공지 : 도쿄증권거래소 JASDAQ 스탠다드 시장 신규 상장 관련 안내

Global Information
회사소개 | 문의 | 비교리스트

세계 및 중국의 자동차용 인텔리전트 콕핏 플랫폼 산업(2020년)

Global and China Intelligent Cockpit Platform for Automobiles Industry Report, 2020

리서치사 ResearchInChina
발행일 2020년 02월 상품 코드 926588
페이지 정보 영문 180 Pages
가격
US $ 3,600 ₩ 4,072,000 Unprintable PDF (Single User License) help
1명만 이용할 수 있는 라이선스입니다. PDF 파일은 Copy & Paste 가 되지 않으며, 인쇄 또한 불가능합니다.
US $ 5,400 ₩ 6,108,000 Printable & Editable PDF (Enterprise-wide License) help
구매기업과 모회사, 자회사, 관련 회사 등 회사 전체에서 인원수에 제한없이 이용할 수 있는 라이선스입니다. PDF파일은 Copy & Paste 가 가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다.


세계 및 중국의 자동차용 인텔리전트 콕핏 플랫폼 산업(2020년) Global and China Intelligent Cockpit Platform for Automobiles Industry Report, 2020
발행일 : 2020년 02월 페이지 정보 : 영문 180 Pages

본 상품은 영문 자료로 한글과 영문목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문목차를 참고해주시기 바랍니다.

인텔리전트 콕핏 플랫폼이란 콕핏용 하드웨어(각종 칩이나 도메인 컨트롤러 등)과 소프트웨어(OS, 하이퍼바이저 등)을 통합해 인텔리전트 인터랙션, 인텔리전트 시나리오, 개별화 서비스를 운전자에게 제공하는 시스템입니다. 칩이나 소프트웨어의 저가격화, 멀티스크린 시스템 수요 확대 등으로 기존 콕핏 시스템에는 없는 상호작용(인터랙션) 기능과 운전 지원 기능을 탑재한 플랫폼 시장이 중국내에서도 확대되고 있습니다. 특히 향후에는 소프트웨어가 시스템 통합과 제품 차별화의 중심이 될 것으로 생각됩니다.

세계 각국 및 중국의 인텔리전트 콕핏 플랫폼(Intelligent Cockpit Platform) 산업 및 시장에 대해 분석했으며, 시스템 개요와 주요 기능, 현재 기술 수준/시장 규모와 향후 발전 전망, 카테고리별(하드웨어/소프트웨어) 최신 상황과 주력 상품/벤더, 외자계/국내계 기업 개요와 사업 추진 상황 등의 정보를 정리하여 전해드립니다.

제1장 인텔리전트 콕핏 플랫폼 개요

  • 인텔리전트 콕핏 플랫폼의 정의
  • 신기능에 의한 시스템 진화 촉진(멀티스크린 링키지 등)
  • Volkswagen : Unified Automotive Electrical Architecture
  • SVA : Intelligent Vehicle New Architecture
  • 자동차 콕핏 개발 경향
  • SoC 경향
  • 인텔리전트 콕핏 플랫폼의 소프트웨어/하드웨어 시스템 아키텍처
  • 콕핏 소프트웨어의 하드웨어로부터 분리 증가
  • 관련 산업의 융합과 업계에 걸친 경향
  • 해외 주요 콕핏 플랫폼 솔루션의 비교
  • 중국 주요 콕핏 플랫폼 솔루션의 비교
  • 세계 주요 자동차 제조업체의 인텔리전트 콕핏 플랫폼 : 개요
  • 주요 자동차 제조업체의 콕핏 구성

제2장 인텔리전트 콕핏용 하드웨어 플랫폼

  • 현황과 동향 : 인텔리전트 콕핏용 하드웨어 플랫폼
    • 기존 콕핏 내부의 다수 ECU 통합
    • 콕핏 도메인 컨트롤러의 설계(샘플)
    • 콕핏 프로세서 시장 패턴
  • 인텔리전트 콕핏 프로세서
    • 전형적인 콕핏 프로세서
    • 주요 콕핏 프로세서 : 상호 비교
  • 콕핏 프로세서 공급업체와 제품
    • Renesas : 콕핏 프로세서용 R-CAR 시리즈
    • Intel : A3900 프로세서
    • Qualcomm : 콕핏 프로세서 - 820A
    • Qualcomm : Snapdragon 콕핏 프로세서 - 제3세대 콕핏 SoC
    • NVIDIA : Parker Deep Learning 콕핏 프로세서
    • NXP : 콕핏 프로세서
    • TI : 콕핏 칩
    • Samsung : 콕핏 프로세서
    • Allwinner Technology : 콕핏 프로세서
    • MediaTek : 콕핏 칩
    • Horizon Robotics : 자동차 그레이드 콕핏 칩
  • 인텔리전트 콕핏용 하드웨어 플랫폼
    • 콕핏용 하드웨어 플랫폼
    • 콕핏 도메인 컨트롤러의 개발 동향과 업계에 대한 영향
    • 콕핏 도메인 컨트롤러의 전형적 제조업체 : 솔루션/고객
    • 세계의 인텔리전트 차량 콕핏 도메인 컨트롤러 시장 규모(추정치)
  • 인텔리전트 콕핏용 하드웨어 플랫폼의 주요 공급업체
    • Visteon : 콕핏 도메인 컨트롤러
    • Continental : 차체 일렉트로닉스 플랫폼의 통합
    • Denso : Harmony Core
    • Panasonic : SPYDR
    • Intel : 콕핏 플랫폼
    • Aptiv : 통합형 콕핏 컨트롤러
    • Samsung : 콕핏용 하드웨어 플랫폼
    • Huawei : 인텔리전트 콕핏
  • 인텔리전트 콕핏용 하드웨어 플랫폼의 이용 사례
    • Benz A-Class
    • HOZON Auto
    • Tesla
    • Land Rover Defender
    • Volkswagen

제3장 인텔리전트 콕핏용 소프트웨어 플랫폼

  • 인텔리전트 콕핏용 소프트웨어 플랫폼 : 구성과 동향
    • 인텔리전트 콕핏용 소프트웨어 플랫폼이란?
    • 자동차 OS의 현황
    • Android가 IVI OS 시장을 리드
    • 차량 : OS 시장 점유율의 결정요인
    • 기간 OS의 2번째 개발
    • 가상 머신 : 다수의 OS에서 불가피한 선택사항이 된다
  • 주요 자동차용 OS와 벤더
    • BlackBerry QNX
    • Linux&AGL
    • Android & Andriod Auto
    • AliOS
    • VW.OS
    • Huawei Harmony OS
  • 하이퍼바이저
    • QNX 하이퍼바이저
    • ACRN
    • COQOS 하이퍼바이저
    • PikeOS
    • EB Corbos 하이퍼바이저
    • Harman : 디바이스 가상화

제4장 세계의 인텔리전트 콕핏 시스템 인티그레이터

  • Harman
  • Visteon
  • Faurecia
  • Aptiv
  • Bosch
  • Continental AG
  • Denso
  • Panasonic

제5장 중국의 인텔리전트 콕핏 시스템 인티그레이터

  • Desay SV
  • Neusoft
  • HASE
  • COOKOO
  • Huawei
  • Thundersoft
  • Auto AI
  • ArcherMind Technology
  • China TSP
  • 기타 공급업체
    • KOTEI
    • E-planet Technology
KSM 20.03.19

Cockpit electronic system refers to a complete set of system composed of center console, full LCD dashboard, HUD, rear seat entertainment system, smart audio, telematics module, streaming media rearview mirror and telematics system.

Based on cockpit domain controller, intelligent cockpit system as a foundation of human-car interaction and V2X, provides intelligent interaction, intelligent scenarios and personalized services beyond capabilities of a cockpit electronic system, through a unified software and hardware platform.

Intelligent cockpit platform is a software and hardware architecture enabling sub-systems and features of a smart cockpit. It consists of hardware and software parts: hardware part is a hardware platform comprised of domain controllers and chips; software part refers to a software platform built by operating system, Hypervisor, middleware and support tools.

With advances in technologies about chip, software, among others, one-core multi-screen multi-system integrated cockpit platform as a way to integrate systems, cut costs and meet needs for multi-screen interconnection, intelligent interaction and intelligent driving capabilities that an usual cockpit cannot provide, becomes a mainstay in next-generation cockpit.

Quite a few automakers have set about deploying smart cockpit system. Some already equip the system on their production vehicles. Examples include MBUX system mounted on 2018 Mercedes-Benz A Class, and C4-Alfus 2.0 and C4-Pro, two domain controller-based cockpit platforms co-developed by Neusoft and Intel and installed in 2019 models like Hongqi HS7 and EXCEED LX.

At CES 2020, Land Rover unveiled New Defender 90 and 110, the first ever vehicles to feature dual-modem, dual eSIM design for enhanced connectivity and functionality. Powered by the Qualcomm Snapdragon S820Am Automotive Platform with the integrated Snapdragon X12 LTE Modem, the New Defender can download Software-Over-The-Air (SOTA) updates without interruption and while streaming music and apps through the vehicle's new Pivi Pro infotainment system. The New Defender is also the first Land Rover vehicle to include a domain controller that consolidates a number of Advanced Driver Assistance Systems (ADAS) and driver convenience functions built on top of the QNX Hypervisor.

Intelligent cockpit hardware platform tends to be a fusion of more and more sub-systems and capabilities. How to well manage these sub-systems and functions rests with the upgrading of cockpit processor and smart cockpit software platform.

Smart cockpit hardware platform becomes ever more powerful in the process of integration

As the base of an intelligent cockpit hardware platform, cockpit domain controller integrated with multiple electronic control units (ECU) outperforms others in safety, size, power consumption, weight and cost, enabling seamless human-machine interaction in combination with interaction ecosystem.

All automotive system integrators are stepping up their efforts to deploy smart cockpit platform. Among them, Tier1 suppliers like Visteon, Aptiv, Neusoft and Desay SV have spawned intelligent cockpit platforms; Continental, Panasonic, Bosch, Samsung, Huawei and so forth have also rolled out their new-generation intelligent cockpit platforms. In the forthcoming years, competition in cockpit platform field will prick up.

Visteon currently leads the intelligent cockpit domain controller industry. Visteon SmartCore has found massive application in Mercedes-Benz MBUX system early in 2018. At CES 2020, Visteon showcased its newest SmartCore™, an intelligent cockpit platform which is integrated with the Tencent Auto Intelligence (TAI) system and first available to GAC Aion LX, a new BEV model to be launched in 2020. Moreover, Dongfeng and Geely are also partners of Visteon.

At the IAA 2019 in Frankfurt, Continental showcased the latest version of its Integrated Interior Platform (IIP), a new scalable cockpit platform favoring operating systems like QNX, Integrity, and Android. Continental plans to mass-produce the solution in 2021.

At CES 2020, Samsung Electronics unveiled Digital Cockpit 2020, which utilizes 5G to link features inside and outside the vehicle and provide connected experiences for drivers and passengers alike. Digital Cockpit 2020 is the third co-development between Samsung Electronics and Harman International, and combines Samsung's telecommunications technologies, semiconductors and displays with HARMAN's automotive expertise. Digital Cockpit 2020 incorporates eight displays inside the vehicle, as well as eight cameras. The solution utilizes Samsung Exynos Auto V9 SoC (System on Chip), a semiconductor for vehicle electronics, and Android 10, which allow for several features to be run at the same time. Besides, Samsung's integrated IoT platform SmartThings can work in tandem with the revamped "Bixby in the car" to enhance connectivity by allowing the vehicle to actively communicate with the driver. Once the driver logs in using either facial recognition or a smartphone fingerprint reader, the Center Information Display can be used to show the driver's schedule and a range of other information. Unlike the 2019 Digital Cockpit, the 2020 solution allows for connections to be made wirelessly.

Panasonic Automotive revealed its latest fully connected eCockpit concept at CES 2020. The technology platform integrates Panasonic's proprietary SkipGen 3.0 in-vehicle infotainment (IVI) system with Google's Android Automotive OS running on Android 10. In the concept vehicle, SkipGen 3.0 is paired with the next generation cockpit domain controller, SPYDR 3.0. At the core, the single brain SPYDR 3.0 acts as a hypervisor and is capable of driving up to eleven displays.

As the kernel of cockpit domain controllers, cockpit processors are mainly supplied by Qualcomm, NXP, Intel, Renesas, Texas Instruments, NVIDIA, Allwinner, Samsung, MediaTek, Horizon Robotics, etc. Among them, Qualcomm, Intel and Renesas are the most competitive market players by virtue of their bombshells -- Qualcomm 820a / 835A, Intel A3900 and Renesas R-Car H3 / M3. The major processor chips differ in fabrication processes, cores, and especially GPU computing power which determines the infrastructure level of the cockpit hardware platform.

Software platform becomes the focus of differentiation; Cockpit will be defined by software in future

In intelligent cockpit software platform, hypervisor and vehicle operating system are the most important components. Hypervisor allows multiple operating systems and applications to share hardware as a middle software layer that runs between the underlying physical server and the operating system.

The prevailing automotive operating systems embrace QNX, Linux, Android, AliOS, etc., each of which has merits and demerits. Among them, QNX dominates the automotive cluster system market with high security; the open-source Linux has become the underlying system of custom-made operating systems; Android and AliOS are increasingly used by IVI systems due to rich application ecosystem.

Under the software-defined car trend, operating system is crucial to the intelligent connectivity layout of automakers, and the focus of the emerging system integrators' deployments. Tesla's self-developed operating system made a success. In 2019, Volkswagen announced to lavish huge on R&D of VW.OS. Several Chinese emerging automakers follow Tesla to develop operating systems by themselves. Yet, all Japanese automakers support AGL in which China-based SITECH also joined.

Also, the new suppliers such as Huawei, ZTE, Alibaba and Baidu have rolled out self-developed operating systems successively. In the future, there will be cut-throat competition in the automotive operating system market. At length, only two or three mainstream operating systems may survive. In fact, there are three mainstream cockpit operating systems for automakers: QNX, Android, and Linux (AGL).

Due to high requirements on safety, most clusters apply QNX. IVI, co-pilot entertainment and rear seat entertainment systems mostly make use of Android. Chinese brands like Geely, Changan, BYD, Dongfeng, Great Wall Motor and GAC are all based on Android, while SAIC prefers AliOS. Audi launched Android-based MIB3 system in 2019. BMW is extending the reach of seamless connectivity in its vehicles with the introduction of Android Auto™ starting in mid-2020.

Because intelligent cockpit supports multiple operating systems such as QNX, Android and Linux simultaneously, hypervisors running directly on physical hardware have been widely used. As an intermediate software layer, hypervisors allow operating systems and applications to share hardware. Hypervisors not only coordinate access to hardware, but also impose protection between virtual machines. Common hypervisors include QNX Hypervisor, ACRN, COQOS Hypervisor, PikeOS, and Harman Device Virtualization.

QNX Hypervisor 2.0 uses BlackBerry's 64-bit embedded operating system QNX SDP 7.0, allowing developers to unify multiple operating systems to a single computing platform or SoC chip. Operating systems such as QNX Neutrino, Linux, and Android are supported on BlackBerry QNX Hypervisor 2.0. The cockpit platforms of Visteon, Denso, Marelli, WM Motor, etc., unexceptionally render QNX Hypervisor.

‘Global and China Intelligent Cockpit Platform for Automobile Industry Report, 2020’ highlights the followings:

  • Definition, status quo, industry chain and trends of automotive intelligent cockpit platforms;
  • Comparison between automotive intelligent cockpit platform solutions, OEM cockpit platform solution layout;
  • Status quo and trends of intelligent cockpit platforms, domain controller market size forecast, typical cockpit hardware platform domain controller solutions and their customers;
  • Major intelligent cockpit hardware platform vendors (Visteon, Panasonic, Continental, Aptiv, etc.) and product layout;
  • Applied cases of intelligent cockpit hardware platform (Tesla, Mercedes-Benz, Land Rover, etc.);
  • Comparison between intelligent cockpit processors. Major cockpit processor vendors (Qualcomm, Intel, NXP, Samsung, Allwinner, Horizon Robotics) and product development;
  • Composition and trends of major intelligent cockpit software platforms;
  • Status quo of automotive operating systems, underlying OS market share, major automotive operating system vendors and product development;
  • Intelligent cockpit software platform virtualization technology (Hypervisor) layout;
  • 18 global and Chinese automotive intelligent cockpit platform solution integrators (cockpit platform solutions and planning).

Table of Contents

1. Overview of Intelligent Cockpit Platform

  • 1.1. Definition of Intelligent Cockpit Platform
  • 1.2. New Features like Multi-screen Linkage Facilitate the Evolution of Intelligent Cockpit Platform
  • 1.3. Volkswagen's Unified Automotive Electrical Architecture
  • 1.4. SVA Intelligent Vehicle New Architecture
  • 1.5. Development Tendency of Automotive Cockpit
  • 1.6. SOC Trend
  • 1.7. Software and Hardware System Architecture of Intelligent Cockpit Platform
  • 1.8. Increasing Separation of Cockpit Software from Hardware
  • 1.9. Industrial Chain Fusion and Cross-industry Tendencies
  • 1.10. Comparison between Main Overseas Cockpit Platform Solutions
  • 1.11. Comparison between Main Chinese Cockpit Platform Solutions
  • 1.12. Overview of World's Major Automakers' Intelligent Cockpit Platforms
  • 1.13. Composition of Major Automakers' Cockpits

2. Intelligent Cockpit Hardware Platform

  • 2.1. Status Quo and Trends of Intelligent Cockpit Hardware Platform
    • 2.1.1. Integration of Traditional Cockpit's Multiple ECUs
    • 2.1.2. Design (Sample) of Cockpit Domain Controller
    • 2.1.3. Cockpit Processor Market Pattern
  • 2.2. Intelligent Cockpit Processor
    • 2.2.1. Typical Cockpit Processors
    • 2.2.2. Comparison between Main Cockpit Processors
  • 2.3. Cockpit Processor Suppliers and Products
    • 2.3.1. Renesas R-CAR Series for Cockpit Processor
    • 2.3.2. Intel A3900 Processor
    • 2.3.3. Qualcomm Cockpit Processor: 820A
    • 2.3.3. Qualcomm Snapdragon Cockpit Processor: 3rd-Gen Cockpit SoC
    • 2.3.4. NVIDIA Parker Deep Learning Cockpit Processor
    • 2.3.5. NXP Cockpit Processor
    • 2.3.6. TI Cockpit Chip
    • 2.3.7. Samsung Cockpit Processor
    • 2.3.8. Allwinner Technology Cockpit Processor
    • 2.3.9. MediaTek Cockpit Chip
    • 2.3.10. Horizon Robotics Automotive-grade Cockpit Chip
  • 2.4. Intelligent Cockpit Hardware Platform
    • 2.4.1. Cockpit Hardware Platform
    • 2.4.2. Development Trends of Cockpit Domain Controller and Its Influence on the Industry
    • 2.4.3. Solutions and Clients of Typical Cockpit Domain Controller Manufacturers
    • 2.4.4. Estimated Size of Global Intelligent Vehicle Cockpit Domain Controller Market
  • 2.5. Key Suppliers of Intelligent Cockpit Hardware Platform
    • 2.5.1. Visteon Cockpit Domain Controller
    • 2.5.2. Continental Integration of Body Electronics Platform
    • 2.5.3. Denso Harmony Core
    • 2.5.4. Panasonic SPYDR
    • 2.5.5. Intel Cockpit Platform
    • 2.5.6. Aptiv Integrated Cockpit Controller
    • 2.5.7. Samsung Cockpit Hardware Platform
    • 2.5.8. Huawei Intelligent Cockpit
  • 2.6. Application Cases of Intelligent Cockpit Hardware Platform
    • 2.6.1. Benz A-Class
    • 2.6.2. HOZON Auto
    • 2.6.3. Tesla
    • 2.6.4. Land Rover Defender
    • 2.6.5. Volkswagen

3. Intelligent Cockpit Software Platform

  • 3.1. Composition and Trends of Intelligent Cockpit Software Platform
    • 3.1.1. What Is Intelligent Cockpit Software Platform?
    • 3.1.2. Status Quo of Automotive OS
    • 3.1.3. Android Leads the IVI OS Market
    • 3.1.4. Vehicle Underlying OS Market Share
    • 3.1.5. Second Development on the Underlying OS
    • 3.1.6. Under Multiple Operating Systems, Virtual Machine Is an Inevitable Choice
  • 3.2. Main Automotive Operating Systems and Vendors
    • 3.2.1. BlackBerry QNX
      • 3.2.1.1. Profile
      • 3.2.1.2. QNX Cockpit Software Platform Solutions
      • 3.2.1.3. Recent Collaborations in Automotive Sector
    • 3.2.2. Linux&AGL
    • 3.2.3. Android & Andriod Auto
    • 3.2.4. AliOS
    • 3.2.5. VW.OS
    • 3.2.6. Huawei Harmony OS
  • 3.3. Hypervisor
    • 3.3.1. QNX Hypervisor
    • 3.3.2. ACRN
    • 3.3.3. COQOS Hypervisor
    • 3.3.4. PikeOS
    • 3.3.5. EB Corbos Hypervisor
    • 3.3.6. Harman Device Virtualization

4. Global Intelligent Cockpit System Integrators

  • 4.1. Harman
    • 4.1.1. Profile
    • 4.1.2. Harman Intelligent Cockpit Solutions
    • 4.1.3. Harman ExP Solutions
    • 4.1.4. 5G-favored "2020 Digital Cockpit"
    • 4.1.5. Recent Collaborations
  • 4.2. Visteon
    • 4.2.1. Profile
    • 4.2.2. Product Matrix
    • 4.2.3. Visteon Future Cockpit
    • 4.2.4. Visteon SmartCore
    • 4.2.5. Visteon and Tencent Collaborate on Cockpit Domain Controller
    • 4.2.6. Visteon Cockpit Display Trends
  • 4.3. Faurecia
    • 4.3.1. Profile
    • 4.3.2. Portfolios of Automotive Electronics
    • 4.3.3. Faurecia CIP
    • 4.3.4. Faurecia Intelligent Cockpit Layout and Collaborations
  • 4.4. Aptiv
    • 4.4.1. AptivProfile
    • 4.4.2. New-generation Intelligent Vehicle Architecture SVA
    • 4.4.3. Aptiv Infotainment System
  • 4.5. Bosch
    • 4.5.1. Profile
    • 4.5.2. Bosch Car Multimedia
    • 4.5.3. Bosch Convergence Product in Market
    • 4.5.4. Bosch Multimedia Cockpit OSS Software Architecture
    • 4.5.5. Bosch Multimedia Domain Architecture
    • 4.5.6. Graphic Processing Architecture of ADIT Cockpit
    • 4.5.7. Bosch Digital Cabin (Shanghai) R&D Center
  • 4.6. Continental AG
    • 4.6.1. Profile
    • 4.6.2. Continental Automotive Group
    • 4.6.3. Continental IIP
  • 4.7. Denso
    • 4.7.1. Profile
    • 4.7.2. Harmony Core
    • 4.7.3. Denso Driver Status Monitoring
    • 4.7.4. Recent Developments
  • 4.8. Panasonic
    • 4.8.1. Automotive Business
    • 4.8.2. Deployment in Cockpit Electronics
    • 4.8.3. New-generation Connected Electronic Cockpit Solutions
    • 4.8.4. Computing Architecture of Cockpit Electronics
    • 4.8.5. Physical Architecture of Cockpit Electronics
    • 4.8.6. Panasonic Integrated Center Console

5. Chinese Intelligent Cockpit System Integrators

  • 5.1. Desay SV
    • 5.1.1. Profile
    • 5.1.2. Revenue
    • 5.1.3. New Products
    • 5.1.4. Intelligent Cockpit
    • 5.1.5. Partnership with Synopsys in Virtual Cockpit
    • 5.1.6. Leading Ideal ONE Intelligent Cockpit Orders
    • 5.1.7. Dearcc Enovate ME7 Realizes 5-Screen Interaction
  • 5.2. Neusoft
    • 5.2.1. Profile
    • 5.2.2. Operations and Global Footprint
    • 5.2.3. Deployment in Automotive Electronics
    • 5.2.4. Neusoft Reach
    • 5.2.5. Neusoft Intelligent Cockpit System
    • 5.2.6. C4-Alfus
    • 5.2.7. C4-Alfus 2.0
    • 5.2.8. 4-Screen Intelligent Cockpit
    • 5.2.9. C4 Pro Intelligent Cockpit System
    • 5.2.10. Partners
  • 5.3. HASE
    • 5.3.1. Profile
    • 5.3.2. Layout in Intelligent Cockpit
  • 5.4. COOKOO
    • 5.4.1. Automotive Cockpit and Driving Computing Platform Architecture
    • 5.4.2. Intelligent Cockpit Product Roadmap
  • 5.5. Huawei
    • 5.5.1. Introduction to Huawei Intelligent Connected Vehicle (ICV) Solutions
    • 5.5.2. Huawei Automotive CC Architecture
    • 5.5.3. Huawei CDC Intelligent Cockpit Platform
    • 5.5.4. Huawei 5G Intelligent Cockpit
  • 5.6. Thundersoft
    • 5.6.1. Profile
    • 5.6.2. Revenue
    • 5.6.3. Thundersoft Deployment in Intelligent Connected Vehicle
    • 5.6.4. Thundersoft Intelligent Cockpit Solutions
    • 5.6.5. TurboX Auto Platform 4.0
  • 5.7. Auto AI
    • 5.7.1. Profile
    • 5.7.2. Intelligent Cockpit Solutions Based on Virtualization
    • 5.7.3. Non-virtualization Intelligent Cockpit Solutions
    • 5.7.4. Athena OS
  • 5.8. ArcherMind Technology
    • 5.8.1. Profile
    • 5.8.2. Revenue
    • 5.8.3. ArcherMind EX4.0
  • 5.9. China TSP
    • 5.9.1. Profile
    • 5.9.2. Intelligent Cockpit Platform
  • 5.10. Other Suppliers of Intelligent Cockpit Solutions
    • 5.10.1. KOTEI
    • 5.10.2. E-planet Technology
Back to Top
전화 문의
F A Q