Global Information
회사소개 | 문의 | 위시리스트

ADAS 및 자율주행 관련 산업 분석(2018-2019년) : 자동차용 레이더

ADAS and Autonomous Driving Industry Chain Report 2018-2019 - Automotive Radar

리서치사 ResearchInChina
발행일 2019년 03월 상품 코드 666531
페이지 정보 영문 190 Pages
가격
US $ 3,400 ₩ 4,102,000 Unprintable PDF by E-mail (Single User License) help
1명만 이용할 수 있는 라이선스입니다. PDF 파일은 Copy & Paste 가 되지 않으며, 인쇄 또한 불가능합니다.
US $ 3,600 ₩ 4,343,000 Hard Copy help
동일 기업 내에서 공유하여 이용할 수 있는 라이선스입니다. 이용 인원수 제한은 없습니다.
US $ 5,000 ₩ 6,032,000 Printable & Editable PDF by E-mail (Enterprise-wide License) help
구매기업과 모회사, 자회사, 관련 회사 등 회사 전체에서 인원수에 제한없이 이용할 수 있는 라이선스입니다. PDF파일은 Copy & Paste 가 가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다.


ADAS 및 자율주행 관련 산업 분석(2018-2019년) : 자동차용 레이더 ADAS and Autonomous Driving Industry Chain Report 2018-2019 - Automotive Radar
발행일 : 2019년 03월 페이지 정보 : 영문 190 Pages

중국의 승용차용 레이더 시장은 2017년부터 성장 궤도에 오르기 시작하여 2017년 출하대수는 232만대(전년대비 104.6% 증가), 2018년에는 358만대(전년대비 54% 증가)에 이르렀습니다. 중국 레이더 기업의 부상이 뚜렷하지만, 외자계 레이더 칩 제조업체 또한 통합형 고정밀도 솔루션을 제공하면서 그에 맞서고 있습니다.

세계 및 중국 ADAS(첨단 운전자 보조 시스템)/자율주행 관련 시장의 레이더 장비 개발/보급 동향에 초점을 맞추어 자동차용 레이더 기술 개요와 내역, 전체적인 시장 규모와 전망, 각종 레이더 기술 활용 상황, 외자계·중국 레이더 제조업체 개요와 실적 동향 등의 정보를 정리하여 전해드립니다.

제1장 레이더 기술 : 서론

  • 레이더의 정의
  • 중국의 레이더용 주파수대역 분할
  • 자동차용 레이더 개요
    • 레이더와 기타 센서 비교
    • 자동차용 레이더의 주파수대
    • 레이더의 작동 원리
    • 레이더 분류와 변조 기술
    • 79GHz 레이더
    • 레이더 캐스케이드
  • 자동차용 레이더 시스템의 구성
    • 레이더의 핵심 부품 : MMIC(Monolithic Microwave Integrated Circuit)
    • 레이더의 핵심 부품 : PCB 안테나
    • 레이더 칩
    • 중국의 레이더 칩 벤더
    • 신제품 발매 정보(Phased Array Architecture-based 77GHz CMOS Radar Chip)
  • 레이더의 용도
    • 많은 산업에서의 용도
    • 각종 ADAS 기능에서의 용도
    • 레이더 탐지 모드와 이용 사례
    • 레이더의 경쟁 기술
    • 전형적인 자동차용 레이더

제2장 자동차 레이더 시장

  • 자동차 업계의 4종류 최신 동향(전기화, 커넥티비티, 인텔리전스, 셰어링)에 의한 자동차 레이더 시장 성장 촉진
  • 중국의 자동차 레이더 시장은 세계 평균 속도보다 빠르게 성장
  • ADAS의 높은 탑재율
  • 자동차용 레이더
  • 77GHz 주파수대 개방
  • 승용차용 SRR/LRR and 24GHz/77GHz 레이더
  • 승용차용 레이더 출하대수와 시장 규모(24G/77G, 통산 6년간)
  • 중국의 자동차용 레이더 출하대수 및 시장 규모(통산 6년간)
  • 세계의 자동차용 레이더 시장 규모(통산 6년간)
  • 중국의 승용차용 레이더 탑재율
  • 승용차(신차)의 레이더 탑재율(월간 데이터)
  • 승용차용 레이더 탑재 구조와 솔루션별 탑재율(월간 데이터)
  • 신차의 레이더 탑재율 : 솔루션별
  • 신차의 레이더 탑재율 : 솔루션별
  • 레이더 장착 차량 판매 대수 : 브랜드/모델별
  • 77G LRR 출하대수와 공급업체별 시장 점유율 : 중국 승용차 시장의 경우
  • 일본 자동차 제조업체와 ADAS 센서 공급업체의 공급 관계성
  • 미국/한국/중국 자동차 제조업체와 ADAS 센서 공급업체의 공급 관계성
  • 유럽 자동차 제조업체와 ADAS 센서 공급업체의 공급 관계성

제3장 레이더 산업

  • 자동차용 레이더 산업
    • 기술 로드맵 : 중국의 자동차용 레이더 시스템
    • RF CMOS 반도체의 프로세스
    • 레이더와 카메라의 융합
    • 레이더 센서의 동향
    • 레이더의 통합 및 고정밀화 동향
    • 자동차 1대당 레이더 탑재수 증가 동향
    • 레이더 보급 움직임 : 상급 클래스에서 중급/하급 클래스로
    • 77GHz 레이더가 향후 주류가 될 전망
  • AWR1642 대응 4D 레이더
    • 다수의 스타트업 기업이 4D 레이더 개발을 위해서 AWR1642를 이용
    • Arbe Robotics
    • Ainstein
  • Metawave의 지각을 위한 차세대 4D 이미징 레이더
    • Metawave 개요
    • WARLORD의 고해상도 레이더와 작동 원리
    • 레이더의 운용조건과 손실
    • WARLORD의 장점과 단점 보완을 위한 솔루션
    • 활성 물질의 구조적 기능
    • 장애에 대한 내성
    • WARLORD의 검출 대상 분류

제4장 세계 레이더 벤더

  • Continental
  • Bosch
  • ZF TRW
  • Aptiv
  • Veoneer
  • Denso
  • Valeo
  • Hella
  • Denso Ten(구칭 : Fujitsu Ten)
  • Oculii
  • ADI

제5장 중국의 레이더 벤더

  • WHST(Wuhu Sensortech)
  • Autoroad
  • Intibeam
  • Muniu Tech
  • Nanoradar Science &Technology
  • Morgina
  • Suzhou Millimeter-wave Technology Co., Ltd.
  • HawkEye Technology
  • IMSEMI
  • ANNGIC
  • Linpowave
  • Calterah Semiconductor
  • TransMirowave

제6장 자동차용 캐스케이드 레이더의 용도

  • 캐스케이드 레이더 프로파일
    • 캐스케이드 레이더를 이용한 L2 자율주행 지원과 구현
    • 캐스케이드 레이더의 운용 모드 : MIMO
    • 캐스케이드 레이더의 운용 모드 : TX Beamform
    • 4칩 캐스케이드 시스템
    • TI 캐스케이드 레이더
    • 영상 레이더 시스템
    • 시험실 검사
    • 문이 닫히지 않은 차량 탐지
    • 커브 곡선 탐지
    • Contrast-Angle 추정 방법
    • 실시 임상시험(1) : MIMO 레이더
    • 실시 임상시험(2) : TX Beamform(보행자용)
    • 실시 임상시험(3) : TX Beamform(차량용)
  • 차체 및 섀시용 캐스케이드 레이더
  • 장애물 탐지 레이더
    • 애플리케이션
    • 하드웨어 플랫폼
    • 프로세싱 체인
    • 평가
  • 운전자 활력징후 모니터링
  • 차량 탑승자 감지
LSH 19.03.13

이 페이지에 게재되어 있는 내용은 최신판과 약간 차이가 있을 수 있으므로 영문목차를 함께 참조하여 주시기 바랍니다. 기타 자세한 사항은 문의 바랍니다.

China's passenger car radar market gathered pace from 2017, with shipments approaching 2.32 million units in the year, an annualized spurt of 104.6%. The growth trend continued in the first half of 2018 but slowed markedly in the second half due to a decline in automobile sales, leading to a much lower full-year growth in shipments. In 2018, the shipments of passenger car radars reached 3.58 million units in China, up by 54% versus 2017.

According to our monthly study of radar, 77GHz radar was narrowing its shipment gap with 24GHz radar in recent years, and came from behind at last in December 2018, two years earlier than we expected.

It also comes as a surprise that Chinese radar chip vendors have sprung up. Main players include Xiamen IMSEMI Technology Co., Ltd., Radaric (Beijing) Technology Co., Ltd., SGR Semiconductors Inc., Calterah Semiconductor Technology (Shanghai) Co., Ltd., Nanjing Citta Microelectronics Co., Ltd. and Hangzhou Andar Technology Co., Ltd.

In 2017, Calterah Semiconductor Technology (Shanghai) Co., Ltd. released Yosemite (2T4R/4T8R), a 77GHz transceiver chip series for CMOS-based automotive radars; in 2018 Xiamen IMSEMI Technology Co., Ltd. rolled out SG24TR12, a 24GHz 1T2R chip and SG24TR14, a 24GHz 1T4R chip.

Radaric (Beijing) Technology Co., Ltd. founded in 2010 with the background of Tsinghua University, designed a CMOS-based 77GHz multi-channel monolithic integrated radar chip. SGR Semiconductors Inc., the successor of RFIC Division under Shanghai Industrial Technology Research Institute (SITRI), closed series A funding of RMB80 million in 2017 and finished capital increase in the A-round in 2018.

In February 2019 Hangzhou Andar Technology Co., Ltd. unveiled ADT2001, a phased array architecture-based 16T16R 77GHz radar chip with CMOS process and ADT1002, a 2T2R radar chip.

Though there are radar chip start-ups in China, they commit themselves to the development of RF transceiver modules. Their transceiver units play a small role in the whole radar system and cost not much. China-made radar chips are still not provided with the core function of algorithms about processing radar signals.

Foreign chip leaders are heading towards integration and high precision. In June 2018, Texas Instruments (TI) announced mass production of AWR1642, a highly integrated ultra-wideband radar sensor boasting remarkable technical superiorities as it integrates microcontroller (MCU) and digital signal processor (DSP). Many a start-up uses AWR1642 to develop "4D radar" (4D=3D position + 1D speed).

High resolution imaging, 79Ghz and CMOS hold the new trends for radars.

CMOS-based chip ecosystem has yet to be built even if a radar with CMOS process will be a typical one in the future. Chinese radar start-ups face challenges of immature technology and unverified products in spite of a large number. For automotive industry with a high demanding on mature and reliable technologies, the long-used silicon germanium process still prevails, so the giants like Bosch, Continental, Aptiv, Denso and Veoneer still rule the roost. In 2018, the top three players in China's passenger car 77G long-range radar (LRR) OEM market seized a combined 80% share.

In 2018, new radar entrants in China grew up fleetly by resorting to the strategy of "encircling the cities from the rural areas".

Wuhu Sensortech Intelligent Technology Co., Ltd. was invested by security giant Hikvision and affiliates of BAIC and GAC, with team members growing to over 300 persons. In 2018, Sensortech shipped more than 100,000 radars, generating the revenue of nearly RMB100 million. Security and transportation were main markets using around 70% of Sensortech's radars.

Quite a few start-ups in China apply the business model: polishing products in other markets whilst forging ahead in automotive market. Sensortech's radars will be available to 10 models in 2019 after being used in two mass-produced passenger car models in 2018. Sensortech targets to earn RMB200 million in 2019, including 40% from automotive business.

Sensortech also plans to expand its team members to 1,000 in the next two years from the current 300 with the help of Hikvision.

Suzhou Millimeter-wave Technology Co., Ltd. saw shipments of 2,000 sets of 24Ghz automotive radars in OEM market in 2018 before expectedly shipping 50,000 sets for passenger cars in 2019 as it becomes a designated supplier of two automakers for five of their models.

In August 2018, Shenzhen Anngic Technology Co., Ltd. announced the closing of RMB50 million series A rounds. Its products get utilized in automobiles, drones, security, transportation, etc..

The trend for high precision forces not only Chinese radar start-ups but time-honored brands to have stronger competence in radar signal processing algorithms. For instance, Analog Devices, Inc. (ADI), a 15-year-old company managed in March 2018 to acquire Germany-based Symeo whose RF and sensor technologies enable real-time position detection and distance measurement. ADI will leverage Symeo's signal processing algorithms to offer customers a radar platform with significant improvements in angular accuracy and resolution.

Vision-radar Fusion Solutions

It grows a trend that vision and radar get fused safer and more reliable ADAS capabilities. Take Volvo S90 city safety system as an example. The Aptiv RACam system for it combines a 77GHz radar and a monocular camera mounted at the top of the windshield to deliver such functions as FCW, AEB and ACC.

Suzhou Millimeter-wave Technology Co., Ltd. is creating a radar and camera all-in-one. With pre-fusion technology for pixel-level fusion of two sensors, the device becomes much more aware of surroundings and robust in object recognition.

Sensortech and Hikvision team up to develop pixel-level radar and vision fusion technologies.

‘ADAS and Autonomous Driving Industry Chain Report, 2018-2019’ of ResearchInChina covers following 17 reports:

  • 1) Global Autonomous Driving Simulation and Virtual Test Industry Chain Report, 2018-2019
  • 2) China Car Timeshare Rental and Autonomous Driving Report, 2018-2019
  • 3) Report on Emerging Automakers in China, 2018-2019
  • 4) Global and China HD Map Industry Report, 2018-2019
  • 5) Global and China Automotive Domain Control Unit (DCU) Industry Report, 2018-2019
  • 6) Global and China Automated Parking and Autonomous Parking Industry Report, 2018-2019
  • 7) Cooperative Vehicle Infrastructure System (CVIS) and Vehicle to Everything (V2X) Industry Report, 2018-2019
  • 8) Autonomous Driving High-precision Positioning Industry Report, 2018-2019
  • 9) ADAS and Autonomous Driving Industry Chain Report, 2018-2019- Processor
  • 10) ADAS and Autonomous Driving Industry Chain Report, 2018-2019- Automotive Lidar
  • 11) ADAS and Autonomous Driving Industry Chain Report, 2018-2019- Automotive Radar
  • 12) ADAS and Autonomous Driving Industry Chain Report, 2018-2019- Automotive Vision
  • 13) ADAS and Autonomous Driving Industry Chain Report, 2018-2019- Passenger Car Makers
  • 14) ADAS and Autonomous Driving Industry Chain Report, 2018-2019- System Integrators
  • 15) ADAS and Autonomous Driving Industry Chain Report, 2018-2019- Commercial Vehicle Automated Driving
  • 16) ADAS and Autonomous Driving Industry Chain Report, 2018-2019- Low-speed Autonomous Vehicle
  • 17) ADAS and Autonomous Driving Industry Chain Report, 2018-2019- L4 Autonomous Driving

Table of Contents

1. Introduction to Radar Technology

  • 1.1. Definition of Radar
  • 1.2. Radar Band Division in China
  • 1.3. Overview of Automotive Radar
    • 1.3.1. Comparison between Radar and Other Sensors
    • 1.3.2. Automotive Radar Spectrum
    • 1.3.3. Working Principle of Radar
    • 1.3.4. Radar Classification and Modulation Technology
    • 1.3.5. 79GHz Radar
    • 1.3.6. Radar Cascade
  • 1.4. Composition of Automotive Radar System
    • 1.4.1. Core Parts for Radar--Monolithic Microwave Integrated Circuit (MMIC)
    • 1.4.2. Core Parts for Radar--Antenna PCB
    • 1.4.3. Radar Chip
    • 1.4.4. Chinese Radar Chip Vendors
    • 1.4.5. Hangzhou Andar Technology Co., Ltd. Launched Phased Array Architecture-based 77GHz CMOS Radar Chip
  • 1.5. Application of Radar
    • 1.5.1. Applicable to Many Industries
    • 1.5.3. Application in Different ADAS Functions
    • 1.5.4. Radar Detection Modes and Application Cases
    • 1.5.5. Radar Competitors
    • 1.5.6. Typical Automotive Radars

2. Automotive Radar Market

  • 2.1. The Four New Automotive Trends (Electrification, Connectivity, Intelligence and Sharing) Drive Automotive Radar Market
  • 2.2. Chinese Automotive Radar Market will See Faster Growth than Global Market
  • 2.3. Higher Installation of ADAS Boosts Automotive Radar Market
  • 2.4. Growth of Passenger Car Radar Market Slowed in 2018 after a Boom
  • 2.5. 77GHz Radars Become Available on the Market
  • 2.6. Application of Passenger Car SRR/LRR and 24GHz/77GHz Radar in China
  • 2.7. Passenger Car Radar Shipments and Market Size (by 24G/77G), 2016-2021E
  • 2.8. Automotive Radar Shipments and Market Size in China, 2016-2021E
  • 2.9. Global Automotive Radar Market Size, 2016-2021E
  • 2.10. Installation Rate of Passenger Car Radar in China, 2017-2018
  • 2.11. Monthly Penetration of Radar for New Passenger Cars, 2017-2018
  • 2.12. Passenger Car Radar Installation Structure and Monthly Growth by Solution, 2017-2018
  • 2.13. Penetration of Radar for New Passenger Cars by Solution, 2017-2018
  • 2.14. Penetration of Radar for New Passenger Cars by Solution, 2017-2018
  • 2.15. Sales of Vehicles with Radars by Brand/Model, 2018
  • 2.16. 77G LRR Shipments and Suppliers' Market Shares in Chinese Passenger Car Market, 2018
  • 2.17. Supply Relationship between Japanese Automakers and ADAS Sensor Suppliers
  • 2.18. Supply Relationship between American, Korean and Chinese Automakers and ADAS Sensor Suppliers
  • 2.19. Supply Relationship between European Automakers and ADAS Sensor Suppliers

3. Radar Industry

  • 3.1. Automotive Radar Industry
    • 3.1.1. China's Automotive Radar System Technology Roadmap
    • 3.1.2. RF CMOS Semiconductor Process
    • 3.1.3. Radar and Camera Fusion
    • 3.1.4. Trends for Radar Sensor
    • 3.1.5. Integration and High Precision Trends for Radars
    • 3.1.6. The Increasing Number of Radars for a Single Vehicle
    • 3.1.7. Radar is Penetrating from High-class Models into Low/Middle-class Models
    • 3.1.8. 77GHz Radar will be the Mainstream
  • 3.2. AWR1642-based 4D Radar
    • 3.2.1. Many a Start-ups Uses AWR1642 to Develop "4D Radar"
    • 3.2.3. Arbe Robotics
    • 3.2.4. Ainstein
  • 3.3. Metawave's Next-generation 4D Imaging Radar for Perception
    • 3.3.1. Profile of Metawave
    • 3.3.2. WARLORD High Resolution Radar and Its Working Principle
    • 3.3.3. Radar Running Conditions and Loss
    • 3.3.4. WARLORD's Merits and Solutions to its Demerits
    • 3.3.5. Structural Features of Active Metamaterials
    • 3.3.6. Being Insusceptible to Disturbance
    • 3.3.7. WARLORD Classifies Detection Objects

4. Global Radar Vendors

  • 4.1. Continental
    • 4.1.1. ADAS Products
    • 4.1.2. Fifth-generation 77GHz Radar
    • 4.1.3. Distribution of Customers for Its Radar and LiDAR Products
    • 4.1.4. Continental Radar Applied in Chinese Market
  • 4.2. Bosch
    • 4.2.1. Revenue in 2018
    • 4.2.2. Radar
    • 4.2.3. LRR4 Radar and MRR4 Radar
    • 4.2.4. Ongoing Development of Fifth-generation 77GHzMMW Radar
    • 4.2.5. Applications of Bosch Radar
  • 4.3. ZF TRW
    • 4.3.1. Active and Passive Safety Technology Division
    • 4.3.2. ZF TRW Radar Applied in Chinese Market
    • 4.3.3. Long-range Radar
    • 4.3.4. AC100 Medium and Long-range Radar
  • 4.4. Aptiv
    • 4.4.1. Revenue in 2018
    • 4.4.2. Customer Distribution & Terminal Market Distribution by Region
    • 4.4.3. ESR Radar
    • 4.4.4. Radar + Monocular Camera Integrated System
    • 4.4.5. Aptiv Radar Applied in Chinese Market
  • 4.5. Veoneer
    • 4.5.1. Active Safety Technology
    • 4.5.2. 77GHz and 24GHz Radar
    • 4.5.3. Radar Developments in 2018
  • 4.6. Denso
    • 4.6.1. Revenue in 2018
    • 4.6.2. 77GHz Radar
    • 4.6.3. Denso Radar Applied in Chinese Market
    • 4.6.4. Autonomous Driving Investment and R&D Layout
  • 4.7. Valeo
    • 4.7.1. Operation in FY2017- FY2018
    • 4.7.2. Revenue of Comfort and Driving Assistance Business Group
    • 4.7.3. Main Products
  • 4.8. Hella
    • 4.8.1. Operation
    • 4.8.2. 24GHz Radar
    • 4.8.3. Brand New 77GHz Radar
    • 4.8.4. Autonomous Driving Development Roadmap
    • 4.8.5. Autonomous Driving Partners and Cooperation
  • 4.9. Denso Ten (formerly Fujitsu Ten)
    • 4.9.1. Short-range Radar
  • 4.10. Oculii
    • 4.10.1. Oculii 4D Radar
    • 4.10.2. Products
  • 4.11. ADI
    • 4.11.1. High Performance Imaging Radar
    • 4.11.2. CMOS Radar Technology Platform and Featured Products
    • 4.11.3. Intelligent Transportation Solution Based on 24GHz Radar Demonstration Platform
    • 4.11.4. Acquisition of Symeo

5. Chinese Radar Vendors

  • 5.1. WHST (Wuhu Sensortech)
    • 5.1.1. Automotive Radar
    • 5.1.2. Latest Progress: shipments have reached over 100,000 units, generating the revenue of nearly RMB100 million
  • 5.2. Autoroad
    • 5.2.1. 77/79GHzRadar
    • 5.2.2. Latest Progress
  • 5.3. Intibeam
    • 5.3.1. 24GHz Blind Spot Radar and 77GHz Anti-collision Radar
    • 5.3.2. Latest Trend: Release of 79GHz Radar
  • 5.4. Muniu Tech
    • 5.4.1. Automotive Radar Positioning and Developments
    • 5.4.2. Main Products
  • 5.5. Nanoradar Science &Technology
    • 5.5.1. Development Course
    • 5.5.2. Main Products
  • 5.6. Morgina
    • 5.6.1. Development Course & Business Planning
    • 5.6.2. Products Based on TI Single Chip Solution
  • 5.7. Suzhou Millimeter-wave Technology Co., Ltd.
    • 5.7.1. Development Strategy
    • 5.7.2. Main Products
    • 5.7.3. Latest Progress
  • 5.8. HawkEye Technology
    • 5.8.1. Southeast University - HawkEye Technology Automotive Electronic Technology Joint Research Center
  • 5.9. IMSEMI
    • 5.9.1. 24GHz MMIC
    • 5.9.2. Development Course
  • 5.10. ANNGIC
  • 5.11. Linpowave
  • 5.12. Calterah Semiconductor
    • 5.12.1. 77GHz Radar Transceiver Chip and Application
  • 5.13. TransMirowave
    • 5.13.1. Automotive Radar

6. Application of Cascade Radar in Automobile

  • 6.1. Profile of Cascade Radar
    • 6.1.1. Cascade Radar Empowers L2 Autonomous Driving or Above
    • 6.1.2. Operating Mode of Cascade Radar: MIMO
    • 6.1.3. Operating Mode of Cascade Radar: TX Beamforming
    • 6.1.4. MIMO VS TX Beamforming
    • 6.1.5. Cascade Challenge
    • 6.1.6. Cascade Challenge: LO Length Matching
    • 6.1.7. Four-chip Cascade System
    • 6.1.8. TI Cascade Radar
    • 6.1.9. Imaging Radar System Demonstrator
    • 6.1.10. Laboratory Testing
    • 6.1.11. Detection of a Car with Doors Open
    • 6.1.12. Detection of Kerb Contours
    • 6.1.13. Contrast-Angle Estimation Method
    • 6.1.14. Field Test 1: MIMO Radar
    • 6.1.15. Field Test 2: TX Beamforming (Pedestrian)
    • 6.1.16. Field Test 3: TX Beamforming (Vehicle)
  • 6.2. Cascade Radar in Vehicle Body and Chassis
    • 6.2.1. Cascade Radar in Vehicle Body and Chassis (1)
    • 6.2.2. Cascade Radar in Vehicle Body and Chassis (2)
  • 6.3. Obstacle Detection Radar
    • 6.3.1. Obstacle Detection Radar (1) - Application
    • 6.3.2. Obstacle Detection Radar (2) - Hardware Platform
    • 6.3.3. Obstacle Detection Radar (3) - Processing Chain
    • 6.3.4. Obstacle Detection Radar (4) - Evaluation
  • 6.4. Driver Vital Signs Monitoring
    • 6.4.1. Driver Vital Signs Monitoring (1) - Application
    • 6.4.2. Driver Vital Signs Monitoring (2) - Processing
    • 6.4.3. Driver Vital Signs Monitoring (3) - Processing
    • 6.4.4. Driver Vital Signs Monitoring (4) - Evaluation
  • 6.5. Vehicle Occupant Detection
    • 6.5.1. Vehicle Occupant Detection (1) - Application
    • 6.5.2. Vehicle Occupant Detection (2) - Processing Chain
    • 6.5.3. Vehicle Occupant Detection (3) - Evaluation
Back to Top
전화 문의
F A Q