½ÃÀ庸°í¼­
»óÇ°ÄÚµå
1513560

¼¼°èÀÇ ÀÚÀ² ¹è¼Û »ê¾÷(2024³â)

Autonomous Delivery Industry Research Report, 2024

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: ResearchInChina | ÆäÀÌÁö Á¤º¸: ¿µ¹® 205 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    


¡Ø º» »óÇ°Àº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

1. ÀÚÀ² ¹è¼Û Â÷·®°¡ Åë»ó ¿îÇà¿¡ µé¾î°¡ °­¼Ò¼ºÀº Àü±¹ÀÇ ÃÖ÷´ÜÀ» ´Þ¸®°í ÀÖ½À´Ï´Ù.

Áö±Ý±îÁö ÀÚÀ² ¹è¼ÛÀº ½Å¼Ó ¹è¼Û, ½´ÆÛ¸¶ÄÏ, ÀÚµ¿ ¼Ò¸Å µîÀÇ Àå¸é¿¡ ÀÀ¿ëµÇ°í ÀÖ½À´Ï´Ù. ¼Ó´Þ ±â¾÷¿¡¼­´Â ÀÚÀ² ¹è¼ÛÀÇ Á¤»óÀûÀÎ ÀÀ¿ëÀÌ ½ÇÇöµÇ°í ÀÖ½À´Ï´Ù. Áö¿ªº°·Î´Â 2023³â ÃÊ-2024³â 5¿ù¿¡, ¼Ó´Þ ±â¾÷¿¡ À־ÀÇ ÀÚÀ² ¹è¼Û Â÷·®ÀÇ Åë»ó ¿îÇàÀº ÁÖ·Î È­µ¿, È­ºÏ, È­¼­ºÏ¿¡ ÁýÁßÇß½À´Ï´Ù. ±¸Ã¼ÀûÀ¸·Î´Â È­µ¿Áö±¸¿¡¼­ °¡Àå ÀÚÀ²ÁÖÇàÂ÷°¡ ¸¹¾Æ ÁÖ·Î °­¼Ò¼º, ¾ÈÈÄÀ̼º, Àý°­¼º¿¡ ÆÛÁ® ÀÖ½À´Ï´Ù. ¼ºº° ¼øÀ§´Â Àå¾¥¼º > ¾ÈÈÄÀ̼º > »ê½Ã¼º > Àý°­¼º > »ê¼­¼º > »çõ¼º > Ç㺣À̼º/º£ÀÌ¡½Ã°¡ µÇ¾ú½À´Ï´Ù.

Àå¾¥¼ºÀº º¸Åë ¿îÇàÇÏ´Â ÀÚÀ² ¹è¼Û Â÷·®ÀÇ ¼ö°¡ °¡Àå ¸¹°í, ¼ÒÁֽô Àå¾¥¼º, ½ÉÁö¾î Àü±¹¿¡¼­ °¡Àå ¼Ó´Þ±â¾÷ÀÇ ÀÚÀ² ¹è¼Û Â÷·®°¡ ¸¹Àº µµ½ÃÀÔ´Ï´Ù. Standing Committee of the 14th Jiangsu Provincial Peoples Congress´Â 2023³â 11¿ù Àü±¹¿¡ ¾Õ¼­ Internet of Vehicles¿Í Áö´ÉÇü Ä¿³ØƼµå Â÷·®ÀÇ °³¹ßÀ» ÃËÁøÇÏ´Â ¹ý·üÀ» Á¦Á¤ÇÏ°í Decision on Promoting the Development of Internet of Vehicles and Intelligent Connected ½ÂÀÎÇß½À´Ï´Ù. 2024³â 4¿ù±îÁö ¾¥Àú¿ì½Ã ¼îÁÒ±¸¿¡¼­´Â 41´ëÀÇ ÀÚÀ² ¹è¼Û Â÷·®°¡ Åë»ó ¿îÇàÇÏ°í, ¸ÅÀÏ ¾à 1¸¸ 4,000°³ÀÇ ¼ÒÆ÷¸¦ ¹è¼ÛÇÏ°í ÀÖ½À´Ï´Ù. ¼îÁÒ±¸´Â SF Express, Yunda Express, STO Express µîÀÇ ¼Ó´Þ¾÷ü¿Í ±íÀº Çù·Â °ü°è¸¦ ¸Î¾ú½À´Ï´Ù.

2.¡¸¿Á¿Ü ÀÚÀ² ÁÖÇàÂ÷ ½Ç³» ·Îº¿¡¹Àº ÀÚÀ²ÀûÀ¸·Î ¸ñÀûÁö¿¡ Á÷Á¢ ¹è¼ÛÇÒ ¼ö ÀÖ½À´Ï´Ù.

2023³â 6¿ù, ¡¸¿Á¿Ü ÀÚÀ² ÁÖÇàÂ÷ ½Ç³» ·Îº¿¡¹ÅëÇÕ AI ¹è¼Û ¼Ö·ç¼ÇÀÌ China Postal Express& LogisticsÀÇ º»»ç¿¡¼­ Á¤½ÄÀ¸·Î ¹ßÇ¥µÇ¾ú½À´Ï´Ù. ÀÌ »õ·Î¿î ¼Ö·ç¼ÇÀº ¾ß¿Ü ÀÚÀ² ÁÖÇà Â÷·®°ú ´Ù¾çÇÑ ½Ç³» ·Îº¿À» °áÇÕÇÏ¿© ´Ù¾çÇÑ ½Ã³ª¸®¿À¿¡¼­ ¸ñÀûÁö·Î »óÇ°À» Á÷Á¢ Àü´ÞÇÒ °¡´É¼ºÀÌ ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ¿Á¿Ü ÀÚÀ²ÁÖÇàÂ÷°¡ ½Ç³» ·Îº¿¿¡ Á¢ÃËÇÏ°í, ¿ìÆí½ÇÀÇ ½ºÅÇÀÌ ·Îº¿À» Á¶ÀÛÇØ »óÇ°À» ¹è¼Ûó¿¡ Àü´ÞÇØ, ÀÀ¿ëÀÚ°¡ WeChat ¾ÛÀ¸·Î Ä¿ÇǸ¦ ÁÖ¹®ÇÏ¸é ·Îº¿ÀÌ ¹è¼ÛÇØ, ÀÀ¿ëÀÚ°¡ EMSÀÇ WeChat ¾ÛÀ¸·Î ÁÖ¹®ÇÏ¸é ·Îº¿ÀÌ »óÇ°À» ¹Þ°Ô µË´Ï´Ù.

¿Á¿Ü ÀÚÀ² ÁÖÇàÂ÷ ½Ç³» ·Îº¿ÀÇ ¹è¼Û ¼Ö·ç¼ÇÀº ÁÖ·Î ¿Á¿Ü ÀÚÀ² ÁÖÇàÂ÷ÀÇ ½´ÆÛ ¼¨½Ã¿Í ½´ÆÛ ºê·¹Àο¡ ÀÇÁ¸ÇÏ°í ´Ù¾çÇÑ ½Ç³» ·Îº¿°ú Á¢ÃËÇÏ¿© ÁýÁßÀûÀÎ °øÀ¯, Æø³ÐÀº Çù·Â, ½Ç½Ã°£ ½ºÄÉÁÙ¸µÀ» ½Ç½Ã ÇÕ´Ï´Ù. ÇÑÆí, ½Ç³» ·Îº¿Àº ¿ÏÀüÇÑ Áö°¢,ÀÎÁö ±â´É ÄÄÆ÷³ÍÆ®¿Í ¼º¼÷ÇÑ ÃøÀ§,³×ºñ°ÔÀÌ¼Ç ±â´É ÄÄÆ÷³ÍÆ®¸¦ °®Ãß°í ÀÖ¾î, 1°³ÀÇ Å°·Î ¿¤¸®º£ÀÌÅ͸¦ È£ÃâÇϰųª, ÀüÀÚ ¹®À» ¿­°Å³ª, °³Âû±¸¸¦ Åë°úÇϰųª, IoT¿¡ ¾×¼¼½ºÇØ ¼ö ÀÖ½À´Ï´Ù.

2024³â 4¿ù, EMSÀÇ WeChat ¾ÛÀÌ ·Îº¿ÀÇ È£º° ¹è¼Û ¼­ºñ½º¸¦ ½ÃÀÛÇß½À´Ï´Ù. ÀÌ ¾ÛÀÇ ¹è¼Û ÆäÀÌÁö¿¡´Â "·Îº¿ È£º° ¹è¼Û"¿É¼ÇÀÌ Ãß°¡µÇ¾î ÀÖ½À´Ï´Ù. Å« °ø¿øÀ̳ª ´ëÇÐ µî¿¡¼­´Â ¹è¼Û¾÷ÀÚ°¡ ÀÚÀ²ÁÖÇàÂ÷¸¦ Á¶ÀÛÇÏ¿© ¾Æ·¡ÃþÀ¸·Î ÁüÀ» ¿î¹ÝÇÏ°í ½Ç³» ·Îº¿ÀÌ ÀÚµ¿À¸·Î ¸ñÀûÁö±îÁö "Áß°è"ÇÕ´Ï´Ù.

3. ÀÚÀ² ¹è¼Û ±â¼úÀº ºü¸£°Ô ¹Ýº¹µÇ°í BEV TransformerÀÇ Áö°¢ ±â¼úÀÌ Â÷·®¿¡ »ó·úÇß½À´Ï´Ù.

NEOLIXÀÇ ¾Ë°í¸®Áò ±¸Á¶´Â 1´Ü°èÀÇ °¡º­¿î Áö°¢°ú ¹«°Å¿î Áöµµ, 2´Ü°èÀÇ ¹«°Å¿î Áö°¢°ú °¡º­¿î Áöµµ, 3´Ü°èÀÇ ±âÃÊ ¸ðµ¨ÀÇ 4Â÷¿ø Áö°¢¿¡ ±âÃÊÇÑ ½Ç½Ã°£ Áöµµ »ý¼ºÀÇ 3´Ü°è¸¦ °ÅĨ´Ï´Ù.

ÀÚÀ²¿îÀü ¼ÒÇÁÆ®¿þ¾îÀÇ ±â¼ú ¼öÁØ¿¡¼­ NeolixÀÇ ÀÚÀ²ÁÖÇàÂ÷ X3 Plus´Â ÀÚÀ²¿îÀüÀÇ ±âº»±â¼ú ¾ÆÅ°ÅØó ³í¸®¸¦ ¾ö°ÝÇÏ°Ô ´ä½ÀÇÏ°í, ¸ÖƼ¸ð´Þ BEV°ø°£ 4D ½Ã°è¿­ À¶ÇÕÁö°¢±â¼úÀ» ä¿ëÇÏ¿© Orion-X¸¦ žÀç À¶ÇÕ ÀüÀÇ BEV Áö°¢À» ½ÇÇöÇÏ°í Transformer Áö°¢ ±âÃÊ ¸ðµ¨À» È°¿ëÇÏ¿© ¿¬¼Ó ½Ã°è¿­ÀÇ ¸ÖƼ ¼¾¼­ µ¥ÀÌÅ͸¦ ½Ç½Ã°£À¸·Î ó¸®ÇÏ¿© »ç°¢ Á¦·Î, °íÁ¤¹Ðµµ, °í°ß·ÚµµÀÇ È¯°æ Áö°¢À» ½ÇÇöÇÕ´Ï´Ù.

º» º¸°í¼­¿¡¼­´Â Áß±¹ ÀÚÀ² ¹è¼Û»ê¾÷¿¡ ´ëÇÑ Á¶»ç ºÐ¼®, ÀÚÀ² ¹è¼Û Â÷·® ÇöȲ, ÀÚÀ² ¹è¼Û·Îº¿ÀÇ ÀÀ¿ë ½Ã³ª¸®¿À¿Í ¼Ö·ç¼Ç Á¦°ø¾÷ü, ÇâÈÄ ¿¬±¸°³¹ß µ¿Çâ ¿¹Ãø µîÀÇ Á¤º¸¸¦ Á¦°øÇÕ´Ï´Ù.

¸ñÂ÷

Á¦1Àå ÀÚÀ² ¹è¼Û »ê¾÷ÀÇ °³¿ä

  • ÀÚÀ² ¹è¼Û»ê¾÷ÀÇ Á¤ÀÇ¿Í ºÐ·ù
  • ±¹¿ÜÀÇ ÀÚÀ² ¹è¼Û °ü¸® Á¤Ã¥
  • Áß±¹ ÀÚÀ² ¹è¼Û Â÷·®ÀÇ ³ë»ó Å×½ºÆ®¿Í ¿î¿ë ¿¡¸®¾îÀÇ ¿ä¾à(1)
  • Áß±¹ ÀÚÀ² ¹è¼Û Â÷·®ÀÇ ³ë»ó Å×½ºÆ®¿Í ¿î¿ë ¿¡¸®¾îÀÇ ¿ä¾à(2)
  • Áß±¹ ÀÚÀ² ¹è¼Û Â÷·®ÀÇ ³ë»ó Å×½ºÆ®¿Í ¿î¿ë ¿¡¸®¾îÀÇ ¿ä¾à(3)
  • ÀÚÀ² ¹è¼Û Â÷·®ÀÇ ³ë»ó ½ÃÇè°ú »ó¾÷¿ë ½ÇÁõ °ü¸® Á¶Ä¡ÀÇ Á¤Ã¥ ¿¹ : º£ÀÌ¡(2023³â 2¿ù)
  • Áß±¹¿¡¼­ ÀÚÀ² ¹è¼Û Â÷·®°¡ Á¤½ÄÀ¸·Î ÁÖÇàÀ» °³½ÃÇÑ Áö¿ªÀÇ ¿ä¾à
  • Áß±¹ ÀÚÀ² ¹è¼Û Â÷·®ÀÇ °³¹ß¿¡ À־ÀÇ ¹®Á¦Á¡
  • ÀÚÀ² ¹è¼Û Â÷·®ÀÇ ±Ô¸ð È®´ë¿Í »ó¾÷È­ ÃËÁø¿¡ °üÇÑ Á¦¾È
  • ÀÚÀ² ¹è¼ÛÀÇ »ê¾÷ üÀÎ
  • ÀÚÀ² ¹è¼Û Â÷·® ¼Ö·ç¼Ç °ø±ÞÀÚÀÇ ¿ä¾à
  • ÀÚÀ² ¹è¼Û Â÷·® ¾ÖÇø®ÄÉÀÌ¼Ç ÇÁ·Î¹ÙÀÌ´õ¿Í Á¦ÈÞÀÇ ¿ä¾à(1)
  • ÀÚÀ² ¹è¼Û Â÷·® ¾ÖÇø®ÄÉÀÌ¼Ç ÇÁ·Î¹ÙÀÌ´õ¿Í Á¦ÈÞÀÇ ¿ä¾à(2)
  • ÀÚÀ² ¹è¼Û Â÷·® ¾ÖÇø®ÄÉÀ̼Ç/¼Ö·ç¼Ç Á¦°ø¾÷üÀÇ ¿ä¾à
  • ÀÚÀ² ¹è¼Û ·Îº¿ ¼Ö·ç¼Ç Á¦°ø¾÷üÀÇ ¿ä¾à(1)
  • ÀÚÀ² ¹è¼Û ·Îº¿ ¼Ö·ç¼Ç Á¦°ø¾÷üÀÇ ¿ä¾à(2)
  • ÀÚÀ² ¹è¼Û ·Îº¿ ¼Ö·ç¼Ç Á¦°ø¾÷üÀÇ ¿ä¾à(3)

Á¦2Àå ÀÚÀ² ¹è¼Û Â÷·®ÀÇ °³¿ä¿Í ÀÀ¿ë »ç·Ê

  • ÀÚÀ² ¹è¼Û Â÷·®ÀÇ °³¿ä
  • 7ÀÇ »ê¾÷ üÀÎ
  • DADAÀÇ ÀÀ¿ë ¼Ö·ç¼Ç
  • MeituanÀÇ ÀÀ¿ë°ú ¼Ö·ç¼Ç
  • CainiaoÀÇ ÀÀ¿ë ¹× ¼Ö·ç¼Ç
  • JD.comÀÇ ÀÀ¿ë ¹× ¼Ö·ç¼Ç
  • SFÀÇ ÀÀ¿ë°ú ¼Ö·ç¼Ç
  • China PostÀÇ ÀÀ¿ë ¹× ¼Ö·ç¼Ç
  • YTOÀÇ ÀÀ¿ë ¼Ö·ç¼Ç
  • ZTOÀÇ ÀÀ¿ë ¼Ö·ç¼Ç

Á¦3Àå ÀÚÀ² ¹è¼Û Â÷·® ¼Ö·ç¼Ç Á¦°ø¾÷ü

  • Neolix
  • Go Further AI
  • ZELOS
  • Haomo.AI
  • White Rhino

Á¦4Àå ÀÚÀ² ¹è¼Û ·Îº¿ÀÇ ÀÀ¿ë ½Ã³ª¸®¿À¿Í ¼Ö·ç¼Ç

  • ÀÚÀ² ¹è¼Û ·Îº¿ÀÇ À¯Çü
  • È£ÅÚ¿¡¼­ÀÇ ÀÚÀ² ¹è¼Û ·Îº¿ÀÇ ÀÀ¿ë ½Ã³ª¸®¿À¿Í ¼Ö·ç¼Ç
  • ¿ÀÇǽº ºôµù¿¡ À־ÀÇ ÀÚÀ² ¹è¼Û ·Îº¿ÀÇ ÀÀ¿ë ½Ã³ª¸®¿À¿Í ¼Ö·ç¼Ç
  • ¼îÇθôÀÇ ÀÚÀ² ¹è¼Û ·Îº¿ÀÇ ÀÀ¿ë ½Ã³ª¸®¿À¿Í ¼Ö·ç¼Ç

Á¦5Àå ÀÚÀ² ¹è¼Û ·Îº¿ ¼Ö·ç¼Ç Á¦°ø¾÷ü

  • OrionStar
  • Keenon
  • PUDU
  • LimX Dynamics

Á¦6Àå ÀÚÀ² ¹è¼ÛÀÇ °³¹ß µ¿Çâ

BJH 24.07.25

Autonomous Delivery Research: Foundation Models Promote the Normal Application of Autonomous Delivery in Multiple Scenarios

Autonomous Delivery Industry Research Report, 2024 released by ResearchInChina combs and studies the status quo of autonomous delivery vehicles in the autonomous delivery industry, the application scenarios of autonomous delivery robots and solution providers, as well as predicts the future development trends of autonomous delivery.

1. Autonomous delivery vehicles have entered normal operation, and Jiangsu Province is at the forefront of the country.

So far, autonomous delivery has been applied to express delivery, supermarkets, autonomous retail and other scenarios. The normal application of autonomous delivery has been realized in express delivery enterprises. By region, the normal operation of autonomous delivery vehicles in express delivery enterprises was mainly concentrated in East China, North China and Northwest China during the period from early 2023 to May 2024. Specifically: East China saw the most autonomous delivery vehicles, which mainly spread in Jiangsu, Anhui and Zhejiang. By province, the ranking is Jiangsu > Anhui > Shaanxi > Zhejiang > Shanxi > Sichuan > Hebei/Beijing.

Jiangsu Province has the largest number of autonomous delivery vehicles in normal operation, and Suzhou is the city with the most autonomous delivery vehicles in express delivery enterprises in Jiangsu and even the whole country. In November 2023, Jiangsu took the lead in the country to enact legislation to promote the development of Internet of Vehicles and intelligent connected vehicles: the Standing Committee of the 14th Jiangsu Provincial People's Congress approved the "Decision on Promoting the Development of Internet of Vehicles and Intelligent Connected Vehicles", which made guiding and authoritative provisions on the passage and management of autonomous driving equipment such as autonomous delivery vehicles on roads and came into effect on January 1, 2024. By April 2024, there had been 41 autonomous delivery vehicles in normal operation in Xiangcheng District of Suzhou, delivering about 14,000 parcels every day. Xiangcheng District reached in-depth cooperation with express delivery companies such as SF Express, Yunda Express and STO Express.

The following indicates the normal operation of autonomous delivery vehicles in express delivery enterprises by province:

  • 2. "Outdoor autonomous vehicles + indoor robots" can accomplish autonomous direct delivery to destinations.

In June 2023, an "outdoor autonomous vehicles + indoor robots" integrated AI delivery solution was officially launched in the headquarters of China Postal Express & Logistics. The new solution can combine outdoor autonomous vehicles with different indoor robots to directly deliver goods to destinations in a variety of scenarios. For example, outdoor autonomous vehicles contact indoor robots, mailroom staff operate robots to deliver goods to destinations, users can order coffee via WeChat applets which is then delivered by robots, and robots pick up items after users place orders on the WeChat applet of EMS.

The "outdoor autonomous vehicles + indoor robots" delivery solution mainly relies on the super chassis and super brains of outdoor autonomous vehicles to contact different indoor robots for intensive sharing, wide cooperation and real-time scheduling, while indoor robots have complete perception and cognitive functional components as well as mature positioning and navigation functional components to summon elevators with one key, open electronic doors, pass turnstiles and access Internet of Things.

In April 2024, the WeChat applet of EMS launched the robot door-to-door delivery service. On the delivery page of the applet, there is an additional "robot door-to-door" delivery option. In large parks, universities and other places, couriers operate autonomous vehicles to transport parcels downstairs, and them indoor robots automatically "relay" them to destinations.

3. Autonomous delivery technology has been rapidly iterated, and BEV+Transformer perception technology has landed on vehicles.

The algorithm structure of NEOLIX has gone through three stages, from first stage of light perception and heavy maps, to the second stage of heavy perception and light maps, and to the third stage of real-time map generation based on 4D perception of foundation models.

On the technical level of autonomous driving software, X3 Plus, Neolix's autonomous vehicle, strictly follows the underlying technical architecture logic of autonomous driving, adopts the multi-modal BEV space 4D time sequence fusion perception technology, carries Orion-X to realize pre-fusion BEV perception, and leverages the Transformer perception foundation model to process multi-sensor data of continuous time series in real time and realize zero-blind-spot, high-precision and high-robustness environmental perception.

In BEV space, time sequence fusion is carried out to form 4D space. At the same time, complex traffic flow reinforcement learning (TFRL) allows autonomous vehicles to interact with other road participants and predict their future behavior, so as to conduct better planning and control. Neolix's autonomous driving system has the capability of autonomous learning, so that it can perceive more complex obstacles, handle more complicated roads, and make autonomous delivery easy.

In other words, all the features of 2 lidars and 11 panoramic cameras are converted into the BEV space for fusion, and more comprehensive perception is fulfilled based on the fused features. This system can make full use of the advantages of each sensor, and overcome the corresponding shortcomings, so as to perform perfect perception within a range of 40m front and rear and 30m left and right, and ensure that autonomous vehicles can accurately detect objects and lane lines and recognize traffic lights, thus guaranteeing the driving safety of autonomous vehicles.

Table of Contents

1 Overview of Autonomous Delivery Industry

  • 1.1 Definition and Classification of Autonomous Delivery Industry
  • 1.2 Overseas Autonomous Delivery Management Policies
  • 1.3 Summary of Road Tests and Operation Areas of Autonomous Delivery Vehicles in China (1)
  • 1.3 Summary of Road Tests and Operation Areas of Autonomous Delivery Vehicles in China (2)
  • 1.3 Summary of Road Tests and Operation Areas of Autonomous Delivery Vehicles in China (3)
  • 1.4 Policy Example of Road Tests and Commercial Demonstration Management Measures for Autonomous Delivery Vehicles: Beijing (February 2023)
  • 1.5 Summary of Regions Where Autonomous Delivery Vehicles Officially Hit the Road in China
  • 1.6 Problems in the Development of Autonomous Delivery Vehicles in China
  • 1.7 Suggestions on Promoting the Scale and Commercialization of Autonomous Delivery Vehicles
  • 1.8 Autonomous Delivery Industry Chain
  • 1.9 Summary of Autonomous Delivery Vehicle Solution Providers
  • 1.10 Summary of Autonomous Delivery Vehicle Application Providers and Cooperation (1)
  • 1.10 Summary of Autonomous Delivery Vehicle Application Providers and Cooperation (2)
  • 1.11 Summary of Autonomous Delivery Vehicle Application Providers and Solution Providers
  • 1.12 Summary of Autonomous Delivery Robot Solution Providers (1)
  • 1.12 Summary of Autonomous Delivery Robot Solution Providers (2)
  • 1.12 Summary of Autonomous Delivery Robot Solution Providers (3)

2 Overview and Application Cases of Autonomous Delivery Vehicles

  • 2.1 Overview of Autonomous Delivery Vehicles
    • 2.1.1 Product Types
    • 2.1.2 Application Scenarios
    • 2.1.3 Composition
    • 2.1.4 Core Technology
    • 2.1.5 Core Parts
    • 2.1.6 Main Cost
  • 2.1. 7 Industry Chain
    • 2.1.8 Latest Financing
  • 2.2 Application Solutions of DADA
    • 2.2.1 Open Autonomous Delivery Platform
    • 2.2.2 Delivery Capacity Modes
    • 2.2.3 Cooperation with Autonomous Delivery Vehicle Companies
    • 2.2.4 Cases of Cooperation with Autonomous Delivery Vehicle Companies
    • 2.2.5 Application Cases
  • 2.3 Application and Solutions of Meituan
    • 2.3.1 Autonomous Delivery Vehicle Solutions
    • 2.3.2 Core Technology of Autonomous Delivery Vehicles
    • 2.3.3 The First Open Road Test of Automatic Delivery Vehicles
    • 2.3.4 Application Scenario Cases
  • 2.4 Application and Solutions of Cainiao
    • 2.4.1 Autonomous Delivery Vehicle Solutions
    • 2.4.2 Summary of Universities Where Autonomous Delivery Vehicles Are Used
    • 2.4.3 Application Scenario Cases
  • 2.5 Application and Solutions of JD.com
    • 2.5.1 Autonomous Delivery Vehicle Solutions (1)
    • 2.5.2 Autonomous Delivery Vehicle Solutions (2)
    • 2.5.3 Application Scenario Cases (1)
    • 2.5.4 Application Scenario Cases (2)
    • 2.5.5 Application Scenario Cases (3)
    • 2.5.6 Application Scenario Cases (4)
  • 2.6 Application and Solutions of SF
    • 2.6.1 Autonomous Delivery Vehicle Solutions (1)
    • 2.6.2 Autonomous Delivery Vehicle Solutions (2)
    • 2.6.3 Autonomous Delivery Vehicle Solutions (3)
    • 2.6.4 Summary of the First Batch of Autonomous Delivery Vehicles on the Road in Cities
    • 2.6.5 Application Scenario Cases (1)
    • 2.6.6 Application Scenario Cases (2)
    • 2.6.7 Cases of Cooperation with Autonomous Delivery Vehicle Companies
  • 2.7 Application and Solutions of China Post
    • 2.7.1 Summary of Solutions in Cooperation with Autonomous Delivery Vehicle Companies
    • 2.7.2 Latest Autonomous Delivery Vehicle Solutions (1)
    • 2.7.2 Latest Autonomous Delivery Vehicle Solutions (2)
    • 2.7.3 Usage of Autonomous Delivery Vehicles in Cities and Outlets
    • 2.7.4 Application Cases (1)
    • 2.7.5 Application Cases (2)
  • 2.8 Application Solutions of YTO
    • 2.8.1 Solutions in Cooperation with Autonomous Delivery Vehicle Companies (1)
    • 2.8.2 Solutions in Cooperation with Autonomous Delivery Vehicle Companies (2)
    • 2.8.3 Solutions in Cooperation with Autonomous Delivery Vehicle Companies (3)
    • 2.8.4 Solutions in Cooperation with Autonomous Delivery Vehicle Companies (4)
    • 2.8.5 Summary of the First Batch of Autonomous Delivery Vehicles on the Road in Cities
    • 2.8.6 Application Cases
  • 2.9 Application Solutions of ZTO
    • 2.9.1 Solutions in Cooperation with Autonomous Delivery Vehicle Companies (1)
    • 2.9.2 Solutions in Cooperation with Autonomous Delivery Vehicle Companies (2)
    • 2.9.3 Solutions in Cooperation with Autonomous Delivery Vehicle Companies (3)
    • 2.9.4 Summary of the First Batch of Autonomous Delivery Vehicles on the Road in Cities
    • 2.9.5 Application Cases of Autonomous Delivery Vehicles
    • 2.9.6 Autonomous Vehicle Operation and Supervision Platform

3 Autonomous Delivery Vehicle Solution Providers

  • 3.1 Neolix
    • 3.1.1 Summary of Autonomous Delivery Vehicle Solutions
    • 3.1.2 Latest Autonomous Delivery Vehicle Solutions (1)
    • 3.1.2 Latest Autonomous Delivery Vehicle Solutions (2)
    • 3.1.3 Core Technology of Autonomous Delivery Vehicles (1)
    • 3.1.3 Core Technology of Autonomous Delivery Vehicles (2)
    • 3.1.4 Summary of Road Rights of Autonomous Delivery Vehicles in Key Cities in China
    • 3.1.5 Overseas Landing of Autonomous Delivery Vehicles and Cooperation
    • 3.1.6 Application Scenarios of Autonomous Delivery Vehicles and Cooperation
    • 3.1.7 Cases of Cooperation in Autonomous Delivery Vehicle Technology (1)
    • 3.1.8 Cases of Cooperation in Autonomous Delivery Vehicle Technology (2) and Financing Layout
  • 3.2 Go Further AI
    • 3.2.1 Autonomous Delivery Vehicle Solutions (1)
    • 3.2.2 Autonomous Delivery Vehicle Solutions (2)
    • 3.2.3 Autonomous Delivery Vehicle Solutions (3)
    • 3.2.4 Core Technology of Autonomous Delivery Vehicles (1)
    • 3.2.4 Core Technology of Autonomous Delivery Vehicles (2)
    • 3.2.5 Summary of Application Solutions of Autonomous Delivery Vehicles
    • 3.2.6 Summary of Regions Where Autonomous Delivery Vehicles Are Used and Services
  • 3.3 ZELOS
    • 3.3.1 Autonomous Delivery Vehicle Solutions
    • 3.3.2 Technical Framework and Operation Platform of Autonomous Delivery Vehicles
    • 3.3.3 Core Technology of Autonomous Delivery Vehicles (1)
    • 3.3.3 Core Technology of Autonomous Delivery Vehicles (2)
    • 3.3.4 Application Solutions of Autonomous Delivery Vehicles
  • 3.4 Haomo.AI
    • 3.4.1 Autonomous Delivery Vehicle Solutions (1)
    • 3.4.2 Autonomous Delivery Vehicle Solutions (2)
    • 3.4.3 Cooperation in Autonomous Delivery Vehicle Technology
    • 3.4.4 Manufacturing Bases of Autonomous Delivery Vehicles
    • 3.4.5 Application Solutions of Autonomous Delivery Vehicles
  • 3.5 White Rhino
    • 3.5.1 Autonomous Delivery Vehicle Solutions and Application Solutions (1)
    • 3.5.2 Autonomous Delivery Vehicle Solutions and Application Solutions (2)
    • 3.5.3 Core Technology of Autonomous Delivery Vehicles

4 Application Scenarios and Solutions of Autonomous Delivery Robots

  • 4.1 Types of Autonomous Delivery Robots
  • 4.2 Application Scenarios and Solutions of Autonomous Delivery Robots in Hotels
    • 4.2.1 Application Cases of Autonomous Delivery Robots in Hotels (1)
    • 4.2.2 Application Cases of Autonomous Delivery Robots in Hotels (2)
    • 4.2.3 Application Cases of Autonomous Delivery Robots in Hotels (3)
    • 4.2.4 Application Cases of Autonomous Delivery Robots in Hotels (4)
  • 4.3 Application Scenarios and Solutions of Autonomous Delivery Robots in Office Buildings
    • 4.3.1 Application Cases of Autonomous Delivery Robots in Office Buildings (1)
    • 4.3.2 Application Cases of Autonomous Delivery Robots in Office Buildings (2)
    • 4.3.3 Solutions of Autonomous Delivery Robots in Office Buildings
  • 4.4 Application Scenarios and Solutions of Autonomous Delivery Robots in Shopping Malls
    • 4.4.1 Application Cases of Autonomous Delivery Robots in Shopping Malls (1)
    • 4.4.2 Application Cases of Autonomous Delivery Robots in Shopping Malls (2)
    • 4.4.3 Solutions of Autonomous Delivery Robots in Shopping Malls

5 Autonomous Delivery Robot Solution Providers

  • 5.1 OrionStar
    • 5.1.1 Autonomous Delivery Robot Solutions (1)
    • 5.1.1 Autonomous Delivery Robot Solutions (1)
    • 5.1.2 Autonomous Delivery Robot Solutions (2)
    • 5.1.2 Autonomous Delivery Robot Solutions (2)
  • 5.2 Keenon
    • 5.2.1 Autonomous Delivery Robot Solutions
    • 5.2.2 Application Scenarios and Cooperation Cases of Autonomous Delivery Robots
  • 5.3 PUDU
    • 5.3.1 Autonomous Delivery Robot Solutions (1)
    • 5.3.1 Autonomous Delivery Robot Solutions (2)
    • 5.3.2 Application Scenarios and Cooperation Cases of Autonomous Delivery Robots
    • 5.3.3 Autonomous Quadruped Delivery Robot Solutions (1)
    • 5.3.3 Autonomous Quadruped Delivery Robot Solutions (2)
  • 5.4 LimX Dynamics
    • 5.4.1 Autonomous Quadruped Delivery Robot Solutions (1)
    • 5.4.1 Autonomous Quadruped Delivery Robot Solutions (2)
    • 5.4.2 Autonomous Bipedal Delivery Robot Solutions
    • 5.4.3 Core Technology of Autonomous Delivery Robots and Latest Financing

6 Development Trends of Autonomous Delivery

  • 6.1 Trend 1
  • 6.2 Trend 2
  • 6.3 Trend 3
  • 6.4 Trend 4
  • 6.5 Trend 5
  • 6.6 Trend 6
  • 6.7 Trend 7
  • 6.8 Trend 8
  • 6.9 Trend 9
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óÇ°À» ¼±Åà Áß
»óÇ° ºñ±³Çϱâ
Àüü»èÁ¦