![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1273293
¼¼°èÀÇ ¹Ú¸· ¹èÅ͸® ¹× ÇÁ¸°Æ¼µå ¹èÅ͸® ½ÃÀå ¿¹Ãø(-2028³â) : À¯Çü, ¿ë·®, Àü¾Ð, ÃæÀü¼º, ¿ëµµ, Áö¿ªº° ºÐ¼®Thin Film and Printed Battery Market Forecasts to 2028 - Global Analysis By Type, Capacity, Voltage, Rechargeability, Application and By Geography |
Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ¹Ú¸· ¹èÅ͸® ¹× ÇÁ¸°Æ¼µå ¹èÅ͸®(Thin Film and Printed Battery) ½ÃÀåÀº 2022³â¿¡ 1¾ï 4,844¸¸ ´Þ·¯¿´À¸¸ç, 2028³â¿¡´Â 5¾ï 8,555¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ¿¹Ãø ±â°£ µ¿¾È 25.7%ÀÇ CAGR·Î ¼ºÀåÇÒ Àü¸ÁÀÔ´Ï´Ù.
¹Ú¸· ¹èÅ͸®´Â °¡º±°í À¯¿¬ÇÏ¸ç º¸Á¸ ±â°£ÀÌ ±æ°í À¯¿¬ÇÑ ¹èÅ͸® ÆÑÀº ¸ðµç ÇüÅÂ¿Í Å©±âÀÇ Á¦Ç°¿¡ ³ÖÀ» ¼ö ÀÖ½À´Ï´Ù. ÀüÀÚ ºÎǰÀÇ ¼ö¿ä´Â Àú°¡°Ý, À̵¿Åë½ÅÀ̳ª ÀÎÅÍ³Ý Á¢¼Ó µî Æí¸®¼º, ±×¸®°í ¸ðµç »çȸ°æÁ¦°èÃþ¿¡¼ ÇÕ¸®ÀûÀÎ °¡°ÝÀ¸·Î ³Î¸® ÀÌ¿ëÇÒ ¼ö Àֱ⠶§¹®¿¡ ÃÖ±Ù ¸î ³â°£ Å©°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ÈÞ´ë ÀüÈ, ³ëÆ®ºÏ, Ä«¸Þ¶ó, °è»ê±â µîÀº ÀüÀÚ ±â±âÀÇ ¿¹ÀÔ´Ï´Ù.
½Ã½ºÄڽýºÅÛÁî¿¡ µû¸£¸é ½º¸¶Æ®¿öÄ¡ ÃâÇÏ·®Àº 2020³â 1¾ï´ë¸¦ µ¹ÆÄÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÌ´Â ½ÃÀå ¼ºÀåÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.
ÈÞ´ëÀüÈ, ½Ã°è, ÀÇ·á±â±â µî ¼ÒÇüȰ¡ ÁøÇàµÇ°í ÀÖ¾î ¼ÒÇüÈµÈ ÀüÀÚ±â±â ºÎǰÀÇ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. Àü¼¼°è¿¡¼ ´Ù¾çÇÑ ¼ÒÇü ÀüÀÚ ½Ã½ºÅÛ ¹× ÀåÄ¡°¡ °³¹ßµÇ°í ÀÖ½À´Ï´Ù. Á¾·¡ÀÇ ÀüÁö¿¡¼´Â ÀüÀÚ±â±âÀÇ ¼ÒÇüȰ¡ °ï¶õÇϱ⠶§¹®¿¡, ¼ÒÇü¡¤°æ·®ÀÇ ÇÁ¸°Æ® Ç÷º½Ãºí ¹èÅ͸®ÀÇ ¼ö¿ä°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ÀÇ·á ±â±âµµ ¼ÒÇüÈµÈ ¹èÅ͸®·Î ±¸µ¿½ÃÄÑ ½ÃÀå¿¡ ÅõÀԵ˴ϴÙ. ¿þ¾î·¯ºí Àåºñ¿¡ ÅëÇÕÇÏ·Á¸é ¾ã°í °¡º¿î ¹èÅ͸®°¡ ÇÊ¿äÇÕ´Ï´Ù.
ÇÁ¸°Æ¼µå Ç÷º½Ãºí ¹èÅ͸®¸¦ ¸¸µå´Â µ¥ »ç¿ëµÇ´Â µ¶Æ¯ÇÑ ±â¼úÀº Á¦Á¶¾÷ü¸¶´Ù ´Ù¸£¸ç Á¦Á¶¾÷üÀÇ ±âÁØ¿¡ µû¶ó ´Ù¸¨´Ï´Ù. ÀÌ·¯ÇÑ ¹èÅ͸®´Â ƯÁ¤ ÀüÀÚ ÀåÄ¡ Àü¿ëÀ¸·Î ¼³°èµÇ¾úÀ¸¹Ç·Î ´Ù¸¥ ÀåÄ¡¿¡ »ç¿ëÇϸé ȣȯ¼º ¹®Á¦°¡ ¹ß»ýÇÕ´Ï´Ù. ±× °á°ú, ÀüÁö °³Ã´ ½Ã¿¡ µû¶ó¾ß ÇÒ ±âÁØÀÌ ¾ø´Â °ÍÀÌ ÇÁ¸°Æ¼µå Ç÷º½Ãºí ¹èÅ͸® ½ÃÀåÀÇ È®´ëÀÇ Á¦¾àÀÌ µÇ°í ÀÖ½À´Ï´Ù.
IoT¿Í ¹«¼± ¼¾¼ ±â¼úÀÇ Çâ»óÀ¸·Î Àü¼¼°è ¹«¼± ¼¾¼ÀÇ È°¿ëÀÌ ±Þ¼ÓÈ÷ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. ¹Ú¸· ¹èÅ͸®³ª ÇÁ¸°Æ® ÀüÁö¿Í °°Àº ¿¡³ÊÁö ÇϺ£½ºÆÃ ±â¼úÀº ÀÓº£µðµå ½Ã½ºÅÛÀÇ Àü¿ø °ø±Þ ¿É¼ÇÀ¸·Î ±Þ¼ÓÈ÷ »ó½ÂÇϰí ÀÖÀ¸¸ç, Áö±Ý±îÁö ¹Ì°³Ã´ÇÑ ¿ëµµ¿¡¼ ¹«¼± ¼¾¼¸¦ »ç¿ëÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¸¶ÀÌÅ©·Î ¹èÅ͸®´Â ¶Ù¾î³ Æû ÆÑÅÍ, ÃʹÚÇü, Àú ´©¼³ Ư¼ºÀ¸·Î ¿¡³ÊÁö ¼öÈ®À» ½ÇÇöÇÕ´Ï´Ù. ¿¡³ÊÁö ÇϺ£½ºÆÃÀ» ÀÌ¿ëÇÑ ÀÚÀ²Çü ¹«¼± ¼¾¼ÀÇ µµÀÔÀÌ ÁøÇàµÇ°í Àֱ⠶§¹®¿¡, ¹Ú¸· ¹èÅ͸®¿Í ÇÁ¸°Æ® ÀüÁöÀÇ ½ÃÀåÀÌ ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù.
°íü ÀüÇØÁú, ¼ÒÇÁÆ® ÁýÀüü, Àü±Ø Àç·á, ¿ÏÀüÇÑ ¸®Æ¬ À̿ ¹èÅ͸® ¼¿ ¾î¼Àºí¸®ÀÇ ¸é¹ÐÇÑ °ËÅä°¡ ÇÊ¿äÇÕ´Ï´Ù. ±×·¡¼ ¹Ú¸· ¸®Æ¬ À̿ ÀüÁö¿Í ÇÁ¸°Æ® Ç÷º½Ãºí ¸®Æ¬ À̿ ÀüÁöÀÇ ±âÃÊÀûÀÎ ÀÌÇØ¿Í ½Ã¹Ä·¹À̼ÇÀ» ½Ç½ÃÇÏ´Â ¿¬±¸¸¦ ÁøÇàÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÌ·¯ÇÑ ¹èÅ͸®ÀÇ ½Å·Ú¼º°ú ¼º´ÉÀ» Æò°¡Çϱâ À§ÇÑ ¿¬±¸µµ ÁøÇàµÇ°í ÀÖÁö¸¸, ÇöÀçÀÇ Ã·´Ü ±â¼ú·Î´Â ½±°Ô Á¶»çÇÒ ¼ö ¾ø½À´Ï´Ù. ±× °á°ú, ¹Ú¸· ¸®Æ¬ À̿ ¹èÅ͸® Á¦Á¶ÀÇ º¹À⼺Àº ½ÃÀå È®´ëÀÇ Å« À庮ÀÌ µÇ¾ú½À´Ï´Ù.
¹Ú¸· ¹èÅ͸® ¹× ÇÁ¸°Æ¼µå ¹èÅ͸® ½ÃÀåÀº, ¼ÒºñÀÚ ÀüÀÚÁ¦Ç°À̳ª ¿¡³ÊÁö ÇϺ£½ºÆÃ ¿ëµµ¿¡¼ÀÇ ¹Ú¸· ¹èÅ͸® ¹× ÇÁ¸°Æ¼µå ¹èÅ͸®ÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇØ ½ÃÀåÀÇ ¼ºÀåÀ» °ßÀÎÇϰí Àֱ⠶§¹®¿¡, Å« ¼ºÀåÀ» ÀÌ·ç°Ô µÇ°í ÀÖ½À´Ï´Ù . COVID-19ÀÇ °á°ú, ÆÇµ¥¹Í¿¡ µû¶ó, ±â¾÷À̳ª ¼¼°è °æÁ¦¿¡ ½É°¢ÇÑ È¥¶õÀÌ »ý±â±â ¶§¹®¿¡, ¹Ú¸· ¹èÅ͸® ¹× ÇÁ¸°Æ¼µå ¹èÅ͸®ÀÇ °ø±Þ üÀÎÀ̳ª äÅÃÀÌ Á¦ÇÑµÉ °ÍÀ¸·Î ¿¹»óµÇ°í, ´Ù¾çÇÑ ¿ëµµ¿¡ ÀÖ¾î¼ÀÇ ¹Ú¸· ¹èÅ͸® ¹× ÇÁ¸°Æ¼µå ¹èÅ͸®ÀÇ ±â´ë ¼ºÀå·üÀº ¶³¾îÁú °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.
10 mAh ¹Ì¸¸ÀÇ ºÎ¹®Àº À¯¸®ÇÑ ¼ºÀåÀ» ÀÌ·ê °ÍÀ¸·Î ÃßÁ¤µË´Ï´Ù. 10mAh ¹Ì¸¸ ¿ë·®ÀÇ ¹èÅ͸®´Â ÀÇ·á¿ë ÀÓÇöõÆ®, ÈÀåǰ¿ë ÆÐÄ¡, »ç¹° ÀÎÅÍ³Ý Àåºñ, MEMS, CMOS ¸Þ¸ð¸® ¹× ±âŸ Àúµå·¹ÀÎ Àåºñ¿¡ ÀÚÁÖ »ç¿ëµË´Ï´Ù. ÀÌ·¯ÇÑ ÀåÄ¡´Â À۱⠶§¹®¿¡ ³»ºÎ °ø°£¿¡ ÇѰ谡 ÀÖ½À´Ï´Ù. ÀÌ ÀåÄ¡´Â À۱⠶§¹®¿¡ ³»ºÎ °ø°£ÀÌ Á¦ÇѵǾî ÀÖÀ¸¸ç Àú¿ë·® ¹èÅ͸®·Î ±¸µ¿ ÇÒ ¼ö ÀÖ½À´Ï´Ù. ´Ù¾çÇÑ ÀÀ¿ë ºÎ¹®¿¡¼ »ç¿ëµÇ´Â ¹Ú¸· ¹× ÇÁ¸°Æ¼µå ¹èÅ͸®ÀÇ ¼ö¿ä Áõ°¡´Â ¿¹Ãø ±â°£ µ¿¾È 10mAh ¹Ì¸¸ÀÇ Ä«Å×°í¸® °³¹ßÀ» ÃËÁøÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.
1.5V ¹Ì¸¸ ºÎ¹®Àº ¼ÒºñÀÚ ÀüÀÚ ¹× ±âŸ ¼ÒÇü °¡Àü Á¦Ç°¿¡ ³Î¸® »ç¿ëµÇ±â ¶§¹®¿¡ ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ Ãß¼¼´Â Àü¼¼°èÀÇ À¯¸íÇÑ Á¦Á¶¾÷üµéÀÌ ÀÌ·¯ÇÑ ¹èÅ͸®¸¦ º¸´Ù ÀÛ°í ¾ÈÁ¤ÀûÀÌ°í ¾ÈÁ¤ÀûÀ¸·Î ¸¸µé±â À§ÇÑ ¿¬±¸°³¹ß ³ë·ÂÀ» °è¼ÓÇϰí ÀÖ´Â °á°ú ÇâÈÄ ¼ö³â°£ Áö¼ÓµÉ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¶ÇÇÑ, º¸Ã»±â, ¹«¼± Űº¸µå, ¸¶¿ì½º, µµ¾îº§, ¹«¼± º¸¾È ½Ã½ºÅÛÀÇ Àü¿øÀ¸·Î ¹èÅ͸®¸¦ »ç¿ëÇÏ´Â °Íµµ ÀÌ »ê¾÷ÀÇ ¹ßÀü ¼Óµµ¸¦ ³ôÀÌ´Â ±Ùº»ÀûÀÎ ÀÌÀ¯°¡ µÇ°í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¹Ú¸· ¹èÅ͸®´Â ¼ÒÇüÈ·Î ÀÎÇØ ½º¸¶Æ® ¿öÄ¡ ¹× °Ç° ¸ð´ÏÅ͸µ ÀåÄ¡°ú °°Àº ¿þ¾î·¯ºí µð¹ÙÀ̽º¿¡¼ À¯¿ë¼ºÀÌ ³ôÀ¸¸ç ¹Ì±¹°ú ij³ª´Ù °í°´µé·ÎºÎÅÍ ÀαⰡ ³ô½À´Ï´Ù. ¶ÇÇÑ, ÀÌ Áö¿ª¿¡¼´Â ÀÇ·á¿ë ÀüÀÚ±â±âÀÇ ÀÌ¿ëÀÌ Áõ°¡Çϰí ÀÖ´Â °Íµµ, ÀÌ ½ÃÀåÀÇ °³Ã´À» ÃËÁøÇÏ´Â Å« ¿äÀÎÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ »ê¾÷ÀÇ ÁÖ¿ä Á¦Á¶¾÷ü Áß »ó´ç¼ö´Â Blue Spark Technologies, Ultralife Corporation, Brightvolts Inc. µî ºÏ¹Ì¿¡ À§Ä¡Çϰí ÀÖ½À´Ï´Ù.
¾Æ½Ã¾Æ ÅÂÆò¾çÀº ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¼ö¿äÀÇ ÁÖ¿ä ¿äÀÎÀº 2020³âÀ» ÅëÇØ Áß±¹°ú ÀϺ»¿¡¼ ¿þ¾î·¯ºí ÀüÀÚ¿Í º¸Ã»±â, È£Èí º¸Á¶±â µî ÀÇ·á¿ë ÀüÀÚ±â±âÀÇ ÆÇ¸Å°¡ Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ´Ù´Â °ÍÀÔ´Ï´Ù. ¶ÇÇÑ, ¹«¼± ¼¾¼ ³×Æ®¿öÅ©, ¸®¸ðÄÁ, ½º¸¶Æ® Ä«µå µî ¼ÒºñÀÚ °¡Àü¿¡ ÇÁ¸°Æ¼µå ¹èÅ͸® ±â¼úÀÇ µµÀÔÀÌ Áõ°¡Çϰí ÀÖ´Â °Íµµ, ÀÌ ½ÃÀåÀÇ ¼ºÀåÀ» ÃËÁøÇÒ °ÍÀÔ´Ï´Ù.
2020³â 3¿ù, EnfucellÀº ÃÖ±Ù ½ÅÁ¦Ç° 'Wearable Temperature Tag'¸¦ ¹ßÇ¥Çß½À´Ï´Ù. ÀÌ Å±״ NFC, Áö´ÉÇü ¿Âµµ ¼¾¼, SoftBattery(ÀμâÁö ¹èÅ͸®)ÀÇ º¹ÇÕ ±â¼úÀ» ±â¹ÝÀ¸·Î ÇÕ´Ï´Ù.
2019³â 8¿ù, Imprint Energy´Â ÃʹÚÇü, ¾ÈÀüÇϰí Ç÷º½Ãºí ÇÁ¸°Æ¼µå ¹èÅ͸® °³¹ßÀÚ¿ë ŰƮ Á¦°ø È®´ë¸¦ ¹ßÇ¥Çß½À´Ï´Ù. ÀÌ ¹èÅ͸®´Â ´Ü°Å¸® ¶Ç´Â Àå°Å¸® Åë½ÅÀ» À§ÇÑ Àü·ÂÀ» ´ã°í ÀÖÀ¸¸ç, ƯÈ÷ ºí·çÅõ½º Àú¿¡³ÊÁö ¹× ±âŸ Ç¥Áذú ¿¬°èÇÏ¿© ÀúÀü·Â ±¤¿ª ³×Æ®¿öÅ©(LPWAN)¿ë ¼ÀÅØ LoRa µð¹ÙÀ̽º¿Í ÅëÇÕµÈ IoT ÀåÄ¡¿¡ Àü¿øÀ» °ø±ÞÇϵµ·Ï ¼³°èµÇ¾ú½À´Ï´Ù.
According to Stratistics MRC, the Global Thin Film and Printed Battery Market is accounted for $148.44 million in 2022 and is expected to reach $585.55 million by 2028 growing at a CAGR of 25.7% during the forecast period. Thin Film batteries are lightweight, flexible, have a longer shelf life, and flexible battery packs can be put to any shape or size product. The demand for electronic gadgets has grown significantly over the years due to their low cost, the convenience they give, such as mobile communication and internet access, and their widespread availability in all socioeconomic classes at reasonable costs. Mobile phones, laptop computers, cameras, and calculators are examples of electronic devices.
According to Cisco Systems, the shipments of smart watches worldwide are forecasted to surpass 100 million in 2020, consequently encouraging the growth.
The ongoing miniaturisation of gadgets such as mobile phones, watches, and medical devices has resulted in an increase in demand for miniaturised electronic device components. Various tiny electronic systems and devices are being developed around the world. Because conventional batteries make it difficult to reduce the size of electronic gadgets, there is a rising demand for compact and lightweight printed flexible batteries. Implantable and wearable medical gadgets can only reach the market if miniaturised batteries are utilised to power them. To be integrated with wearable devices, these batteries must be both thin and lightweight.
The proprietary technology utilised to make printed flexible batteries range from one manufacturer to the next dependent on the manufacturer's criteria. These batteries are designed specifically for certain electronic devices, resulting in compatibility concerns when used with other devices. As a result, the lack of standards to follow during battery development works as a constraint on the expansion of the printed flexible battery market.
Because of improvements in IoT and wireless sensor technology, wireless sensors are being rapidly utilised all over the world. Energy harvesting technologies such as thin film and printed flexible batteries are rapidly emerging as a viable power supply option for embedded systems, enabling the use of wireless sensors in previously untapped applications. Micro batteries offer energy harvesting due to their superior form factors, ultra-thin profile, and low leakage characteristics. The growing deployment of energy harvesting-based autonomous wireless sensors is predicted to drive growth in the thin film and printed battery markets.
It necessitates a meticulous examination of solid-state electrolytes, soft current collectors, electrode materials, and complete lithium-ion battery cell assemblies. Studies are being conducted to gain a fundamental understanding and simulation of totally thin film and printed flexible lithium-ion batteries. Furthermore, research is being conducted to assess the reliability and performance of these batteries, which are not easily, investigated utilising current cutting-edge technology. As a result, the fabrication complexity of thin film lithium-ion batteries is a significant barrier to market expansion.
The thin film and printed battery market was subject to significant growth owing to the increased adoption of thin film and printed batteries in consumer electronics and energy harvesting applications, which were driving the growth of the market. As a result of COVID-19, the expected growth of thin film and printed batteries across different applications is expected to decline as the pandemic is expected to restrict the supply chain and adoption of thin film and printed batteries owing to severe disruptions in businesses and the global economy.
The below 10 mAh segment is estimated to have a lucrative growth. Batteries with capacities less than 10 mAh are commonly used in medical implants, cosmetic patches, Internet of Things devices, MEMS, CMOS memory, and other low-drain devices. Because these devices are small, they have a limited amount of internal space. They can be powered by low-capacity batteries. Increasing demand for thin film and printed batteries for usage in various applications is likely to drive development in the below 10 mAh category during the forecast period.
The below 1.5 V segment is anticipated to witness the highest CAGR growth during the forecast period, due to its wide applications in consumer electronic gadgets and other small home appliances. The trend is projected to continue in the coming years as a result of ongoing R&D efforts by prominent manufacturers around the world to make these batteries even more small, reliable, and stable while remaining affordable. The fundamental driving reason that will drive this industry's development rate is the usage of batteries as a power source for hearing aids, wireless keyboards and mice, door bells, and wireless security systems.
North America is projected to hold the largest market share during the forecast period. Thin film batteries, due to their reduced size, are highly useful in wearable devices such as smart watches and health monitoring gadgets, which are popular among customers in the United States and Canada. Furthermore, increased usage of medical electronic devices in the region is another significant factor driving the development of this market. Many key manufacturers in this industry are situated in North America, including Blue Spark Technologies, Ultralife Corporation, and Brightvolts Inc.
Asia Pacific is projected to have the highest CAGR over the forecast period. The demand is primarily driven by predicted growth in sales of wearable electronics and medical electronic devices such as hearing aids and respiratory aids in China and Japan throughout 2020. Furthermore, the increased implementation of printed battery technology in consumer electronics like as wireless sensor networks, remote controls, and smart cards will drive the growth of this market.
Some of the key players profiled in the Thin Film and Printed Battery Market include: Brightvolt Inc., Blue Spark Technologies, Inc., Enfucell OY Ltd., Imprint Energy, Inc., Cymbet Corporation, Inc., Panasonic Corporation, Jiangsu Enfucell Flexible Electronics Co., Ltd., STMicroelectronics, Flexel LLC, Protoflex Corporation, Jenax Inc., Excellatron Solid State LLC., NEC Energy Solutions Inc. and Ilika Plc.
In March 2020, Enfucell recently released its new product the Wearable Temperature Tag. The tag is based on a combined technology of NFC, intelligent temperature sensor, and SoftBattery (printed paper batteries).
In August 2019, Imprint Energy announced the expanded availability of its developer's kit for its ultrathin, safe, flexible, printed batteries. The batteries pack the power to communicate over short or long distances, and were especially designed to power IoT devices integrated with Semtech's LoRa devices for low power wide area networks (LPWAN), as well as working with Bluetooth Low Energy and other standards.