Global Information
회사소개 | 문의 | 비교리스트

스마트 그리드 ICT 개발의 진보 : 기술, 규격, 시장

Progress in Smart Grid ICT Development: Technologies, Standards, Markets

리서치사 PracTel, Inc.
발행일 2018년 07월 상품 코드 662744
페이지 정보 영문 197 Pages
가격
US $ 3,600 ₩ 4,256,000 Non-printable PDF By E-mail (Single User License)
US $ 4,000 ₩ 4,729,000 Printable PDF by E-mail (Single User License)
US $ 5,000 ₩ 5,911,000 PDF by E-mail (Enterprise License)


스마트 그리드 ICT 개발의 진보 : 기술, 규격, 시장 Progress in Smart Grid ICT Development: Technologies, Standards, Markets
발행일 : 2018년 07월 페이지 정보 : 영문 197 Pages

스마트 그리드용 정보·통신기술(ICT)에 대해 상세 분석했으며, 유선·무선통신 기술, 다양한 기술의 이점·과제 비교, 기존 기술(802.15.4g, 802.22)과 새로운 셀룰러 기술(저소비전력 LTE , 저속 UE), SG 커넥티비티를 지원하는 IoT 기술 그룹(SigFox, LoRa, Weightless 및 RPMA) 분석 및 SG ICT 개발·표준화 관련 조직 등에 대해 정리하여 전해드립니다.

제1장 서론

제2장 개요 : SG ICT 산업 활동

  • 주요 조직 - 기술
  • 구조
  • 요건 : SG 네트워킹
  • 업계·사용자 그룹 프로젝트

제3장 SG ICT 및 스마트 미터

  • 기능·구조 : SG ICT
  • 현황
  • 현재 목적
  • 선택
  • 스마트 미터
  • 보안
  • 시장
  • 산업

제4장 주요 규격·기술 : SG ICT

  • IEEE
  • 3GPP LTE 및 SG
  • 유선 ICT - SG

제5장 IoT 기술·SG

  • Weightless Technologies
  • RPMA
  • LoRa
  • SigFox

제6장 결론

부록 I:IEEE802.15.4g의 특징

부록 II : 규제 - TVWS

부록 III : 802.22 특허 조사(2017-2018 발행)

KSA 18.07.25

BRIEF:

The concept behind smart energy and Smart Grid (SG) is controlling energy consumption internally, within the home, office and similar; and externally from the home to outside connected devices, networks, and the smart grid itself - all with the goal of optimizing energy production, distribution, and usage. Bi-directional communication between home networks and the power grid opens up possibilities for improved reliability and sustainability as well as reducing the energy consumption.

This report presents the in-depth analysis of Information and Communications Technologies (ICT) for the Smart Grid.

Both wireless and wireline communications technologies are considered. Designers of SG networks have multiple choices; and the report presents the comparison of various technologies with their benefits and issues.

Beside “traditional” technologies, such as 802.15.4g and 802.22, the report concentrates on newer cellular technologies, such as LTE for low-powered and low- speed UEs. It also analyzes a group of IoT technologies that support SG connectivity (such as SigFox, LoRa, Weightless and RPMA).

The detailed survey of organizations that are involved in SG ICT development and standardization is also presented together with the survey of the industry. Marketing statistics also have been developed and included in the report.

This report is useful to a wide audience of technical, managerial and sale staff involved in the SG ICT development and implementation.

Table of Contents

1.0. Introduction

  • 1.1. General
  • 1.1.1. Smart Grid Definition
  • 1.2. Issues
  • 1.3. Vision: SG ICT
    • 1.3.1. Neural Grid
  • 1.4. U.S.
    • 1.4.1. Objectives
    • 1.4.2. Statistics
    • 1.4.3. Conceptual Model
    • 1.4.4. Plans
  • 1.5. England
  • 1.6. Italy
  • 1.7. China
  • 1.8. Scope
  • 1.9. Research Methodology
  • 1.10. Target Audience

2.0. General: SG ICT Industry Activities

  • 2.1. Main Organizations - Technologies
  • 2.2. Structure
    • 2.2.1. SG Layers
      • 2.2.1.1. ETSI Layering
    • 2.2.2. ETSI Subnetworks Architecture
  • 2.3. Requirements: SG Networking
    • 2.3.1. View
  • 2.4. Industry and User Groups Projects
    • 2.4.1. ETSI
    • 2.4.2. IEC
    • 2.4.3. IEEE
    • 2.4.4. Global Intelligent Utility Network Coalition
    • 2.4.5. Smart Networks Council (SNC)
    • 2.4.6. U-SNAP Alliance
      • 2.4.6.1. Specification and HAN
      • 2.4.6.2. Merge
      • 2.4.6.3. Further Development
    • 2.4.7. ESMIG
    • 2.4.8. Demand Response and Smart Grid Coalition (DRSG)
    • 2.4.9. EPRI (Electrical Power Research Institute)
    • 2.4.10. ZigBee and Wi-Fi Alliances
    • 2.4.11. NIST
    • 2.4.12. OpenHAN
    • 2.4.13. Federal Smart Grid Task Force
    • 2.4.14. Open Smart Grid Users Group (OSGUG)
    • 2.4.15. ITU
    • 2.4.16. OpenADR
    • 2.4.17. Comments

3.0. SG ICT and Smart Meters

  • 3.1. Function and Structure: SG ICT
  • 3.2. Current Status
  • 3.3. Current Objectives
  • 3.4. Choices
  • 3.5. Smart Meters
    • 3.5.1. Objectives
    • 3.5.2. Details
    • 3.5.3. Functions
    • 3.5.4. Components
      • 3.5.4.1. Communications
  • 3.6. Security
  • 3.7. Market
    • 3.7.1. Market Drivers
    • 3.7.2. Market Projections: Smart Meters
  • 3.8. Industry
    • Aclara (Software and Systems, BPL)
    • Aeris (Wireless Network Provider)
    • BPL Global (Software Platform)
    • Carlson Wireless (Radio Platforms)
    • Cisco (IP-based Infrastructure)
    • Eaton (Cooper Power Systems)
    • Elster (AMI, AMR)-Honeywell
    • Echelon (Smart Metering System)
    • GridPoint (Network Platform)
    • Itron (Intelligent Metering)
    • Nokia (Infrastructure)
    • Oracle (Software)
    • Landis+Gyr (Metering Devices)
    • Sensus (Data Collection and Metering)
    • Silver Spring Networks (acquired by Itron in 2018)
    • Siemens (Software, Hardware)
    • Spinwave (Building Control, HAN)
    • Tantalus (Networking and Devices)
    • Tendril (System)
    • TransData (Wireless AMI/AMR Meter)
    • TI
    • Trilliant (Intelligent Metering)

4.0. Major Standards and Technologies: SG ICT

  • 4.1. IEEE
    • 4.1.1. IEEE 2030
    • 4.1.2. IEEE-802.15.4g-Smart Utility Networks
      • 4.1.2.1. General
      • 4.1.2.2. Purpose
      • 4.1.2.3. Need
      • 4.1.2.4. Value
      • 4.1.2.5. Overview - PHY
      • 4.1.2.6. Regions
        • 4.1.2.6.1. Frequencies Allocations
      • 4.1.2.7. Details
        • 4.1.2.7.1. Requirements: Major Characteristics
        • 4.1.2.7.2. Considerations
        • 4.1.2.7.3. PHY/MAC Modifications
      • 4.1.2.8. Summary
      • 4.1.2.9. Wi-SUN
    • 4.1.3. IEEE 802.22
      • 4.1.3.1. General
      • 4.1.3.2. Group
        • 4.1.3.2.1. IEEE 802.22
        • 4.1.3.2.2. IEEE 802.22.1
        • 4.1.3.2.3. IEEE 802.22.2-2012
        • 4.1.3.2.4. IEEE 802.22a-2014
        • 4.1.3.2.5. IEEE 802.22b-2015
      • 4.1.3.3. Developments
      • 4.1.3.4. IEEE 802.22-2011 Overview
      • 4.1.3.5. Major Characteristics - 802.22
      • 4.1.3.6. IEEE 802.22 Details
        • 4.1.3.6.1. Physical Layer - Major Characteristics
        • 4.1.3.6.2. MAC Layer
      • 4.1.3.7. Cognitive Functions
      • 4.1.3.8. IEEE 802.22 - Marketing Considerations
      • 4.1.3.9. Major Applications
      • 4.1.3.10. Summary
      • 4.1.3.11. 802.22 and Smart Grid
      • 4.1.3.12. Usage Models
      • 4.1.3.13. Benefits
  • 4.2. 3GPP LTE and SG
    • 4.2.1. 3GPP
    • 4.2.2. LTE Objectives
    • 4.2.3. Key Features of LTE
      • 4.2.3.1. LTE Advanced
    • 4.2.4. Benefits
    • 4.2.5. Market
      • 4.2.5.1. Drivers
      • 4.2.5.2. LTE Market Projections
    • 4.2.6. Vendors
      • Cisco
      • CommAgility
      • Ericsson
      • Fujitsu
      • Huawei
      • Motorola Solutions
      • Nokia
      • Qualcomm
      • Sequans
      • TI
      • u-blox
      • ZTE
    • 4.2.7. LTE and Smart Grid
      • 4.2.7.1. General
      • 4.2.7.2. Examples
        • 4.2.7.2.1. Ericsson
        • 4.2.7.2.2. Cisco
        • 4.2.7.2.3. Nokia and Tantalus
      • 4.2.7.3. Details
        • 4.2.7.3.1. Scalable LTE IoT Platform and SG
        • 4.2.7.3.2. SM Specifics - LTE
        • 4.2.7.3.2.1. Choices
        • 4.2.7.3.2.2. Reasons
      • 4.2.7.4. Summary
  • 4.3. Wired ICT - SG
    • 4.3.1. IEEE 1901.2
    • 4.3.2. Choices - ITU
      • 4.3.2.1. G3. PLC
        • 4.3.2.1.1. Maxim-G3 PLC
        • 4.3.2.1.2. G3 PLC Alliance
        • 4.3.2.1.3. Approval
        • 4.3.2.1.4. Details
          • 4.3.2.1.4.1. Specification
          • 4.3.2.1.4.2. PHY Layer
          • 4.3.2.1.4.3. MAC Layer
          • 4.3.2.1.4.4. Network and Transport Layers
          • 4.3.2.1.4.5. Application Layer
      • 4.3.2.2. PRIME
        • 4.3.2.2.1. PRIME Alliance
        • 4.3.2.2.2. Benefits
        • 4.3.2.2.3. Specification
        • 4.3.2.2.4. PRIME Industry

5.0. IoT Technologies and SG

  • 5.1. Weightless Technologies
    • 5.1.1. Weightless SIG
    • 5.1.2. Common Features
    • 5.1.3. Weightless-W
      • 5.1.3.1. White Spaces Communications - Principles
      • 5.1.3.2. Definition
      • 5.1.3.3. Rational
        • 5.1.3.3.1. Ecosystem and Use Cases
        • 5.1.3.3.2. Weightless-W Details
    • 5.1.4. Changes
    • 5.1.5. Weightless-N
      • 5.1.5.1. General
      • 5.1.5.2. Open Standard
      • 5.1.5.3. Nwave
      • 5.1.5.4. Initial Deployments
      • 5.1.5.5. Summary
    • 5.1.6. Weightless-P
      • 5.1.6.1. General
      • 5.1.6.2. Details
  • 5.1.6.2.1. M2COMM
    • 5.1.7. Comparison of Weightless Technologies
    • 5.1.8. Example
  • 5.2. RPMA
    • 5.2.1. Major Features
    • 5.2.2. Proliferation
    • 5.2.3. Components and Structure
    • 5.2.4. Use Cases
  • 5.3. LoRa
    • 5.3.1. Alliance
      • 5.3.1.1. Open Protocol
    • 5.3.2. Technology Building Blocks
      • 5.3.2.1. Layered Structure - Illustration
      • 5.3.2.2. Modulation
      • 5.3.2.3. Long Range
      • 5.3.2.4. Applications
      • 5.3.2.5. Network Architecture
      • 5.3.2.6. Classes
      • 5.3.2.7. LoRaWAN
      • 5.3.2.8. Major Characteristics
    • 5.3.3. Industry
      • Actility
      • Advantech
      • Amiho
      • Cisco
      • Embit
      • Link Labs
      • LORIOT.io
      • Microchip Technology
      • MultiTech
      • Murata
      • Sagemcom
      • Semtech
      • STMicroelectronics
      • Tektelic
  • 5.4. SigFox
    • 5.4.1. Company
    • 5.4.2. Technology - Details
      • 5.4.2.1. Uplink
      • 5.4.2.2. Downlink
      • 5.4.2.3. SmartLNB
    • 5.4.3. Coverage
    • 5.4.4. Use Cases
    • 5.4.5. Industry
      • Adeunis RF
      • Innocomm
      • Microchip
      • On Semiconductor
      • Telit
      • TI

6.0. Conclusions

Appendix I: IEEE802.15.4g Characteristics

Appendix II: Regulations - TVWS

Appendix III: Survey of 802.22 Patents (issued 2017-2018)

List of Figures

  • Figure 1: Smart Grid Networking
  • Figure 2: SG Developmental Stages
  • Figure 3: U.S. SG - NIST Conceptual Model
  • Figure 4: U.S. - Smart Meters Installed (Mil)
  • Figure 5: Organizations
  • Figure 6: Smart Grid and ICT
  • Figure 7: “Smart” Support Network
  • Figure 8: Smart Grid - Layered Structure
  • Figure 9: ETSI-SG Layers
  • Figure 10: Networks Requirements
  • Figure 11: Layered Hierarchy - SG/ICT Standards
  • Figure 12: ETSI Documents
  • Figure 14: Interoperability Framework
  • Figure 15: SG - ICT Infrastructure
  • Figure 16: Smart Grid Connectivity
  • Figure 17: Estimate: Electrical SM Global Market ($B)
  • Figure 18: Estimate: Electrical SM Global Market (Mil. Units)
  • Figure 19: SG ICT Market Components
  • Figure 20: U.S. - SMs Penetration (2013-2015)
  • Figure 21: IEEE 2030 Group
  • Figure 22: SUN Place
  • Figure 23: Major Characteristics: IEEE 802.22
  • Figure 24: IEEE 802.22 Network: Usage Scenarios
  • Figure 25: 3GPP Releases (up to R.15)
  • Figure 26: LTE Subscription (Bil)
  • Figure 27: Major LTE Characteristics - R.8.0
  • Figure 28: LTE Frequency Bands (original)
  • Figure 29: LTE - IP
  • Figure 30: Release 8 Users Equipment Categories
  • Figure 31: Estimate- LTE Equipment Global Sales ($B)
  • Figure 32: “NarrowBand” LTE
  • Figure 33: Rel. 12 Category 0 - SG
  • Figure 34: LTE for Low Complexity UE
  • Figure 35: IoT Communications Technologies Characteristics
  • Figure 36: G3-PLC Frequencies
  • Figure 37: Rates of Transmission
  • Figure 38: PRIME Benefits
  • Figure 39: Layers - Prime
  • Figure 40: Iceni Characteristics
  • Figure 41: Nwave Characteristics Comparison
  • Figure 42: Weightless Technologies Comparison
  • Figure 43: RPMA Use Cases
  • Figure 44: LoRa Protocol Architecture
  • Figure 45: LoRa Architecture
  • Figure 46: LoRa Classes
  • Figure 47: Battery Lifetime
  • Figure 48: Regional Differences
  • Figure 49: Uplink Frame Format
  • Figure 50: Downlink Frame Format
Back to Top
전화 문의
F A Q