market Size (US$ Mn) and Volume (Units) Forecast By Product Type, 2025 - 2032
    • 5.6.1. Instruments
    • 5.6.2. Reagents & Consumables
  • 5.7. Current Market Size (US$ Mn) and Volume (Units) Forecast By Cell Type, 2025 - 2032
    • 5.7.1. Mammalian Cells
    • 5.7.2. Bacterial Cells
    • 5.7.3. Yeast/Algae/Fungi
    • 5.7.4. Plant Cells
  • 5.8. Current Market Size (US$ Mn) and Volume (Units) Forecast By Application, 2025 - 2032
    • 5.8.1. Cell organelle Isolation
    • 5.8.2. Nucleic acid Isolation
    • 5.8.3. Cell organelle Isolation
    • 5.8.4. Nucleic acid Isolation
  • 5.9. Market Attractiveness Analysis

6. Europe Global Cell Lysis and Disruption Market Outlook: Historical (2019 - 2023) and Forecast (2025 - 2032)

  • 6.1. Key Highlights
  • 6.2. Pricing Analysis
  • 6.3. Historical Market Size (US$ Mn) and Volume (Units) Analysis By Market, 2019 - 2023
    • 6.3.1. By Country
    • 6.3.2. By Technique
    • 6.3.3. By Product Type
    • 6.3.4. By Cell Type
    • 6.3.5. By Application
  • 6.4. Current Market Size (US$ Mn) and Volume (Units) Forecast By Country, 2025 - 2032
    • 6.4.1. Germany
    • 6.4.2. France
    • 6.4.3. U.K.
    • 6.4.4. Italy
    • 6.4.5. Spain
    • 6.4.6. Russia
    • 6.4.7. Turkey
    • 6.4.8. Rest of Europe
  • 6.5. Current Market Size (US$ Mn) and Volume (Units) Forecast By Technique, 2025 - 2032
    • 6.5.1. Reagent Based
    • 6.5.2. Detergent
    • 6.5.3. Enzymatic
    • 6.5.4. Physical Disruption
    • 6.5.5. Mechanical Homogenization
    • 6.5.6. Ultrasonic Homogenization
    • 6.5.7. Others
  • 6.6. Current Market Size (US$ Mn) and Volume (Units) Forecast By Product Type, 2025 - 2032
    • 6.6.1. Instruments
    • 6.6.2. Reagents & Consumables
  • 6.7. Current Market Size (US$ Mn) and Volume (Units) Forecast By Cell Type, 2025 - 2032
    • 6.7.1. Mammalian Cells
    • 6.7.2. Bacterial Cells
    • 6.7.3. Yeast/Algae/Fungi
    • 6.7.4. Plant Cells
  • 6.8. Current Market Size (US$ Mn) and Volume (Units) Forecast By Application, 2025 - 2032
    • 6.8.1. Cell organelle Isolation
    • 6.8.2. Nucleic acid Isolation
    • 6.8.3. Cell organelle Isolation
    • 6.8.4. Nucleic acid Isolation
  • 6.9. Market Attractiveness Analysis

7. East Asia Global Cell Lysis and Disruption Market Outlook: Historical (2019 - 2023) and Forecast (2025 - 2032)

  • 7.1. Key Highlights
  • 7.2. Pricing Analysis
  • 7.3. Historical Market Size (US$ Mn) and Volume (Units) Analysis By Market, 2019 - 2023
    • 7.3.1. By Country
    • 7.3.2. By Technique
    • 7.3.3. By Product Type
    • 7.3.4. By Cell Type
    • 7.3.5. By Application
  • 7.4. Current Market Size (US$ Mn) and Volume (Units) Forecast By Country, 2025 - 2032
    • 7.4.1. China
    • 7.4.2. Japan
    • 7.4.3. South Korea
  • 7.5. Current Market Size (US$ Mn) and Volume (Units) Forecast By Technique, 2025 - 2032
    • 7.5.1. Reagent Based
    • 7.5.2. Detergent
    • 7.5.3. Enzymatic
    • 7.5.4. Physical Disruption
    • 7.5.5. Mechanical Homogenization
    • 7.5.6. Ultrasonic Homogenization
    • 7.5.7. Others
  • 7.6. Current Market Size (US$ Mn) and Volume (Units) Forecast By Product Type, 2025 - 2032
    • 7.6.1. Instruments
    • 7.6.2. Reagents & Consumables
  • 7.7. Current Market Size (US$ Mn) and Volume (Units) Forecast By Cell Type, 2025 - 2032
    • 7.7.1. Mammalian Cells
    • 7.7.2. Bacterial Cells
    • 7.7.3. Yeast/Algae/Fungi
    • 7.7.4. Plant Cells
  • 7.8. Current Market Size (US$ Mn) and Volume (Units) Forecast By Application, 2025 - 2032
    • 7.8.1. Cell organelle Isolation
    • 7.8.2. Nucleic acid Isolation
    • 7.8.3. Cell organelle Isolation
    • 7.8.4. Nucleic acid Isolation
  • 7.9. Market Attractiveness Analysis

8. South Asia & Oceania Global Cell Lysis and Disruption Market Outlook: Historical (2019 - 2023) and Forecast (2025 - 2032)

  • 8.1. Key Highlights
  • 8.2. Pricing Analysis
  • 8.3. Historical Market Size (US$ Mn) and Volume (Units) Analysis By Market, 2019 - 2023
    • 8.3.1. By Country
    • 8.3.2. By Technique
    • 8.3.3. By Product Type
    • 8.3.4. By Cell Type
    • 8.3.5. By Application
  • 8.4. Current Market Size (US$ Mn) and Volume (Units) Forecast By Country, 2025 - 2032
    • 8.4.1. India
    • 8.4.2. Southeast Asia
    • 8.4.3. ANZ
    • 8.4.4. Rest of South Asia & Oceania
  • 8.5. Current Market Size (US$ Mn) and Volume (Units) Forecast By Technique, 2025 - 2032
    • 8.5.1. Reagent Based
    • 8.5.2. Detergent
    • 8.5.3. Enzymatic
    • 8.5.4. Physical Disruption
    • 8.5.5. Mechanical Homogenization
    • 8.5.6. Ultrasonic Homogenization
    • 8.5.7. Others
  • 8.6. Current Market Size (US$ Mn) and Volume (Units) Forecast By Product Type, 2025 - 2032
    • 8.6.1. Instruments
    • 8.6.2. Reagents & Consumables
  • 8.7. Current Market Size (US$ Mn) and Volume (Units) Forecast By Cell Type, 2025 - 2032
    • 8.7.1. Mammalian Cells
    • 8.7.2. Bacterial Cells
    • 8.7.3. Yeast/Algae/Fungi
    • 8.7.4. Plant Cells
  • 8.8. Current Market Size (US$ Mn) and Volume (Units) Forecast By Application, 2025 - 2032
    • 8.8.1. Cell organelle Isolation
    • 8.8.2. Nucleic acid Isolation
    • 8.8.3. Cell organelle Isolation
    • 8.8.4. Nucleic acid Isolation
  • 8.9. Market Attractiveness Analysis

9. Latin America Global Cell Lysis and Disruption Market Outlook: Historical (2019 - 2023) and Forecast (2025 - 2032)

  • 9.1. Key Highlights
  • 9.2. Pricing Analysis
  • 9.3. Historical Market Size (US$ Mn) and Volume (Units) Analysis By Market, 2019 - 2023
    • 9.3.1. By Country
    • 9.3.2. By Technique
    • 9.3.3. By Product Type
    • 9.3.4. By Cell Type
    • 9.3.5. By Application
  • 9.4. Current Market Size (US$ Mn) and Volume (Units) Forecast By Country, 2025 - 2032
    • 9.4.1. Brazil
    • 9.4.2. Mexico
    • 9.4.3. Rest of Latin America
  • 9.5. Current Market Size (US$ Mn) and Volume (Units) Forecast By Technique, 2025 - 2032
    • 9.5.1. Reagent Based
    • 9.5.2. Detergent
    • 9.5.3. Enzymatic
    • 9.5.4. Physical Disruption
    • 9.5.5. Mechanical Homogenization
    • 9.5.6. Ultrasonic Homogenization
    • 9.5.7. Others
  • 9.6. Current Market Size (US$ Mn) and Volume (Units) Forecast By Product Type, 2025 - 2032
    • 9.6.1. Instruments
    • 9.6.2. Reagents & Consumables
  • 9.7. Current Market Size (US$ Mn) and Volume (Units) Forecast By Cell Type, 2025 - 2032
    • 9.7.1. Mammalian Cells
    • 9.7.2. Bacterial Cells
    • 9.7.3. Yeast/Algae/Fungi
    • 9.7.4. Plant Cells
  • 9.8. Current Market Size (US$ Mn) and Volume (Units) Forecast By Application, 2025 - 2032
    • 9.8.1. Cell organelle Isolation
    • 9.8.2. Nucleic acid Isolation
    • 9.8.3. Cell organelle Isolation
    • 9.8.4. Nucleic acid Isolation
  • 9.9. Market Attractiveness Analysis

10. Middle East & Africa Global Cell Lysis and Disruption Market Outlook: Historical (2019 - 2023) and Forecast (2025 - 2032)

  • 10.1. Key Highlights
  • 10.2. Pricing Analysis
  • 10.3. Historical Market Size (US$ Mn) and Volume (Units) Analysis By Market, 2019 - 2023
    • 10.3.1. By Country
    • 10.3.2. By Technique
    • 10.3.3. By Product Type
    • 10.3.4. By Cell Type
    • 10.3.5. By Application
  • 10.4. Current Market Size (US$ Mn) and Volume (Units) Forecast By Country, 2025 - 2032
    • 10.4.1. GCC
    • 10.4.2. Egypt
    • 10.4.3. South Africa
    • 10.4.4. Northern Africa
    • 10.4.5. Rest of Middle East & Africa
  • 10.5. Current Market Size (US$ Mn) and Volume (Units) Forecast By Technique, 2025 - 2032
    • 10.5.1. Reagent Based
    • 10.5.2. Detergent
    • 10.5.3. Enzymatic
    • 10.5.4. Physical Disruption
    • 10.5.5. Mechanical Homogenization
    • 10.5.6. Ultrasonic Homogenization
    • 10.5.7. Others
  • 10.6. Current Market Size (US$ Mn) and Volume (Units) Forecast By Product Type, 2025 - 2032
    • 10.6.1. Instruments
    • 10.6.2. Reagents & Consumables
  • 10.7. Current Market Size (US$ Mn) and Volume (Units) Forecast By Cell Type, 2025 - 2032
    • 10.7.1. Mammalian Cells
    • 10.7.2. Bacterial Cells
    • 10.7.3. Yeast/Algae/Fungi
    • 10.7.4. Plant Cells
  • 10.8. Current Market Size (US$ Mn) and Volume (Units) Forecast By Application, 2025 - 2032
    • 10.8.1. Cell organelle Isolation
    • 10.8.2. Nucleic acid Isolation
    • 10.8.3. Cell organelle Isolation
    • 10.8.4. Nucleic acid Isolation
  • 10.9. Market Attractiveness Analysis

11. Competition Landscape

  • 11.1. Market Share Analysis, 2024
  • 11.2. Market Structure
    • 11.2.1. Competition Intensity Mapping By Market
    • 11.2.2. Competition Dashboard
    • 11.2.3. Apparent Technique Capacity
  • 11.3. Company Profiles (Details - Overview, Financials, Strategy, Recent Developments)
    • 11.3.1. Thermo Fisher Scientific, Inc.
      • 11.3.1.1. Overview
      • 11.3.1.2. Segments and Technique
      • 11.3.1.3. Key Financials
      • 11.3.1.4. Market Developments
      • 11.3.1.5. Market Strategy
    • 11.3.2. Merck KGaA
      • 11.3.2.1. Overview
      • 11.3.2.2. Segments and Technique
      • 11.3.2.3. Key Financials
      • 11.3.2.4. Market Developments
      • 11.3.2.5. Market Strategy
    • 11.3.3. Bio-Rad Laboratories, Inc.
      • 11.3.3.1. Overview
      • 11.3.3.2. Segments and Technique
      • 11.3.3.3. Key Financials
      • 11.3.3.4. Market Developments
      • 11.3.3.5. Market Strategy
    • 11.3.4. F. Hoffmann-La Roche Ltd.
      • 11.3.4.1. Overview
      • 11.3.4.2. Segments and Technique
      • 11.3.4.3. Key Financials
      • 11.3.4.4. Market Developments
      • 11.3.4.5. Market Strategy
    • 11.3.5. QIAGEN
      • 11.3.5.1. Overview
      • 11.3.5.2. Segments and Technique
      • 11.3.5.3. Key Financials
      • 11.3.5.4. Market Developments
      • 11.3.5.5. Market Strategy
    • 11.3.6. Danaher
      • 11.3.6.1. Overview
      • 11.3.6.2. Segments and Technique
      • 11.3.6.3. Key Financials
      • 11.3.6.4. Market Developments
      • 11.3.6.5. Market Strategy
    • 11.3.7. Miltenyi Biotec
      • 11.3.7.1. Overview
      • 11.3.7.2. Segments and Technique
      • 11.3.7.3. Key Financials
      • 11.3.7.4. Market Developments
      • 11.3.7.5. Market Strategy
    • 11.3.8. Claremont BioSolutions, LLC
      • 11.3.8.1. Overview
      • 11.3.8.2. Segments and Technique
      • 11.3.8.3. Key Financials
      • 11.3.8.4. Market Developments
      • 11.3.8.5. Market Strategy
    • 11.3.9. IDEX
      • 11.3.9.1. Overview
      • 11.3.9.2. Segments and Technique
      • 11.3.9.3. Key Financials
      • 11.3.9.4. Market Developments
      • 11.3.9.5. Market Strategy
    • 11.3.10. Parr Instrument Company
      • 11.3.10.1. Overview
      • 11.3.10.2. Segments and Technique
      • 11.3.10.3. Key Financials
      • 11.3.10.4. Market Developments
      • 11.3.10.5. Market Strategy
    • 11.3.11. Covaris, LLC
      • 11.3.11.1. Overview
      • 11.3.11.2. Segments and Technique
      • 11.3.11.3. Key Financials
      • 11.3.11.4. Market Developments
      • 11.3.11.5. Market Strategy
    • 11.3.12. Cell Signaling Technology, Inc.
      • 11.3.12.1. Overview
      • 11.3.12.2. Segments and Technique
      • 11.3.12.3. Key Financials
      • 11.3.12.4. Market Developments
      • 11.3.12.5. Market Strategy
    • 11.3.13. Qsonica
      • 11.3.13.1. Overview
      • 11.3.13.2. Segments and Technique
      • 11.3.13.3. Key Financials
      • 11.3.13.4. Market Developments
      • 11.3.13.5. Market Strategy

12. Appendix

  • 12.1. Research Methodology
  • 12.2. Research Assumptions
  • 12.3. Acronyms and Abbreviations
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦