![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1273269
¼¼°èÀÇ In Vivo µ¶¼ºÇÐ ½ÃÀå ¿¹Ãø(-2028³â) : Á¦Ç°, ½ÃÇè ½Ã¼³, ½ÃÇè À¯Çü, µ¶¼º ¿£µåÆ÷ÀÎÆ®, ÃÖÁ¾ »ç¿ëÀÚ, Áö¿ªº° ºÐ¼®In Vivo Toxicology Market Forecasts to 2028 - Global Analysis By Product, Testing Facility, Test Type, Toxicity End Point, End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é, In Vivo µ¶¼ºÇÐ(In Vivo Toxicology, »ýü µ¶¼ºÇÐ) ½ÃÀåÀº 2022³â¿¡ 55¾ï 6,000¸¸ ´Þ·¯¿´À¸¸ç, 2028³â¿¡´Â ¿¹Ãø ±â°£ µ¿¾È CAGR 5.5%·Î ¼ºÀåÇØ 76¾ï 7,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
»ýü µ¶¼ºÇÐÀº »ì¾ÆÀÖ´Â À¯±âü, ÀϹÝÀûÀ¸·Î µ¿¹°¿¡ ´ëÇÑ ´Ù¾çÇÑ ¾à¹°ÀÇ µ¶¼ºÀ» ¿¬±¸ÇÏ´Â Çй®ÀÔ´Ï´Ù. ÀÌ´Â ÄÄÇ»ÅÍ ¸ðµ¨ ¹× ¼¼Æ÷ÁÖ¿Í °°Àº ¹«»ý¹° ±â¼úÀ» »ç¿ëÇϴ ü¿Ü µ¶¼ºÇаú´Â ´ëÁ¶ÀûÀÔ´Ï´Ù. ÀÌ À¯ÇüÀÇ Å×½ºÆ®´Â ÈÇй°Áú°ú ¾à¹°ÀÌ »ì¾ÆÀÖ´Â µ¿¹°ÀÇ Çൿ°ú °Ç°¿¡ ¾î¶² ¿µÇâÀ» ¹ÌÄ¡´ÂÁö Á¶»çÇÕ´Ï´Ù. ÀÌ µ¥ÀÌÅÍ´Â ¾ÏÀ̳ª ¾ËÃ÷ÇÏÀÌ¸Ó¿Í °°Àº ƯÁ¤ Àΰ£ Áúº´À» ¿¹¹æÇϰí Ä¡·áÇÏ´Â µ¥ µµ¿òÀÌ µÉ ¼ö ÀÖ´Â Áß¿äÇÑ ¾à¹°À» °³¹ßÇÏ´Â µ¥ »ç¿ëµË´Ï´Ù.
¹Ì±¹ Áúº´ÅëÁ¦¿¹¹æ¼¾ÅÍ(CDC)¿¡ µû¸£¸é, 2021³â ¹Ì±¹¿¡¼´Â 20¼¼ ÀÌ»ó ¼ºÀÎ ¾à 1,820¸¸ ¸íÀÌ °ü»óµ¿¸ÆÁúȯ(CAD)À» ¾Î°í ÀÖ´Ù°í ÇÕ´Ï´Ù. ½ÉÀå ÁúȯÀº ¹Ì±¹ÀÎÀÇ ÁÖ¿ä »ç¸Á ¿øÀÎÀÔ´Ï´Ù.
in vitro ¹× in silico µ¶¼º Å×½ºÆ®¿Í °°Àº ´ëü ¹æ¹ý·ÐÀÇ µîÀåÀ¸·Î ÇöÀç ½ÇÇè½Ç¿¡¼ ¿©·¯ µ¶¼º Å×½ºÆ®°¡ ¼öÇàµÇ°í ÀÖ½À´Ï´Ù. ±×·¯³ª ¹ß¾Ï¼º, ¼Ò¾ÆÀÇ ±âÇü À¯¹ß¼º, »ý½Ä µ¶¼º, µ¹¿¬º¯ÀÌ À¯¹ß¼º, ½Å°æ µ¶¼º µî ƯÁ¤ ºÐ¼®Àº »ýü ³»¿¡¼¸¸ °¡´ÉÇÕ´Ï´Ù. ¾à¹° ¹ß¾Ï¼º µ¶¼º ¿¬±¸¿¡ ´ëÇÑ °Á¶°¡ Áõ°¡ÇÔ¿¡ µû¶ó »ýü ³» µ¶¼º ½ÃÇèÀ» À§ÇÑ µ¿¹° ¸ðµ¨ÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. ¾Ï ¿¬±¸¼Ò¿¡ µû¸£¸é ÇöÀç ½ÃÀåÀ» ÁÖµµÇϰí ÀÖ´Â ¾à¹°ÀÇ ÀÎü ¹ß¾Ï À§ÇèÀ» Æò°¡Çϱâ À§ÇØ Àå±â ¼³Ä¡·ù ¹ß¾Ï¼º ¿¬±¸°¡ Á¶»çµÇ°í ÀÖ½À´Ï´Ù.
ºñµ¿¹°¼º Á¦Ç° °³¹ß¿¡¼ ü¿Ü ¸ðµ¨ÀÇ »ç¿ëÀº In Vivo µ¶¼ºÇÐ »ê¾÷ÀÇ ¼ºÀåÀ» Á¦ÇÑÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ ¸ðµ¨Àº Àΰ£ Áٱ⼼Æ÷, ÀǾàǰ, ¼¼Æ÷ ¹è¾ç ¸ðµ¨ ¹× ´ë·® 󸮷® Å×½ºÆ®¿¡ ´ëÇÑ µ¶¼º ½ÃÇè¿¡¼ ³Î¸® ¼ö¿ëµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ´ëü µ¶¼º ½ÃÇè ±â¹ýÀÇ »ç¿ëÀÌ Áõ°¡ÇÔ¿¡ µû¶ó µ¿¹° ¸ðµ¨ÀÇ Çʿ伺ÀÌ °¨¼ÒÇÏ¿© ½ÃÀåÀ» ÀúÇØÇÒ °¡´É¼ºÀÌ ³ô½À´Ï´Ù.
Àΰ£È µ¿¹° ¸ðµ¨Àº Àΰ£ »ý¹°Çп¡ ´ëÇØ ´õ ¸¹ÀÌ ¾Ë±â À§ÇÑ ÀüÀÓ»ó ¿¬±¸¸¦ ¼öÇàÇÏ´Â µ¥ À¯¿ëÇÑ µµ±¸ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ¸ðµ¨Àº Àΰ£ ¼¼Æ÷³ª Á¶Á÷À» µ¿¹°¿¡ À̽ÄÇÏ¿© Àΰ£ ´Ü¹éÁúÀÌ ¹ßÇöµÇµµ·Ï ¸¸µé¾îÁý´Ï´Ù. Àΰ£È ¸¶¿ì½º´Â ¾Ï, °¨¿°¼º Áúȯ, HIV/AIDS, Àç»ý ÀÇÇÐ, °£¿° µîÀÇ ¿¬±¸ ¸ðµ¨·Î Á¡Á¡ ´õ ¸¹ÀÌ È°¿ëµÇ°í ÀÖ½À´Ï´Ù. Àΰ£ °íÀ¯ÀÇ °¨¿°, Ä¡·á ¹× Áúº´À» ¿¬±¸ÇÏ´Â °Í¿¡ ´ëÇÑ °Á¶°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, ¾à¹°ÀÌ Àΰ£¿¡°Ô ¹ÌÄ¡´Â ½ÇÁ¦ È¿°ú¸¦ ¹ß°ßÇØ¾ß ÇÒ Çʿ伺ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ½ÃÀå ¼ºÀåÀ» À§ÇÑ ±¤¹üÀ§ÇÑ ±âȸ°¡ âÃâµÇ°í ÀÖ½À´Ï´Ù.
µ¿¹° º¸È£ ¹× º¹Áö ±ÔÄ¢°ú ±ÔÁ¤ÀÇ ½ÃÇàÀ¸·Î ÀÎÇØ ´Ù¾çÇÑ ÀÌÀ¯·Î µ¿¹° ½ÇÇèÀÌ Á¦ÇÑµÇ°í µ¿¹° ½ÇÇèÀÌ ±ÝÁöµÇ¾ú½À´Ï´Ù. Áö³ 5³â µ¿¾È ¸¹Àº ±¹°¡¿¡¼ ÈÀåǰ ºÎ¹®¿¡¼ µ¿¹° »ç¿ëÀ» ±ÝÁöÇß½À´Ï´Ù. ¶ÇÇÑ ¹Ì±¹ ±¹¸³º¸°Ç¿ø(NIH)ÀÇ ÈÄ¿øÀ» ¹Þ´Â ¿¬±¸±â°üÀº °øÁߺ¸°Ç¼ºñ½º(PHS) Á¤Ã¥°ú ¹Ì±¹½ÇÇ赿¹°¿¬±¸Çùȸ(ILAR)ÀÇ ½ÇÇ赿¹° °ü¸® ¹× »ç¿ë °¡À̵带 µû¶ó¾ß ÇÕ´Ï´Ù. ¿¬±¸ ±â°üÀº ±¹Á¦½ÇÇ赿¹°°ü¸®Æò°¡ÀÎÁõÇùȸ(AAALAC)ÀÇ ÀÎÁõÀ» ¹Þ¾Æ¾ß Çϸç, ÀÌ´Â ½ÃÀå ¼ºÀåÀÇ ¹ß¸ñÀ» Àâ°í ÀÖ½À´Ï´Ù.
COVID-19 ¹é½Å °³¹ß¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁü¿¡ µû¶ó In Vivo µ¶¼ºÇÐ ½ÃÀå È®´ë¿¡ À¯¸®ÇÑ ±âȸ°¡ âÃâµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. WHO¿¡ µû¸£¸é ÇöÀç Àü ¼¼°è¿¡¼ 20°³ÀÇ ¹é½ÅÀÌ °³¹ß ÁßÀ̸ç, ÀϺδ ÀüÀÓ»ó ´Ü°è¿¡ ÀÖ°í ´Ù¸¥ ¹é½ÅÀº ÀÌ¹Ì µ¿¹° ½ÇÇè ´Ü°è¿¡ ÁøÀÔÇß½À´Ï´Ù. ¶ÇÇÑ, COVID-19 ¿¬±¸¿¡¼ µ¿¹° ¸ðµ¨, ƯÈ÷ SARS-CoV-2 º¹Á¦ ¸¶¿ì½º ¸ðµ¨ÀÇ È¿°úÀûÀÎ »ç¿ëÀÌ ½ÃÀå È®´ë¸¦ ÁÖµµÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÆÒµ¥¹ÍÀ¸·Î ÀÎÇÑ Àü¸Á¿¡µµ ºÒ±¸ÇÏ°í µ¿¹° ¸ðµ¨ »ý»ê¾÷ü°¡ Áõ°¡ÇÏ´Â ¼ö¿ä¸¦ ÃæÁ·ÇÒ ¼ö ¾ø±â ¶§¹®¿¡ ±âÁ¸ °ø±ÞÀº Á¦ÇÑÀûÀÔ´Ï´Ù.
¸¸¼º ºÎ¹®Àº Àû¾îµµ ÇϳªÀÇ ¼³Ä¡·ù¿Í ÇϳªÀÇ ºñ ¼³Ä¡·ù Á¾¿¡ ´ëÇØ µ¶¼º Å×½ºÆ®°¡ ¼öÇàµÇ±â ¶§¹®¿¡ ¼öÀͼºÀÖ´Â ¼ºÀåÀ» ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ½ÃÇè ¹°ÁúÀº 90 ÀÏ ÀÌ»óÀÇ ±â°£ µ¿¾È Åõ¿©µÇ¸ç µ¿¹°Àº Á¤±âÀûÀ¸·Î °Ë»çµË´Ï´Ù. ¸¸¼º µ¶¼º ¿¬±¸¸¦ ÅëÇØ µ¿¹°¿¡ ´ëÇÑ ½ÃÇè ÈÇй°ÁúÀÇ Àå±âÀûÀÎ ¿µÇâ¿¡ °üÇÑ Á¤º¸¸¦ ¾òÀ» ¼ö ÀÖÀ¸¸ç, À̸¦ ÅëÇØ ½ÃÇè ¹°ÁúÀÇ ÀÎü ¾ÈÀü¼ºÀ» ÃßÁ¤ÇÒ ¼ö ÀÖ½À´Ï´Ù. µû¶ó¼ ÈÇпä¹ýÁ¦, Ç×¾ÏÁ¦, Ç×°æ·ÃÁ¦, Ç×°íÇ÷¾ÐÁ¦, Ç×°üÀý¿°Á¦ µî Àå±â ¿ä¹ý¿¡ »ç¿ëµÇ´Â ¾à¹°Àº Àå±â µ¶¼º ½ÃÇèÀÌ ÇÊ¿äÇϸç, ÀÌ¿¡ µû¶ó °ü·Ã ºÐ¾ß°¡ È®´ëµÇ°í ÀÖ½À´Ï´Ù.
¸é¿ª µ¶¼º ºÎ¹®Àº °úµµÇÑ ¾à¹° ³ëÃâ, »ý¹°ÇÐÀû Á¦Á¦ ¶Ç´Â ÈÇÕ¹° ³ëÃâ·Î ÀÎÇÑ ¸é¿ª ü°è Ȱµ¿¿¡ ´ëÇÑ ºÒ¸®ÇÑ ¿µÇâÀ¸·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGR ¼ºÀåÀ» ¸ñ°Ý ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Àΰ£ÀÇ ¸é¿ª ¾ïÁ¦´Â º¥Á¨, ¼®¸é ¹× ÇҷΰÕÈ ¹æÇâÁ· źȼö¼Ò¿¡ ´ëÇÑ ³ëÃâ·Î ÀÎÇØ ¹ß»ýÇÒ ¼ö ÀÖ½À´Ï´Ù.
ºÏ¹Ì´Â ¹Ì±¹°ú ij³ª´Ù¸¦ Æ÷ÇÔÇÑ ºÏ¹Ì ½ÃÀåÀÇ ÁÖ¿ä µ¿ÀÎÀÎ ¸ÂÃãÇü ÀǾàǰ¿¡ ´ëÇÑ ³ôÀº ¼ö¿ä·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶ÇÇÑ Ä³³ª´Ù Áٱ⠼¼Æ÷ Àü·« ¹× ½ÇÇà °èȹÀÇ ½ÃÇàÀ¸·Î ÀÎÇÑ ´ë±Ô¸ð ÁöÃâ¿¡ ÀÇÇØ ÁÖ·Î ÁÖµµµÇ´Â ij³ª´Ù Áٱ⠼¼Æ÷ ¿¬±¸ ºÎ¹®ÀÇ ºÎ»óÀº ºÏ¹Ì ½ÃÀå¿¡ ±â¿©ÇÏ´Â ¿äÀÎÀÔ´Ï´Ù.
À¯·´Àº ÀÌ Áö¿ªÀÇ ¹ø¼ºÇÏ´Â Á¦¾à ¹× ¹ÙÀÌ¿À Á¦¾à »ê¾÷°ú R&D ÅõÀÚ Áõ°¡·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±×·¯³ª ½ÃÀåÀ» ÁÖµµ ÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â Ãʱ⠴ܰèÀÇ ±¤¹üÀ§ÇÑ R&D·Î ÀÎÇØ ÀÌ Áö¿ª¿¡¼ In Vivo µ¶¼ºÇÐ ±â¼ú Ȱµ¿ÀÌ È®Àå µÉ °¡´É¼ºÀÌ ³ô½À´Ï´Ù.
2023³â 3¿ù, Âû½º ¸®¹ö´Â ½Ç½Ã°£ µ¶¼ºÇÐ ¿¬±¸ µ¥ÀÌÅ͸¦ À§ÇÑ ¾÷°è ÃÖ°íÀÇ ¾ÈÀüÇÑ Å¬¶ó¿ìµå ±â¹Ý Ç÷§ÆûÀÎ ¾ÆÆú·Î¢â¸¦ Ãâ½ÃÇϸç, ÀÌ Ç÷§ÆûÀÇ ÇöÀç ±â´ÉÀº ¾ÈÀü¼º Æò°¡ ¹× µ¶¼ºÇÐ ¿¬±¸¸¦ ÅëÇØ °í°´À» Áö¿øÇϵµ·Ï ¼³°èµÇ¾ú½À´Ï´Ù.
2023³â 2¿ù, Àè½¼ ¿¬±¸¼Ò´Â ³ë½º¿þ½ºÅÏ ´ëÇаú Çù·ÂÇÏ¿© ÀÓ»óÀǸ¦ À§ÇÑ ½ÉÀå À¯ÀüüÇÐ °úÁ¤À» °³¼³ÇÏ¿© ÀÓ»óÀǰ¡ À¯ÀüÀû ½ÉÀå ÁúȯÀÇ À§Çè¿¡ óÇÑ È¯ÀÚ¸¦ ´õ Àß ½Äº°ÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù.
2023³â 2¿ù, Âû½º ¸®¹ö´Â ÀÜ·ù ¼÷ÁÖ ¼¼Æ÷ ´Ü¹éÁúÀÇ °ËÃâ ¹× Á¤·®À» À§ÇÑ »õ·Î¿î IgY ±â¹Ý ELISA ŰƮ¸¦ Ãâ½ÃÇϸç, ÀÌ·¯ÇÑ °¨µµ¿Í ƯÀ̼ºÀÇ Áõ°¡´Â »ç¿ëµÈ °íÀ¯ÇÑ ´ß ¸é¿ª±Û·ÎºÒ¸° Y(IgY) Ç×ü ¶§¹®ÀÏ ¼ö ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global In Vivo Toxicology Market is accounted for $5.56 billion in 2022 and is expected to reach $7.67 billion by 2028 growing at a CAGR of 5.5% during the forecast period. Vivo toxicology is the study of the toxicity of various medications on a living organism, usually an animal. This is in contrast to in vitro toxicology, which uses non-living technologies like as computer models and cell lines. This type of testing investigates how chemicals and medications affect the behaviour and health of living animals. This data is used in the creation of critical drugs that can help prevent and treat specific human diseases such as cancer and Alzheimer's.
According to the Centers for Disease Control and Prevention (CDC), in 2021, around 18.2 million adults aged 20 and older had coronary artery disease (CAD) in the United States. Heart disease is the leading cause of death among people in the United States.
Several toxicological tests are now carried out in laboratories, thanks to the emergence of alternative methodologies such as in vitro and in silico toxicity testing. Certain assays, however, are only available in vivo, such as tests for carcinogenicity, developmental including teratogenicity in children and reproductive toxicity, mutagenicity, and neurotoxicity. The increased emphasis on drug carcinogenic toxicity studies is likely to drive the adoption of animal models for in vivo toxicology testing. According to the Cancer Research Institute long term rodent carcinogenicity studies are currently being investigated in order to assess the carcinogenic risk of medications in humans which are propelling the market.
In the non-animal product development, the use of in vitro models is projected to limit the growth of the in vivo toxicology industry. Such models have acquired widespread acceptance in toxicological testing for human stem cells, pharmaceuticals, cell culture models, and high-throughput testing. Furthermore, the growing use of alternative toxicological testing techniques is likely to reduce need for animal models thereby hindering the market.
Humanised animal models are useful instruments for performing preclinical research to learn more about human biology. These models are created by engrafting human cells or tissues into animals, resulting in the expression of human proteins. Humanised mice are increasingly being employed as study models for cancer, infectious illnesses, HIV/AIDS, regenerative medicine, and hepatitis. The rising emphasis on investigating human-specific infections, cures, and diseases, as well as the necessity to discover the actual effects of medications on humans creating wide range of opportunities for the growth of the market.
The implementation of animal protection and welfare rules and regulations has resulted in restrictive practises and animal bans for a variety of reasons. Many countries have prohibited the use of animals in the cosmetics sector in the last five years. Furthermore, institutes sponsored by the National Institutes of Health (NIH) are expected to follow Public Health Service (PHS) policy and the Institute for Laboratory Animal Research (ILAR) Guide for the Care and Use of Laboratory Animals. Research institutes seek accreditation from the Association for the Assessment and Accreditation of Laboratory Animal Care International (AAALAC), which halts the market growth.
The increased focus on COVID-19 vaccine development is expected to create lucrative chances for the market expansion of in vivo toxicology. According to the WHO, 20 vaccines are now in development around the world, with some in the preclinical stage and others having already entered the animal trial phase. Furthermore, the effective use of animal models in COVID-19 research, notably mice models in SARS-CoV-2 replication, is projected to drive market expansion. Despite the prospects presented by the pandemic, existing supply is limited because to animal model producers inability to fulfil increasing demand.
The chronic segment is estimated to have a lucrative growth, due to toxicity testing are performed on at least one rodent and one non-rodent species. The test substance is administered over a period of more than 90 days, and the animals are examined on a regular basis. A chronic toxicological research gives information regarding the long-term effects of a test chemical in animals, which may then be extrapolated to the test substance's safety in humans. As a result, medications used for long-term therapy, such as chemotherapeutic agents, anti-cancer, anti-convulsive, anti-hypertensive, and anti-arthritic therapies, necessitate long-term toxicity testing, driving sector expansion.
The Immunotoxicity segment is anticipated to witness the highest CAGR growth during the forecast period, due to the unfavourable effects on immune system activities produced by excessive medication exposure, biologics, or chemical compound exposure. Human immunosuppression may result from exposure to benzene, asbestos, and halogenated aromatic hydrocarbons.
North America is projected to hold the highest market share during the forecast period owing to the high demand for personalised pharmaceuticals is the primary driver of the North American market which includes the United States and Canada. Furthermore, the rise of the Canadian stem cell research sector, which is primarily driven by large-scale expenditures as a result of the implementation of the Canadian Stem Cell Strategy and Action Plan, is a contributing factor to the North America market.
Europe is projected to have the highest CAGR over the forecast period, owing to the region's thriving pharmaceutical and biopharmaceutical industries, as well as the increased investment in R&D. However, due to the extensive R&D in the early stages, which is projected to drive the market, the In Vivo Toxicology technique activities are likely to expand in this region
Some of the key players profiled in the In Vivo Toxicology Market include: The Jackson Laboratory, Charles River Laboratories, Taconic Biosciences, Janvier Labs, Thermo Fisher Scientific, Waters Corporation, Danaher Corporation, Shimadzu Corporation, Agilent Technologies, PerkinElmer, Merck KGaA, GE Healthcare, genOway, Bio-Rad Laboratories, Crown Biosciences, Harbour BioMed, Bruker Corporation and TransCure bioServices
In March 2023, Charles River Launches Apollo™, an industry-leading, secure, cloud-based platform for real-time toxicology study data, the platform's current capabilities are designed to support clients with safety assessment and toxicology studies.
In Feb 2023, The Jackson Laboratory partners with northwestern to create cardiogenomics course for clinicians, with northwestern university will help clinicians better identify patients at risk for genetic cardiac disease.
In Feb 2023, Charles River Launches Novel IgY-based ELISA Kit for the detection and quantitation of residual host cell protein, this increase in sensitivity and specificity can be attributed to the unique chicken immunoglobulin y (IgY) antibodies utilized.