시장보고서
상품코드
1275651

자동차 센서 칩 산업(2023년)

Automotive Sensor Chip Industry Report, 2023

발행일: | 리서치사: ResearchInChina | 페이지 정보: 영문 360 Pages | 배송안내 : 1-2일 (영업일 기준)


※ 본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문 목차를 참고해주시기 바랍니다.

센서 칩 업계 조사 : '지각의 비중을 높이는' 노선에서 센서 칩은 급속한 반복 진화의 새로운 단계에 접어들었습니다.

2023년 상하이 모터쇼에서 OEM 및 Tier1 공급업체의 'more weight on perception, less weight on maps', 'urban NOA', 'BEV Transformer' 등을 많이 볼 수 있었습니다. 레이아웃을 가속화하고 HD 지도 의존도를 해소하기 위해 '지각 중시, 지도 경시'의 기술 노선으로 선회했음을 알 수 있습니다.

"지각의 비중을 높이는" 기술 노선에 힘입어 자동차 센서가 더욱 중요한 역할을 하게 되었습니다. LiDAR, 4D 이미지 그레이더, 8MP CMOS 이미지 센서(CIS) 등 신제품이 빠르게 자동차에 탑재되어 센서 칩에 대한 수요를 증가시키고 있습니다. 차량용 센서 및 칩 기술은 빠른 반복적 진화와 빠른 비용 절감이라는 새로운 단계에 접어들었습니다.

레이더 칩: 중국 업체, 해외 독과점 타파

자동차 레이더 칩 시장은 NXP, Infineon, TI 등 기업이 독점하고 있습니다. 중국 업체 중 Calterah Semiconductor는 일찌감치 20개 이상의 자동차 제조업체와 협력하여 70개 이상의 승용차 모델 지정 프로젝트에서 총 300만 개 이상을 출하했으며, 그 중 3분의 1은 해외 고객을 대상으로 한 것입니다.

4D 레이더는 중상급 모델과 자율주행 모델에도 빠르게 침투하고 있으며, BMW, GM 등 OEM, Continental, ZF 등 1차 공급업체는 이 분야의 레이아웃을 완성했습니다. 리자동차, 창안, BYD, 테슬라, 지리 등 중국 브랜드는 4D 레이더를 지정하거나 탄생시켜 적용하고 있으며, 테슬라의 차세대 자율주행 플랫폼 'HW4.0'은 4D 이미징 레이더 '피닉스'를 탑재해 시장의 전환점이 되고 있습니다.

전통적인 레이더 칩 분야에서는 Infineon과 NXP가 거의 독점적 인 위치에 있습니다. 레이더의 주요 발전 방향으로 4G 영상 레이더는 도시의 NOA와 같은 첨단 자율주행 기능에 더 잘 대응할 수 있습니다. 중국 제조업체들도 4D 레이더 칩의 레이아웃을 가속화하고 있습니다.

칼테라:2022년 12월, 칼테라는 4D 영상 그레이더 기능을 실현하고 L3 자율주행의 발전을 촉진하는 차세대 새로운 레이더 SoC 제품군 "Andes"를 발표하였습니다. 이 시리즈는 다음과 같은 주요 특징을 가지고 있습니다.

  • 22nm 공정을 채택한 4T4R SoC
  • DSP(디지털 신호 프로세서), RSP(레이더 신호 프로세서)를 포함한 멀티코어 CPU 탑재
  • RGMII/SMGII별 기가비트 이더넷
  • 유연한 캐스케이드 연결 지원
  • ASIL-B & AEC-Q100 Grade 1의 요구 사항 준수

Muye Microelectronics: 4D 레이더 스타트업, 4D 고정밀 영상 레이더 전문, 2022년 12월 첫 77G 레이더 칩 개발 성공, 2023년 3월 '1S0-26262 ASL-D 기능 안전 인증'을 통과했습니다. 2023년 4월, 프리A 펀딩을 통해 1억 위안을 조달하여 칩 제품화, 알파 고객에 대한 생산 및 납품에 투입합니다.

LiDAR 칩: SoC 통합을 향해 발전

2022년 이후 훨씬 더 많은 LiDAR가 자동차에 사용되어 중국에서 약 16만 4천 대의 승용차에 LiDAR가 장착될 것이며, LiDAR는 주로 L2 승용차(고속도로 + 도시 NOA 기능)에 많이 적용될 것이며, 대부분 25만 위안 이상의 고급 신에너지 차량에 적용될 것입니다. 2026년 중국 승용차에는 366만 6천 대의 LiDAR가 장착될 것으로 추정되며, 15만 명의 승용차에 LiDAR를 장착하려면 더 큰 비용 절감이 필요하기 때문에 단기간에 실현하기 어려울 수 있습니다.

2023년, LiDAR의 가격 경쟁이 시작되어 출하 가격은 500달러 정도로 정체되어 있지만, 4D 레이더의 가격(200-300달러)에 비해 여전히 상대적으로 높은 SoC를 기반으로 LiDAR는 더욱 집적화되어 저렴해질 것입니다.

(1) 트랜시버 칩과의 통합

LiDAR가 자동차에 널리 보급되기 위해서는 먼저 비용 관리가 필요하며, 제조업체마다 LiDAR 개발 경로가 다르기 때문에 비용 차이가 발생합니다. 그러나 트랜시버 칩은 비용의 핵심 요소이며, 트랜시버 칩과의 통합은 LiDAR의 비용을 절감할 수 있는 효과적인 수단입니다.

  • 트랜스미터 칩: 이산 모듈을 통합 모듈로 대체하여 재료비와 디버깅 비용을 70% 이상 절감할 수 있다;
  • 수신기 칩: SPAD 솔루션의 크기가 작기 때문에 판독 회로와의 통합이 유리하고 비용을 더욱 절감할 수 있습니다.

LiDAR 칩은 해외 업체들이 강점을 가진 기술이지만 최근 중국 업체들도 관련 기술 개발에 힘쓰고 있습니다. 송신 칩의 경우, 중국 제조업체는 업스트림 VCSEL 칩 설계에 착수했으며, 수신 칩의 경우, 중국 신흥 기업이 SPAD와 SiPM 칩에 진출하고 있으며, 그 중 QuantaEye와 FortSense는 SPAD/SiPM의 연구개발에 주력하고 있습니다.

FortSense:2019년부터 SPAD LiDAR 칩의 연구개발을 시작한 2021년 테이프 아웃, 2022년 9월에 차량용 인증을 통과했으며, 5개 이상의 자동차 제조업체의 지정 LiDAR 공급업체가 지지하고 있습니다.2022년 12월, C 자금 조달을 완료하고, 조달한 자금은 LiDAR 칩 개발에 사용될 예정입니다.

Hesai Technology : 최근 몇 년 동안 LiDAR 칩 개발에 주력하고 있으며, 2018년부터 LiDAR SoC를 개발하기 시작하여 여러 세대의 칩형 트랜시버(V1.0, V1.5, V2.0, V3.0 등)를 개발하기 위한 전략을 세웠다. 개발하는 전략을 세우고 있습니다. 여기서 V2.0은 CMOS 기술 하에서 검출기와 회로 기능 모듈을 통합하기 위해 수신단을 SiPM에서 SPAD 어레이로 업그레이드하고, V3.0 아키텍처는 VCSEL 영역 어레이 촉진제 칩과 SPAD 검출기 기반의 영역 어레이 SoC를 개발할 예정입니다. 개발을 완료할 것으로 예상됩니다.

Hesai의 장거리 반고체 LiDAR AT128: 자체 개발한 차량용 칩을 탑재하고 있습니다. 칩 기반 솔리드 스테이트 전자 스캔을 위해 128개의 스캔 채널을 하나의 회로 기판에 통합했습니다.

Hesai의 차세대 전고체 갭 필러 레이더 FT120: 하나의 칩에 수만 개의 레이저 수신 채널로 구성된 영역 어레이를 집적하여 칩 내에서 완전히 레이저를 발광 및 수신합니다. 기존 LiDAR보다 부품 수가 훨씬 적고, AT 제품군에 비해 비용 대비 성능이 우수합니다.

(2) 단일 칩 LiDAR 솔루션

LiDAR의 비용 절감을 위해서는 다양한 광전자 소자를 통합하는 광통합 공정을 이용해야 하며, 이종 재료 통합에서 단일 칩 통합으로 진화하고 있습니다. 이 공정은 준비된 실리콘 웨이퍼를 단결정 실리콘 기판에 슬롯인하고 단결정 실리콘 기판에 III-V족 재료를 에피택셜로 성장시키는 공정 난이도가 높지만, 이 공정은 저손실, 쉬운 포장, 고신뢰성, 고집적화 등의 장점을 가지고 있습니다.

2023년 초, Mobileye는 차세대 FMCW LiDAR를 처음으로 시연했습니다. 정확히는 1320nm 파장의 LiDAR SoC다. 인텔의 칩형 실리콘 포토닉스 공정을 기반으로 거리와 속도를 동시에 측정할 수 있는 제품입니다.

칩 기반 실리콘 포토닉스 FMCW 고체 LiDAR 기술 경로는 FMCW, 고체 분산 스캐닝, 실리콘 포토닉스와 같은 주요 기술을 포함하여 향후 LiDAR 개발에서 바람직한 방향이 될 수 있습니다. 새로운 기술 경로로서 FMCW LiDAR는 여전히 많은 기술적 과제를 안고 있습니다. Mobileye, Aeva, Aurora와 같은 해외 제조업체뿐만 아니라 Inxuntech, LuminWave와 같은 중국 업체도 도입하고 있습니다.

비전센서칩: 각사, 8MP 제품 출시 경쟁

차량용 카메라의 하드웨어에는 렌즈, CIS, 이미지 신호처리장비(ISP)가 포함됩니다. 따라서 진입장벽이 높은 차량용 CIS는 온세미컨덕터, 옴니비전, 소니 등의 독과점 시장이 형성되어 있습니다. 향후 제품의 고화소화, HDR(High Dynamic Range)화는 기존 ISP뿐만 아니라 현재 ISP 통합 솔루션에서는 CIS와 SOC에 ISP를 통합하고 있습니다.

CIS는 고화소화를 향해 발전

첨단 자율주행이 실현됨에 따라 차량용 카메라의 고화질화가 요구되고 있습니다. 일반적으로 카메라의 화소가 높을수록 화질이 좋아지고, 자동차 제조업체와 자율주행 제산업체는 더 많은 정보를 얻을 수 있습니다.2023년 초에 출시된 Xpeng P7i는 지능형 운전 지원 솔루션에 8MP 카메라를 탑재하고 있습니다.

전면보기는 8MP 고해상도 카메라의 필요성이 가장 높은 용도 시나리오입니다. 현재 주요 자동차 CIS 공급업체들은 8MP CIS 제품을 성공적으로 출시하고 있습니다.

SmartSens : 2022년 11월에 SC850AT를 발표했습니다. 이 센서 제품은 8.3MP 해상도를 지원하며, SmartSens SmartClarity?-2 혁신적인 이미징 기술 아키텍처와 업그레이드 된 자체 개발 Raw 도메인 알고리즘을 채택하여 이미지의 디테일을 효과적으로 보호하고 전체 이미지 효과를 향상시킬 수 있습니다. Staggered HDR과 더불어 SmartSens의 독자적인 PixGain HDR 기술을 지원하여 140dB의 HDR을 실현하고 보다 정확한 이미지 정보를 얻을 수 있으며, 복잡한 조명 조건에서도 밝고 어두운 디테일을 정확하게 포착할 수 있는 능력을 보장합니다.

이 칩의 양산은 2023년 2분기로 예정되어 있습니다.

ISP: 통합을 향한 진화

ISP 솔루션에는 독립형과 통합형 두 가지 유형가 있습니다. 독립형 ISP는 강력하지만 비용이 비싸고, 통합형 ISP는 저비용, 작은 면적, 저전력 소비라는 장점이 있지만 처리 능력이 상대적으로 약하다는 단점이 있습니다. 최근 대형 벤더들은 ISP 내장형 CIS와 더불어 ISP 내장형 SOC를 활발히 도입하고 있습니다.

ISP 통합형 CIS : ISP를 CIS에 통합하면 공간 절약과 전력 절감의 목적을 달성할 수 있습니다. 2023년 1월, 옴니비전은 차량용 360도 서라운드 뷰 시스템(SVS)과 후방 카메라(RVC)를 위한 새로운 130만 화소(MP) OX01E20 시스템온칩(SoC)을 출시하였습니다. OX01E20은 LED 플리커미티게이션(LFM) 및 140db HDR(High Dynamic Range) 기능, 3미크론 이미지 센서, 고급 이미지 신호 처리 프로세서(ISP), 완전한 기능을 갖춘 왜곡 보정/원근감 보정(DC/PC) 기능을 갖춘 최고급 제품입니다, 온스크린 디스플레이(OSD)를 갖추고 있습니다.

ISP 통합 SOC:ISP를 CIS에서 분리하여 자율주행용 메인 제어 SoC에 직접 통합하는 방법은 인식 하드웨어의 비용을 크게 줄일 수 있으며, 카메라에서 ISP를 분리하면 고화소 카메라로 인한 심각한 방열 문제를 해결할 수 있을 뿐만 아니라, 차량용 카메라 거의 모든 자율주행 영역 제어 SoC는 ISP 모듈을 통합하고 있으며, 이는 차량용 카메라의 회로 기판 크기와 전력 소비를 더욱 줄이는 데 기여합니다.

"자동차 센서 칩 산업 보고서, 2023"는 다음과 같은 점을 강조합니다.

  • 자동차 센서칩 산업(개요, 산업 정책 및 표준 수립, 시장 규모 등);
  • 차량용 센서 칩 산업의 주요 부문(차량용 카메라 칩, 레이더 칩, LiDAR 칩 등)(제품 구조, 기술 동향, 시장 규모, 시장 패턴 등)
  • 주요 차량용 레이더 칩 공급업체(제품 라인의 레이아웃, 주요 제품 성능, 신제품 개발, 제품 응용 등);
  • 주요 차량용 LiDAR 칩 공급업체(제품 라인의 레이아웃, 주요 제품 성능, 신제품 개발, 제품 응용 등);
  • 주요 차량용 비전센서 칩 공급업체(제품 라인업, 주요 제품 성능, 신제품 개발, 제품 응용 등)

자동차용 센서 칩 산업에 대해 조사 분석했으며, 시장 규모와 전망, 기술 동향, 주요 공급업체 개요 등을 전해드립니다.

목차

제1장 자율주행용 센서 칩 업계의 개요

  • 자동차용 자율주행 센서 칩의 개요
  • 산업 정책과 규격

제2장 레이더 칩 업계

  • 레이더 업계의 개요
  • 레이더 구조
  • 레이더 칩의 응용 동향
  • 4D 레이더 칩의 응용 동향
  • 레이더 칩의 시장 규모와 패턴

제3장 LiDAR 칩 업계

  • LiDAR 업계의 개요
  • LiDAR 제품과 비용 구조
  • LiDAR 칩 기술 동향
  • LiDAR 칩의 시장 규모와 패턴

제4장 비전 센서 칩 업계

  • 자동차용 카메라 업계의 개요
  • 비전 칩
  • 자동차용 카메라 CIS 칩
  • 자동차용 카메라 ISP

제5장 레이더 칩 공급업체

  • Infineon
  • NXP
  • STMicroelectronics
  • TI
  • ADI
  • Vayyar
  • Uhnder
  • Arbe
  • Calterah Semiconductor
  • Andar Technologies
  • SGR Semiconductors
  • Runchip
  • 기타

제6장 LiDAR 칩 공급업체

  • LeddarTech
  • Ouster
  • Lumentum
  • Mobileye
  • Lumotive
  • LuminWave
  • visionICs
  • Xilight
  • ABAX Sensing
  • Vertilite
  • Hesai Technology
  • China Science Photon Chip
  • Fortsense
  • DAO Sensing
  • 기타

제7장 비전 센서 칩 공급업체

  • ON Semiconductor
  • Samsung Electronics
  • Sony
  • NXP
  • Nextchip
  • OmniVision Technology
  • SmartSens
  • GalaxyCore
  • Metoak
  • Rockchip
  • Fullhan Microelectronics
  • 기타
KSA 23.05.31

Sensor chip industry research: driven by the "more weight on perception" route, sensor chips are entering a new stage of rapid iterative evolution.

At the Auto Shanghai 2023, "more weight on perception, less weight on maps", "urban NOA", and "BEV+Transformer" abounded of OEMs and Tier 1 suppliers. It can be seen that major manufacturers have turned to the technology route of "more weight on perception, less weight maps", to speed up their layout of urban NOA and break their dependence on HD maps.

Driven by the "more weight on perception" technology route, automotive sensors play a more important role. New products like LiDAR, 4D imaging radar, and 8MP CMOS image sensor (CIS) are quickly applied in vehicles, pushing up the demand for sensor chips. Automotive sensor and chip technologies are entering a new stage of rapid iterative evolution and fast cost reduction.

Radar chip: Chinese vendors have made breakthroughs and broken overseas monopoly.

The automotive radar chip market is dominated by such companies as NXP, Infineon, and TI; among Chinese vendors, Calterah Semiconductor as an early starter has forged partnerships with more than 20 automotive OEMs, on designated projects for over 70 passenger car models, and has shipped a total of over 3 million pieces, one third of which were to overseas customers.

4D radars rapidly penetrate into mid- and high-end models and autonomous models. OEMs such as BMW and GM, and Tier 1 suppliers like Continental and ZF have completed the layout in this field. Quite a few Chinese brands including Li Auto, Changan, BYD, Tesla and Geely have designated or spawned and applied 4D radars. HW4.0, Tesla's next-generation autonomous driving platform equipped with a "Phoenix" 4D imaging radar, has become a tipping point in market.

In the field of conventional radar chips, Infineon and NXP are almost in a monopoly position. As the main development direction of radars, 4G imaging radars can better serve advanced autonomous driving functions such as urban NOA. Chinese manufacturers are also expediting layout of 4D radar chips.

Calterah: in December 2022, announced Andes, its next-generation new radar SoC family that enables 4D imaging radar functions and promotes the development of L3+ autonomous driving, with the following key features:

  • 4T4R SoC using 22nm process
  • Multi-core CPU, including DSP (digital signal processor) and RSP (radar signal processor)
  • Gigabit Ethernet with RGMII/SGMII
  • Support for flexible cascading
  • Subject to ASIL-B & AEC-Q100 Grade 1 requirements

Muye Microelectronics: a 4D radar start-up specializes in 4D high-precision imaging radars. In December 2022, it successfully developed the first 77G radar chip; in March 2023, passed the "1S0-26262 ASL-D functional safety certification"; in April 2023, closed the Pre-A funding round and raised RMB100 million, which is spent for chip productization, and production and delivery to Alpha customers.

LiDAR chip: develop towards SoC integration.

Since 2022, much more LiDARs have been used in vehicles, and about 164,000 passenger cars have been installed with LiDARs in China. LiDARs are often used in L2+++ passenger cars (with the highway + urban NOA function), most of which are high-end new energy vehicles valued at over RMB250,000. It is estimated that in 2026, 3.666 million LiDARs will be installed in passenger cars in China. If LiDARs are mounted on RMB150,000 passenger cars, a bigger cost reduction will be required. This may be hard to achieve in the short run.

In 2023, the LiDAR price war has begun, and the shipping price has slumped to around USD500, but still relatively high compared to the price (USD200-300) of 4D radars. Based on SoCs, LiDARs will be further integrated and become cheaper.

(1) Integration with transceiver chips

The wide adoption of LiDARs in vehicles first needs cost control. Different LiDAR routes of manufacturers lead to differential costs. Yet transceiver chips are the main cost component. The integration with transceiver chips is an effective way to cut down the cost of LiDARs.

  • Transmitter chip: replacing discrete modules with integrated modules can slash the cost of materials and debugging by more than 70%;
  • Receiver chip: the small size of the SPAD solution favors the integration with the readout circuit, which can further reduce the cost.

LiDAR chip technique is mastered by foreign manufacturers, but Chinese vendors have also worked to develop related technologies in recent years. In the case of transmitter chips, Chinese manufacturers have begun to step into upstream VCSEL chip design; as concerns receiver chips, Chinese start-ups march into SPAD and SiPM chips, among which QuantaEye and FortSense concentrate their efforts on SPAD/SiPM R&D.

FortSense: it has started deploying SPAD LiDAR chip R&D from 2019. It taped out in 2021, and passed automotive certification in September 2022. It has been favored by designated LiDAR suppliers of over 5 automakers. In December 2022, it closed the C funding round, with the raised funds to be used to develop LiDAR chips.

Hesai Technology: in recent years, it has been committed to developing LiDAR chips. Hesai Technology has started developing LiDAR SoCs since 2018, and has made the strategy for developing multiple generations of chip-based transceivers (V1.0, V1.5, V2.0, V3.0, etc.). Wherein, for V2.0, the receiving end is upgraded from SiPM to SPAD array for integration of detectors and circuit function modules under the CMOS technology; as for the V3.0 architecture, it is expected to complete the development of the VCSEL area array driver chip and the area array SoC based on SPAD detector.

Hesai's long-range semi-solid-state LiDAR AT128: it is equipped with a self-developed automotive chip. A single circuit board integrates 128 scanning channels for chip-based solid-state electronic scanning.

Hesai's new-generation all-solid-state gap filler radar FT120: a single chip integrates an area array composed of tens of thousands of laser receiving channels for laser emission and reception completely through the chip. With much fewer components than conventional LiDARs, it is more cost-effective than the AT family.

(2) Single-chip LiDAR solution

LiDAR cost reduction needs to use the photonic integration process to integrate various optoelectronic devices, which is evolving from heterogeneous materials integration to single-chip integration, a process to slot the prepared silicon wafer to the monocrystalline silicon substrate, and then grow the group III-V materials on the monocrystalline silicon substrate in an epitaxial way. Despite high difficulty, the process offers benefits of low loss, easy to package, high reliability, and high integration.

In early 2023, Mobileye demonstrated its next-generation FMCW LiDAR for the first time. To be precise, it is a LiDAR SoC with a wavelength of 1320nm. Based on Intel's chip-level silicon photonics process, this product can measure distance and speed at the same time.

The chip-based silicon photonics FMCW solid-state LiDAR technology route may become a preferred direction in future LiDAR development, involving such key technologies as FMCW, solid-state dispersion scanning and silicon photonics. As a new technology route, FMCW LiDAR still poses a lot of technical challenges. In addition to foreign manufacturers like Mobileye, Aeva and Aurora, Chinese vendors such as Inxuntech and LuminWave have also made deployments.

Vision sensor chips: giants race to lay out 8MP products.

Automotive camera hardware includes lens, CIS and image signal processor (ISP). Thereof, automotive CIS with a high entry threshold is an oligopolistic market in which dominant competitors include ON Semiconductor, OmniVision and Sony. In the future the products will tend to have high pixel and high dynamic range (HDR). As well as conventional ISPs, the current ISP integrated solutions also integrate ISP into CIS or SOC.

CIS develops towards high pixel.

The development of high-level autonomous driving requires increasingly high imaging quality of automotive cameras. Generally speaking, the higher the pixel of cameras, the better the imaging quality and the more useful information automakers/autonomous driving providers can get. The pace of using 8MP cameras in vehicles quickens. Xpeng P7i launched in early 2023 packs an 8MP camera for intelligent driving assistance solutions.

Front view is the application scenario with the most urgent need for 8MP high-resolution cameras. Currently, mainstream automotive CIS suppliers have successfully deployed 8MP CIS products.

SmartSens: it announced SC850AT in November 2022. This sensor product supports 8.3MP resolution, and adopts SmartSens SmartClarity®-2 innovative imaging technology architecture and the upgraded self-developed Raw domain algorithms that can effectively protect image details and improve overall image effects. In addition to Staggered HDR, it also supports SmartSens' unique PixGain HDR® technology to achieve 140dB HDR, and can capture more accurate image information, ensuring its ability to accurately capture details in brightness and darkness in complex lighting conditions.

The volume production of the chip is scheduled in the second quarter of 2023.

ISP: evolve towards integration.

There are two types of ISP solutions: independent and integrated. Wherein, independent ISPs are powerful but with high cost, while integrated ISPs have the benefits of low cost, small area and low power consumption but with relatively weak processing capabilities. In recent years major vendors have vigorously deployed ISP-integrated SOC in addition to ISP-integrated CIS.

ISP-integrated CIS: the integration of ISP into CIS can achieve the aim of saving space and reducing power consumption. It is mainly some CIS leaders that introduce relevant solutions. In January 2023, OmniVision announced its new 1.3-megapixel (MP) OX01E20 system-on-chip (SoC) for automotive 360-degree surround view systems (SVS) and rear-view cameras (RVC). The OX01E20 brings top-of-the-line LED flicker mitigation (LFM) and 140db high dynamic range (HDR) capabilities. It features a 3-micron image sensor, an advanced image signal processor (ISP), and full-featured distortion correction/perspective correction (DC/PC) and on-screen display (OSD).

ISP-integrated SOC: the way of removing the ISP from the CIS and directly integrating it into the main control SoC for autonomous driving enable a big reduction in the cost of perception hardware, and the removal of the ISP from the camera can not only solve the serious problem of heat dissipation caused by high-pixel cameras, but also help to further reduce circuit board size and power consumption for automotive cameras. Almost all autonomous driving domain control SoCs integrate the ISP module.

“ Automotive Sensor Chip Industry Report, 2023” highlights the following:

  • Automotive sensor chip industry (overview, formulation of industrial policies and standards, market size, etc.);
  • Main automotive sensor chip industry segments (automotive camera chip, radar chip, LiDAR chip, etc.) (product structure, technology trends, market size, market pattern, etc.)
  • Main automotive radar chip suppliers (product line layout, performance of main products, development of new products, product application, etc.);
  • Main automotive LiDAR chip suppliers (product line layout, performance of main products, development of new products, product application, etc.);
  • Main automotive vision sensor chip suppliers (product line layout, performance of main products, development of new products, product application, etc.).

Table of Contents

1 Overview of Autonomous Driving Sensor Chip Industry

  • 1.1 Overview of Automotive Autonomous Driving Sensor Chips
    • 1.1.1 Types of Autonomous Driving Sensor Chips
    • 1.1.2 Process of Applying Autonomous Driving Sensor Chips in Vehicles
    • 1.1.3 Installation Scale of Autonomous Driving Sensor Chips in Vehicles
  • 1.2 Industrial Policies and Standards
    • 1.2.1 The Latest Standard Dynamics during 2022-2023: "Guidelines for the Construction of the National Automotive Chip Standard System (2023)" (1)
    • 1.2.2 The Latest Standard Dynamics during 2022-2023: "Guidelines for the Construction of the National Automotive Chip Standard System (2023)" (2)
    • 1.2.3 Certification Thresholds for Automotive Chips

2 Radar Chip Industry

  • 2.1 Overview of Radar Industry
    • 2.1.1 Workflow of Automotive Radar
    • 2.1.2 Implementation Mode 1 of Radars in Vehicles: OEMs That Rely on External Integration Continue Their Close Coupling Relationships with Chip Vendors
    • 2.1.3 Implementation Mode 2 of Radars in Vehicles: Mighty Automakers Directly Procure Hardware and Outsource the Assembly
    • 2.1.4 Major OEMs in Automotive Radar Industry Chain (1)
    • 2.1.5 Major OEMs in Automotive Radar Industry Chain (2)
  • 2.2 Radar Structure
    • 2.2.1 Structure Diagram of Automotive Radar
    • 2.2.2 Cost Structure of Automotive Radar
    • 2.2.3 Price of Automotive Radar Chip (MICC)
    • 2.2.4 Autonomous Driving Sensor Chip Industry Chain: Radar Chip
  • 2.3 Application Trends of Radar Chips
    • 2.3.1 Intelligent Driving Market Provides A Big Boost to the Demand for Radars and Chips
    • 2.3.2 Technical Requirements for Radar Chips: High Precision, High Power, High Sensitivity
    • 2.3.3 Development Directions of Automotive Radar Chips
    • 2.3.4 Development Direction 1 of Automotive Radar Chips: Chip Integration
    • 2.3.5 Development Direction 2 of Automotive Radar Chips: Policies Facilitate the Development of High-frequency Radar Chips
    • 2.3.6 Development Direction 3 of Automotive Radar Chips: 4D radar
    • 2.3.7 Development Direction 4 of Automotive Radar Chips: Production Process Upgrade (1)
    • 2.3.8 Development Direction 4 of Automotive Radar Chips: Production Process Upgrade (2)
  • 2.4 Application Trends of 4D Radar Chips
    • 2.4.1 Automotive 4D Radar Chip Technology Route
    • 2.4.2 Automotive 4D Radar Chip Packaging and Testing Schemes
    • 2.4.3 Technology Trends of Automotive 4D Radar Chips
    • 2.4.4 4D Radar Chip Installation Scheme 1: Cascading (1)
    • 2.4.5 4D Radar Chip Installation Scheme 1: Cascading (2)
    • 2.4.6 4D Radar Chip Installation Scheme 2: Single-chip Integration
    • 2.4.7 4D Radar Chip Installation Scheme 3: Software Algorithm Support
    • 2.4.8 Comparison between 4D Radar Chip Installation Schemes
    • 2.4.9 Mainstream Automotive 4D Radar Chip Suppliers (1)
    • 2.4.10 Mainstream Automotive 4D Radar Chip Suppliers (2)
    • 2.4.11 Mainstream Automotive 4D Radar Chip Suppliers (3)
  • 2.5 Radar Chip Market Size and Pattern
    • 2.5.1 China's Demand for Passenger Car Radars, 2021-2026E
    • 2.5.2 China's Passenger Car Radar Chip Market Size, 2021-2026E
    • 2.5.3 China's Passenger Car Radar Chip Market Size, 2021-2026E - Attached Table (1)
    • 2.5.4 China's Passenger Car Radar Chip Market Size, 2021-2026E - Attached Table (2)
    • 2.5.5 Automotive Radar Chip Market Structure
    • 2.5.6 Automotive Radar Chip Market Structure: Suppliers Accelerate the Pace of Localization
    • 2.5.7 Automotive Radar Chip Market Structure: Chinese Suppliers (1)
    • 2.5.8 Automotive Radar Chip Market Structure: Chinese Suppliers (2)

3 LiDAR Chip Industry

  • 3.1 Overview of LiDAR Industry
    • 3.1.1 Workflow of LiDAR
    • 3.1.2 LiDAR Industry Chain
    • 3.1.3 LiDAR OEM Model
    • 3.1.4 LiDAR OEM: MEMS Galvanometer OEM
    • 3.1.5 Major OEMs in LiDAR Industry Chain (1)
    • 3.1.6 Major OEMs in LiDAR Industry Chain (2)
  • 3.2 LiDAR Products and Cost Structure
    • 3.2.1 Structure Diagram of Automotive LiDAR
    • 3.2.2 Main Components of Automotive LiDAR (1)
    • 3.2.3 Main Components of Automotive LiDAR (2)
    • 3.2.4 Major Players in LiDAR Transmitter VCSEL Chip Market
    • 3.2.5 Major Players in LiDAR Receiver SPAD/SiPM Chip Market
    • 3.2.6 Cost Structure of Automotive LiDAR
    • 3.2.7 Automotive LiDAR Chip Industry Chain
  • 3.3 Technology Trends of LiDAR Chips
    • 3.3.1 LiDAR Development Technology Route
    • 3.3.2 Development Directions of LiDAR Chips
    • 3.3.3 LiDAR Transmitter Chip Technology Trend 1: Develop from EEL to VCSEL Chip
    • 3.3.4 LiDAR Transmitter Chip Technology Trend 2: 905nm Is Favored again Due to Its Cost Advantage (1)
    • 3.3.5 LiDAR Transmitter Chip Technology Trend 2: 905nm Is Favored again Due to Its Cost Advantage (2)
    • 3.3.6 LiDAR Transmitter Chip Technology Trend 3: FMCW Ranging Method Rises Rapidly (1)
    • 3.3.7 LiDAR Transmitter Chip Technology Trend 3: FMCW Ranging Method Rises Rapidly (2)
    • 3.3.8 LiDAR Receiver Chip Technology Trends: SPAD/SiPM Can Replace APD in the Future (1)
    • 3.3.9 LiDAR Receiver Chip Technology Trends: SPAD/SiPM Can Replace APD in the Future (2)
    • 3.3.10 LiDAR Development Trend 1: Integration with Transceiver Chip Favors Cost Reduction (1)
    • 3.3.11 LiDAR Development Trend 1: Integration with Transceiver Chip Favors Cost Reduction (2)
    • 3.3.12 LiDAR Development Trend 1: Integration with Transceiver Chip Favors Cost Reduction (3)
    • 3.3.13 LiDAR Development Trend 2: Single-chip Silicon Photonics Integration (1)
    • 3.3.14 LiDAR Development Trend 2: Single-chip Silicon Photonics Integration (2)
    • 3.3.15 LiDAR Development Trend 2: Single-chip Silicon Photonics Integration (3)
    • 3.3.16 Single-chip LiDAR Layout Case 1 of Suppliers: Hesai Technology
    • 3.3.17 Single-chip LiDAR Layout Case 2 of Suppliers: Ouster
  • 3.4 LiDAR Chip Market Size and Pattern
    • 3.4.1 China's Demand for Passenger Car LiDARs, 2021-2026E
    • 3.4.2 China's Passenger Car LiDAR Chip Market Size, 2021-2026E
    • 3.4.3 China's Passenger Car LiDAR Chip Market Size, 2021-2026E - Attached Table (2)
    • 3.4.4 Competitive Pattern of LiDAR Chip Market
    • 3.4.5 Mainstream Automotive LiDAR Chip Suppliers (1)
    • 3.4.6 Mainstream Automotive LiDAR Chip Suppliers (2)
    • 3.4.7 Layout of Chinese Suppliers in Laser Sensor Chips: Stepping into the Upstream End of VCSEL Chips
    • 3.4.8 Layout of Chinese Suppliers in Laser Sensor Chips: Marching into SPAD and SiPM Chips

4 Vision Sensor Chip Industry

  • 4.1 Overview of Automotive Camera Industry
    • 4.1.1 Structure of Automotive Camera
    • 4.1.2 Implementation Mode of Cameras in Vehicles
    • 4.1.3 Major OEMs in Automotive Camera Industry Chain (1)
    • 4.1.4 Major OEMs in Automotive Camera Industry Chain (2)
    • 4.1.5 Autonomous Driving Sensor Chip Industry Chain: Types of
  • Vision Chips
    • 4.1.6 Cost Structure of Automotive Camera
    • 4.1.7 China's Demand for Passenger Car Cameras, 2021-2026E
    • 4.1.8 China's Passenger Car Camera Chipset Market Size, 2021-2026E
    • 4.1.9 China's Passenger Car Camera Chipset Market Size, 2021-2026E - Attached Table (1)
    • 4.1.10 China's Passenger Car Camera Chipset Market Size, 2021-2026E - Attached Table (2)
  • 4.2 Automotive Camera CIS Chip
    • 4.2.1 Demand for Automotive Camera CIS Keeps Increasing
    • 4.2.2 Automotive CIS Shipment Structure
    • 4.2.3 Automotive CIS Market Features High Entry Threshold and Oligarchic Competition
    • 4.2.4 Automotive CIS Market Pattern (1)
    • 4.2.5 Automotive CIS Market Pattern (2)
    • 4.2.6 Automotive CIS Market Pattern (3)
    • 4.2.7 Automotive CIS Market Pattern: Chinese Manufacturers Accelerate Product Layout
    • 4.2.8 Comparison between Main Automotive CIS Products
    • 4.2.9 Development Directions of Automotive CIS Technology
    • 4.2.10 Development Direction 1 of Automotive CIS Technology: Higher Resolution (1)
    • 4.2.11 Development Direction 1 of Automotive CIS Technology: Higher Resolution (2)
    • 4.2.12 Development Direction 2 of Automotive CIS Technology: Higher Dynamic Range
  • 4.3 Automotive Camera ISP
    • 4.3.1 Automotive ISP Fusion Modes
    • 4.3.2 Competition Pattern of Automotive ISP Market
    • 4.3.3 Development Directions of Automotive ISP
    • 4.3.4 Development Direction 1 of Automotive ISP: Introduction of AI Algorithms
    • 4.3.5 Development Direction 2 of Automotive ISP: Integration of ISP into SoC
    • 4.3.6 Case 1 of Automotive ISP Integrated into Autonomous Driving SOC: TI
    • 4.3.7 Case 2 of Automotive ISP Integrated into Autonomous Driving SOC: Mobileye
    • 4.3.8 Case 3 of Automotive ISP Integrated into Autonomous Driving SOC: Black Sesame Technologies
    • 4.3.9 Case 4 of Automotive ISP Integrated into Autonomous Driving SOC: Horizon Robotics
    • 4.3.10 Case 5 of Automotive ISP Integrated into Autonomous Driving SOC: Ambarella

5 Radar Chip Suppliers

  • 5.1 Infineon
    • 5.1.1 Autonomous Driving Sensor Chip Product Line
    • 5.1.2 Radar Chips
    • 5.1.3 24GHz Radar Chips: BGT24XX Series (1)
    • 5.1.4 24GHz Radar Chips: BGT24XX Series (2)
    • 5.1.5 77GHz Radar Chips
    • 5.1.6 77GHz Radar Microcontroller
  • 5.2 NXP
    • 5.2.1 Autonomous Driving Sensor Chip Product Line
    • 5.2.2 Radar Chip Business
    • 5.2.3 4D Imaging Radar Chip: S32R45
    • 5.2.4 77GHz Radar Transceiver Chips: TEF82xx
    • 5.2.5 77GHz Radar Transceiver Chips: TEF810X
    • 5.2.6 77GHz Radar Transceiver Chips: MR3003
    • 5.2.7 Radar Solutions
    • 5.2.8 Application of Autonomous Driving Sensor Chips: Continental's 4-cascade Radar
  • 5.3 STMicroelectronics
    • 5.3.1 Autonomous Driving Sensor Chip Product Line
    • 5.3.2 24GHz Radar Chips
    • 5.3.3 77GHz Radar Chip: STRADA770M
  • 5.4 TI
    • 5.4.1 Autonomous Driving Sensor Chip Product Line (1)
    • 5.4.2 Autonomous Driving Sensor Chip Product Line (2)
    • 5.4.3 Radar Chip System
    • 5.4.4 Parameters of Radar Chips
    • 5.4.5 77GHz Radar Chips: AWR1243
    • 4.5.6 77GHz Radar Chips: AWR2243
    • 5.4.7 77GHz Radar Chips: AWR2944
    • 5.4.8 Integrated Radar Chip: AWR1843AoP
  • 5.5 ADI
    • 5.5.1 Autonomous Driving Sensor Chip Product Line
    • 5.5.2 24GHz Radar Chips
    • 5.5.3 Intelligent Transportation Solution Based on 24GHz Radar Demonstration Platform
  • 5.6 Vayyar
    • 5.6.1 Autonomous Driving Sensor Chip Product Line
    • 5.6.2 Comparison between Radar Products and Alternative Products
    • 5.6.3 Radar SOC
    • 5.6.4 4D Radars and Chips
    • 5.6.5 60GHz Radar Chips
  • 5.7 Uhnder
    • 5.7.1 Imaging Radar Chips
    • 5.7.2 Application of Radar Chips
  • 5.8 Arbe
    • 5.8.1 Imaging Radar Chipset Solutions (1)
    • 5.8.2 Imaging Radar Chipset Solutions (2)
    • 5.8.3 Imaging Radar Chipset Application 1: In-house Phoenix Perception Radar
    • 5.8.4 Imaging Radar Chipset Application 2: In-house Lynx Surround Imaging Radar
    • 5.8.5 Imaging Radar Chipset Application 3: In-house 360° Surround Radar
    • 5.8.6 Imaging Radar Chipset Application 4: Cooperation (1)
    • 5.8.7 Imaging Radar Chipset Application 4: Cooperation (2)
  • 5.9 Calterah Semiconductor
    • 5.9.1 Profile
    • 5.9.2 Platformization and Serialization of Radar Chips Have Been Realized
    • 5.9.3 Automotive Radar Chip Product Line
    • 5.9.4 Radar Chip Products: Alps-Pro Series
    • 5.9.5 Radar Chip Products: Andes Series
    • 5.9.6 Radar Chip Products: ALPS Series
    • 5.9.7 Radar Chip Products: Alps-Mini Series
    • 5.9.8 Application Scenarios of Radar Chips
  • 5.10 Andar Technologies
    • 5.10.1 Profile
    • 5.10.2 77/79GHz Radar Chips: ADT2011
    • 5.10.3 77/79GHz Radar Chips: ADT2001
    • 5.10.4 77/79GHz Radar Chips: ADT3102
    • 5.10.5 77/79GHz Radar Chips: ADT3101
  • 5.11 SGR Semiconductors
    • 5.11.1 Profile
    • 5.11.2 24GHz Automotive Radar Chip Products
    • 5.11.3 Application of Radar Chips
  • 5.12 Runchip
    • 5.12.1 77GHz Radar Chips
    • 5.12.2 Domestic Radar Chip Localization Capability
  • 5.13 Others
    • 5.13.1 76-81GHz Radar Chips of Radaric (Beijing) Technology
    • 5.13.2 77GHz Radar Chips of Citta Microelectronics

6 LiDAR Chip Suppliers

  • 6.1 LeddarTech
    • 6.1.1 Profile
    • 6.1.2 Global Network
    • 6.1.3 Automotive LiDAR Technology (1)
    • 6.1.4 Automotive LiDAR Technology (2)
    • 6.1.5 LeddarCore SoCs: LCA2 & LCA3
    • 6.1.6 Products (1): Vu8 Solid State LiDAR Module
    • 6.1.7 Products (2): M16 Solid State LiDAR Module
    • 6.1.8 Products (3): LeddarVision & LeddarSteer
    • 6.1.9 Cooperation Mode
    • 6.1.10 Partners
    • 6.1.11 Partners
  • 6.2 Ouster
    • 6.2.1 Profile
    • 6.2.2 LiDAR Chip Products (1)
    • 6.2.3 LiDAR Chip Products (2)
  • 6.3 Lumentum
    • 6.3.1 Automotive Business Layout
    • 6.3.2 LiDAR Chips
  • 6.4 Mobileye
    • 6.4.1 LiDAR Chip Layout
    • 6.4.2 Benefit from Intel's Silicon Photonics Manufacturing Technology
  • 6.5 Lumotive
    • 6.5.1 Profile
    • 6.5.2 LiDAR Chip Technology
  • 6.6 LuminWave
    • 6.6.1 LiDAR Chip Technology
    • 6.6.2 LiDAR Chip Technology Upgrade
  • 6.7 visionICs
    • 6.7.1 Profile
    • 6.7.2 Autonomous Driving Sensor Chip Product Line
    • 6.7.3 Main LiDAR Chip Products (1)
    • 6.7.4 Main LiDAR Chip Products (2)
  • 6.8 Xilight
    • 6.8.1 Profile
    • 6.8.2 Autonomous Driving Sensor Chip Product Line
    • 6.8.3 Main LiDAR Chip Products (1): Detection Chip
    • 6.8.4 Main LiDAR Chip Products (2): Signal Receiving SiPM Chip
    • 6.8.5 Main LiDAR Chip Products (3): Digital Conversion Chip - XTD50
    • 6.8.6 Product R&D Dynamics
  • 6.9 ABAX Sensing
    • 6.9.1 Profile
    • 6.9.2 LiDAR Chips
    • 6.9.3 Parameters of LiDAR Products
    • 6.9.4 Development Dynamics
  • 6.10 Vertilite
    • 6.10.1 Profile
    • 6.10.2 LiDAR Chips: CAC940K010
    • 6.10.3 LiDAR Chips: CAC940F005
  • 6.11 Hesai Technology
    • 6.11.1 Self-developed Chip Planning
    • 6.11.2 Self-developed Chip Planning: Work to Lay out Single-chip Solutions
    • 6.11.3 Scope of Self-developed Chips
    • 6.11.4 Scope of Self-developed Chips
    • 6.11.5 Application of Self-developed Chips
  • 6.12 China Science Photon Chip
    • 6.12.1 Profile
    • 6.12.2 LiDAR Chip Layout
  • 6.13 Fortsense
    • 6.13.1 Profile
    • 6.13.2 LiDAR Chip Business
  • 6.14 DAO Sensing
    • 6.14.1 LiDAR Chip Planning (1)
    • 6.14.2 LiDAR Chip Planning (1)
  • 6.15 Others
    • 6.15.1 LiDAR Chip Business of Sophoton
    • 6.15.2 LiDAR Chip Layout of Huawei
    • 6.15.3 LiDAR Chip Business of Luminar
    • 6.15.4 Automotive LiDAR Chip Business of Berxel Photonics
    • 6.15.5 LiDAR Business of Dibotics

7 Vision Sensor Chip Suppliers

  • 7.1 ON Semiconductor
    • 7.1.1 Profile
    • 7.1.2 Market & Product Layout (1)
    • 7.1.3 Market & Product Layout (2)
    • 7.1.4 Classification of Products
    • 7.1.5 Automotive CIS Products
    • 7.1.6 Automotive ISP Products
    • 7.1.7 CIS Products - Front View CIS (1)
    • 7.1.8 CIS Products - Front View CIS (2)
    • 7.1.9 CIS Products - Cockpit CIS (1)
    • 7.1.10 CIS Products - Cockpit CIS (2)
    • 7.1.11 CIS Products - Cockpit CIS (3)
    • 7.1.12 CIS Products - Cockpit CIS (4)
    • 7.1.13 CIS Products - Surround/Back View CIS
    • 7.1.14 ISP Products - ISP (1)
    • 7.1.15 ISP Products - ISP (2)
    • 7.1.16 CIS Technology
    • 7.1.17 LiDAR Chip Technology
    • 7.1.18 Market Share and Customers of ON Semiconductor's Automotive Image Sensors
    • 7.1.19 Autonomous Driving Ecosystem Partners (1)
    • 7.1.20 Autonomous Driving Ecosystem Partners (2)
  • 7.2 Samsung Electronics
    • 7.2.1 Automotive Image Sensors: ISOCELL Auto
    • 7.2.2 Automotive Image Sensors: ISOCELL Auto 4AC
    • 7.2.3 Features of Automotive Image Sensors
  • 7.3 Sony
    • 7.3.1 Profile
    • 7.3.2 CIS Market Layout
    • 7.3.3 Development History of CIS
    • 7.3.4 Classification of Semiconductor Products
    • 7.3.5 Autonomous Driving Sensor Chip Product Line
    • 7.3.6 CIS Technology
    • 7.3.7 Automotive CIS Products (1)
    • 7.3.8 Automotive CIS Products (2)
    • 7.3.9 Automotive CIS Products (3)
    • 7.3.10 Application of Autonomous Driving Sensor Chips (1)
    • 7.3.11 Application of Autonomous Driving Sensor Chips (2)
  • 7.4 NXP
    • 7.4.1 Profile
    • 7.4.2 Classification of Products
    • 7.4.3 Automotive ISP Products - ISP-integrated Vision Processing Unit (1)
    • 7.4.4 Automotive ISP Products - ISP-integrated Vision Processing Unit (2)
    • 7.4.5 Automotive ISP Products - ISP-integrated Vision Processing Unit (3)
    • 7.4.6 Automotive ISP Products - ISP-integrated Autonomous Driving SoC (1)
    • 7.4.7 Automotive ISP Products - ISP-integrated Autonomous Driving SoC (2)
    • 7.4.8 Automotive ISP Products - ISP-integrated Autonomous Driving SoC (3)
    • 7.4.9 Automotive ISP Products - ISP-integrated Autonomous Driving SoC (4)
    • 7.4.10 Summary of Automotive ISP Products
    • 7.4.11 ISP Software Training Partners
  • 7.5 Nextchip
    • 7.5.1 Profile & Classification of Products
    • 7.5.2 Development History and Market Layout
    • 7.5.3 Core Technologies
    • 7.5.4 Products - ISP (1)
    • 7.5.5 Products - ISP (2)
    • 7.5.6 Products - ISP (3)
    • 7.5.7 Products - ISP (4)
    • 7.5.8 Products - ISP-integrated Autonomous Driving SoC (1)
    • 7.5.9 Products - ISP-integrated Autonomous Driving SoC (2)
    • 7.5.10 Products - ISP-integrated Autonomous Driving SoC (3)
    • 7.5.11 Summary of Products (1)
    • 7.5.12 Summary of Products (2)
    • 7.5.13 Customers and Partners
  • 7.6 OmniVision Technology
    • 7.6.1 Profile
    • 7.6.2 Market Layout (1)
    • 7.6.3 Market layout (2)
    • 7.6.4 Technologies (1)
    • 7.6.5 Technologies (2)
    • 7.6.6 Classification of Products
    • 7.6.7 Products - ISP-integrated Video Processing Unit (1)
    • 7.6.8 Products - ISP-integrated Video Processing Unit (2)
    • 7.6.9 Products - ISP-integrated Video Processing Unit (3)
    • 7.6.10 Products - ISP-integrated Video Processing Unit (4)
    • 7.6.11 Products - ISP
    • 7.6.12 Products - ISP-integrated CIS (1)
    • 7.6.13 Products - ISP-integrated CIS (2)
    • 7.6.14 Products - ISP-integrated CIS (3)
    • 7.6.15 Products - ISP-integrated CIS (4)
    • 7.6.16 Products - Non-ISP CIS
    • 7.6.17 Summary of Products (1)
    • 7.6.18 Summary of Products (2)
    • 7.6.19 Comparison of Some CIS Products between OmniVision and ON Semiconductor
  • 7.7 SmartSens
    • 7.7.1 Profile
    • 7.7.2 Classification of Products
    • 7.7.3 Automotive CIS Business
    • 7.7.4 Products - ISP-integrated CIS (1)
    • 7.7.5 Products - ISP-integrated CIS (2)
    • 7.7.6 Products - ISP-integrated CIS (3)
    • 7.7.7 Products - ISP-integrated CIS (4)
    • 7.7.8 Products - ISP-integrated CIS (5)
    • 7.7.9 Products - ISP-integrated CIS (6)
    • 7.7.10 Summary of ISP-integrated CIS Products
    • 7.7.11 Automotive CIS Product Layout (1)
    • 7.7.12 Automotive CIS Product Layout (2)
    • 7.7.13 Market Layout (1)
    • 7.7.14 Market Layout (2)
    • 7.7.15 Product R&D Layout
  • 7.8 GalaxyCore
    • 7.8.1 Profile
    • 7.8.2 CMOS Image Sensor Business
  • 7.9 Metoak
    • 7.9.1 Profile
    • 7.9.2 Product Lines
    • 7.9.3 Stereo Vision Chips
  • 7.10 Rockchip
    • 7.10.1 Panoramic View Chip - RK3588M
    • 7.10.2 Architecture of RK3588M SoC
  • 7.11 Fullhan Microelectronics
    • 7.11.1 Profile
    • 7.11.2 Classification of Products
    • 7.11.3 Products - ISP (1)
    • 7.11.4 Products - ISP (2)
    • 7.11.5 Products & Summary of Products
    • 7.11.6 ISP Tuning & Image Tuning Lab
    • 7.11.7 ISP Product Layout & Market Layout
    • 7.11.8 Customers & Partners
  • 7.12 Others
    • 7.12.1 GPU Products of ARM
    • 7.12.2 Vision Chip Products of NST Technology
비교리스트
0 건의 상품을 선택 중
상품 비교하기
전체삭제