½ÃÀ庸°í¼­
»óǰÄÚµå
1284075

¼¼°èÀÇ Æ÷±× ³×Æ®¿öÅ· ½ÃÀå ¿¹Ãø(-2028³â) - ±¸¼º ¿ä¼Òº°, ¿ëµµº°, Áö¿ªº° ºÐ¼®

Fog Networking Market Forecasts to 2028 - Global Analysis By Component, Application and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 175+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é, ¼¼°è Æ÷±× ³×Æ®¿öÅ· ½ÃÀåÀº 2022³â 10¾ï 2,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù. 2028³â¿¡´Â 27¾ï 8,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ¿¹Ãø ±â°£ µ¿¾È 18.2%ÀÇ CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

Æ÷±× ³×Æ®¿öÅ·Àº µ¥ÀÌÅÍ ¼Ò½º¿Í Ŭ¶ó¿ìµå »çÀÌ¿¡ Ãß°¡ ÄÄÇ»ÆÃ, ½ºÅ丮Áö, ³×Æ®¿öÅ© ¸®¼Ò½º¸¦ È®ÀåÇÏ´Â ÄÄÇ»ÆÃ Ç÷§ÆûÀ¸·Î, Á¾Á¾ Æ÷±× ³×Æ®¿öÅ·À̶ó°íµµ ÇÕ´Ï´Ù. Áõ°­Çö½Ç(AR)°ú »ç¹°ÀÎÅͳÝ(IoT)Àº ´ë·®ÀÇ µ¥ÀÌÅ͸¦ »ý¼ºÇÏ°í ºÐ¼®À» À§ÇØ Å¬¶ó¿ìµå ¼­ºñ½º·Î Àü¼ÛÇÏ´Â °ÍÀÌ ºñÇö½ÇÀûÀÌÁö¸¸, Æ÷±× ÄÄÇ»ÆÃÀº ÃÖÁ¾ »ç¿ëÀÚ ÀåÄ¡ °£ÀÇ ³×Æ®¿öÅ© Áö¿¬À» ÁÙ¿©ÁÝ´Ï´Ù. Æ÷±× ÄÄÇ»ÆÃÀÇ °³³äÀº µ¥ÀÌÅÍ Àü¼Û ¼Óµµ¸¦ ³ôÀ̸鼭 Ŭ¶ó¿ìµå ¸®¼Ò½º¸¦ ÀåÄ¡ °¡±îÀÌ¿¡ ÅëÇÕÇÏ¿© µ¥ÀÌÅÍ Àü¼ÛÀ» °¡¼ÓÈ­Çϱ⠶§¹®¿¡ ¾÷°è¿¡¼­ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. Æ÷±× ÄÄÇ»ÆÃÀº ÀúÁö¿¬ ¿ä±¸¸¦ ÃæÁ·Çϰí, ÃÖÁ¾ ÀåÄ¡ÀÇ Àü·Â ¼Òºñ¸¦ ÁÙÀ̰í, µ¥ÀÌÅ͸¦ ½Ç½Ã°£À¸·Î ó¸®Çϰí, µ¥ÀÌÅÍ¿¡ ´ëÇÑ ÄÄÇ»ÆÃ ¸®¼Ò½º¸¦ ÇöÁöÈ­ÇÏ·Á´Â ½Ãµµ¸¦ Çϰí ÀÖ½À´Ï´Ù.

IDC¿¡ µû¸£¸é, 2019³â±îÁö Àüü IoT µ¥ÀÌÅÍÀÇ 43%°¡ µ¥ÀÌÅͼ¾ÅÍ·Î Àü¼ÛµÇ±â Àü¿¡ ¿§Áö¿¡¼­ ó¸®µÉ °ÍÀ̸ç, ÀÌ´Â Æ÷±× ÄÄÇ»ÆÃ°ú ¿§Áö ÄÄÇ»ÆÃÀ» ´õ¿í ÃËÁøÇÒ °ÍÀ̶ó°í ÇÕ´Ï´Ù. ¶ÇÇÑ IoT°¡ IT ÀÎÇÁ¶ó¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» »ìÆìº¸¸é, 451¸®¼­Ä¡´Â ¿À´Ã³¯ ´ëºÎºÐÀÇ Á¶Á÷ÀÌ IoT ¿öÅ©·Îµå¸¦ ¿§Áö¿¡¼­ ó¸®ÇÏ¿© º¸¾ÈÀ» °­È­Çϰí, ½Ç½Ã°£ ¿î¿µ ÀÛ¾÷ Æ®¸®°Å¸¦ ó¸®Çϸç, IoT µ¥ÀÌÅÍ ÀúÀå ¹× Àü¼Û ¿ä±¸ »çÇ×À» ÁÙÀÎ´Ù°í º¸°í ÀÖ½À´Ï´Ù.

½ÃÀå ¿ªÇÐ :

ÃËÁø¿äÀÎ

Ä¿³ØÆ¼µå Ä« ±â¼ú¿¡¼­ Æ÷±× ÄÄÇ»ÆÃÀÇ È°¿ëµµ Áõ°¡

Áö³­ ¸î ³â µ¿¾È Ä¿³ØÆ¼µå Ä« °³¹ßÀ» Áö¿øÇÏ´Â Æ÷±× ÄÄÇ»ÆÃ ¼Ö·ç¼ÇÀÇ »ç¿ëÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. Ä¿³ØÆ¼µåÄ« °£, ±×¸®°í Ä¿³ØÆ¼µåÄ«¿Í ¾×¼¼½º Æ÷ÀÎÆ® °£ÀÇ »óÈ£ ÀÛ¿ë°ú Åë½ÅÀÌ ±¤¹üÀ§ÇÏ°Ô ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. Æ÷±× ÄÄÇ»ÆÃÀº ½º¸¶Æ® Ä¿³ØÆ¼µå Ä«(SCV)¿¡ À̵¿ ¹× À§Ä¡ ÀνÄ, ½Ç½Ã°£ »óÈ£ÀÛ¿ë, ÀúÁö¿¬, ±³Åë Áö¿ø µî ´Ù¾çÇÑ ¼­ºñ½º¸¦ Á¦°øÇϱâ À§ÇÑ Ç÷§ÆûÀ¸·Î ÃÖÀûÀÇ Æ¯¼ºÀ» °¡Áö°í ÀÖ½À´Ï´Ù. ½Ç½Ã°£ AI 󸮴 °¡»óÇö½ÇÀÇ ¹ßÀüµÈ ÇüÅÂÀ̸ç, Á¤º¸ ¼öÁý ¹× ó¸®ÀÇ ´ëºÎºÐÀº °ü·Ã ÀüÈ­, ½º¸¶Æ® Ȩ ½ºÅ丮Áö, Ŭ¶ó¿ìµå¿Í °°Àº Ä¿³ØÆ¼µå µð¹ÙÀ̽º·Î Àü¼ÛµË´Ï´Ù. Æ÷±× ¾ÆÅ°ÅØÃ³´Â Áö´ÉÇü À§Ä¡ °èÃþÀ¸·Î ÀÌ·¯ÇÑ ÀåÄ¡¸¦ Áö¿øÇÏ¿© µ¥ÀÌÅÍ À§Ä¡ ÆÄ¾Ç ¹× ºÐ¼®À» ¼öÇàÇÕ´Ï´Ù.

¾ïÁ¦¿äÀÎ

º¸¾È ¿ì·Á¿Í ȣȯ¼º ¹®Á¦

Æ÷±× ÄÄÇ»ÆÃÀº µ¥ÀÌÅÍ Ã³¸®¸¦ ³×Æ®¿öÅ©ÀÇ ¿§Áö¿¡ °¡±õ°Ô ¹èÄ¡Çϱ⠶§¹®¿¡ ÀáÀçÀûÀÎ »çÀ̹ö °ø°ÝÀÇ °ø°Ý ´ë»óµµ Áõ°¡ÇÕ´Ï´Ù. µû¶ó¼­ ³×Æ®¿öÅ© º¸¾È°ú µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã º¸È£¿¡ ¾î·Á¿òÀ» °ÞÀ» ¼ö ÀÖ½À´Ï´Ù. Æ÷±× ÄÄÇ»ÆÃÀº ¼­·Î ´Ù¸¥ Çϵå¿þ¾î ¹× ¼ÒÇÁÆ®¿þ¾î ±¸¼º ¿ä¼Ò °£¿¡ »ó´çÇÑ ¾çÀÇ Á¶Á¤ÀÌ ÇÊ¿äÇϱ⠶§¹®¿¡ ȣȯ¼º ¹®Á¦°¡ ¹ß»ýÇϰųª º¹À⼺ÀÌ Áõ°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. Æ÷±× ÄÄÇ»ÆÃÀº ºÐ»êÇüÀ̱⠶§¹®¿¡ ³×Æ®¿öÅ© È®Àå ¹× È¿À²ÀûÀÎ ¸®¼Ò½º °ü¸®°¡ ¾î·Á¿ï ¼ö ÀÖ½À´Ï´Ù. ÀÌ·Î ÀÎÇØ ¼º´É ÀúÇÏ¿Í È¿À²¼º ÀúÇϸ¦ ÃÊ·¡ÇÒ ¼ö ÀÖÀ¸¸ç, ÀÌ´Â Æ÷±× ÄÄÇ»ÆÃ ½ÃÀåÀÇ ¼ºÀåÀ» ÀúÇØÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

±âȸ

5G ±â¼úÀÇ ÁøÈ­

5G ±â¼úÀÇ ¹ßÀüÀº ´ë±â ½Ã°£ ¹®Á¦¸¦ ÃÖ¼ÒÈ­ÇÏ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â ´ë¿ªÆø ¼º´ÉÀ» °®Ãá ¿§Áö ÄÄÇ»ÆÃ µ¥ÀÌÅÍ ¾ÆÅ°ÅØÃ³ÀÇ È®ÀåÀ» ÃËÁøÇϰí ÀÖÀ¸¸ç, ¸¸¹°ÀÎÅͳÝ(Internet of Everything, IoE)Àº ´õ ºü¸¥ µ¥ÀÌÅÍ ºÐ¼®°ú ºü¸¥ ÀÀ´ä ½Ã°£À» ¿ä±¸Çϰí ÀÖ½À´Ï´Ù. Æ÷±× ÄÄÇ»ÆÃ ½ÃÀåÀ» ÃËÁøÇÏ´Â ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ÈÄÁöÂê´Â ½Ã½ºÄÚ ½Ã½ºÅÛÁî, ¸¶ÀÌÅ©·Î¼ÒÇÁÆ®, µ¨, ARM, ÀÎÅÚ, ÇÁ¸°½ºÅÏ ´ëÇÐ ¿§Áö ¿¬±¸¼Ò µî ÁÖ¿ä ±â¼ú ±â¾÷°úÀÇ Á¦ÈÞ¸¦ ¹ßÇ¥ÇÏ¸ç Æ÷±× ÄÄÇ»ÆÃÀÇ ÇÙ½É ±â¼ú °³¹ßÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù.

À§Çù

Æ÷±× ÄÄÇ»ÆÃÀÇ ±â¼ú·Â ºÎÁ·

Æ÷±× ³×Æ®¿öÅ·À» Á¦´ë·Î ½ÇÇàÇϱâ À§Çؼ­´Â ´Ù¾çÇÑ ºÐ¾ßÀÇ °èȹ°ú Àü¹® Áö½ÄÀÌ ÇÊ¿äÇÕ´Ï´Ù. ¼¼°è Æ÷±× ³×Æ®¿öÅ· ½ÃÀåÀÇ ¸ÅÃâ ¼ºÀåÀº ½ÅÈï±¹¿¡¼­ÀÇ ÀÎ½Ä ºÎÁ·°ú ¼÷·ÃµÈ Àη ºÎÁ·À¸·Î ÀÎÇØ Å©°Ô ÀúÇØµÇ°í ÀÖ½À´Ï´Ù. µµÀÔ¿¡´Â ¹æ¹ý·Ð ÀÚü»Ó¸¸ ¾Æ´Ï¶ó ±× ±¸Çö¿¡ ´ëÇÑ Áö½ÄÀÌ ÇÊ¿äÇÕ´Ï´Ù. Æ÷±× ÄÄÇ»ÆÃÀº ³×Æ®¿öÅ©, º¸¾È, µ¥ÀÌÅÍ ºÐ¼® µî ´Ù¾çÇÑ ºÐ¾ßÀÇ Áö½ÄÀ» ÇÊ¿ä·Î ÇÏ´Â º¹ÀâÇÑ ±â¼úÀÔ´Ï´Ù. µû¶ó¼­ ÇÊ¿äÇÑ ±â¼ú°ú Àü¹® Áö½ÄÀ» °®Ãá ÀÎÀ縦 ã´Â °ÍÀÌ ¾î·Á¿ï ¼ö ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ :

Äڷγª19ÀÇ À¯ÇàÀº Æ÷±× ³×Æ®¿öÅ· ½ÃÀå¿¡ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. Äڷγª19 »çÅ ÀÌÈÄ °ÅÀÇ ¸ðµç »ê¾÷ÀÌ ÀÚµ¿È­¿Í µðÁöÅÐÈ­¸¦ ÇâÇØ ³ª¾Æ°¡°í ÀÖÀ¸¸ç, ´õ ¸¹Àº »ç¶÷µéÀÌ ÀçÅñٹ«¸¦ Çϰí ÀÖ½À´Ï´Ù. ±× °á°ú ±â¾÷µéÀº ±â¾÷ ¿î¿µÀ» À¯ÁöÇϱâ À§ÇØ ¿öÅ©·Îµå¸¦ Ŭ¶ó¿ìµå·Î ¿Å°å°í, Äڷγª19 ÀÌÈÄ¿¡µµ ±â¾÷ÀÌ È¿°úÀûÀ¸·Î Ȱµ¿Çϱâ À§Çؼ­´Â ºñÁî´Ï½º ¿ëµµ°ú °í°´ Áö¿ø ¼­ºñ½º¸¦ À§ÇÑ IT ÀÎÇÁ¶ó¿¡ ´õ ¸¹Àº ºñ¿ëÀ» ÅõÀÚÇØ¾ß ÇÏ´Â »óȲÀÌ µÇ¾ú½À´Ï´Ù. µÇ¾ú½À´Ï´Ù. µðÁöÅÐÈ­, Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ, ¸Ó½Å·¯´×, ÀΰøÁö´ÉÀº ÇâÈÄ ¸î ³â µ¿¾È ±â¼ú »ê¾÷À» Áö¹èÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ÅõÀÚÀÚµéÀº ÀÌ ºÐ¾ß¿¡ ´ëÇÑ Àå±âÀûÀÎ ÅõÀÚ Àü·«À» ÁغñÇϰí ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ¼ÒÇÁÆ®¿þ¾î ºÐ¾ß°¡ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

Æ÷±× ÄÄÇ»ÆÃ Ç÷§ÆûÀº Æ÷±× ÄÄÇ»ÆÃ ¿ëµµÀÇ °³¹ß, ¹èÆ÷ ¹× °ü¸®¸¦ Áö¿øÇÏ´Â ´Ù¾çÇÑ ¼­ºñ½º¿Í µµ±¸¸¦ Á¦°øÇÏ´Â ¼ÒÇÁÆ®¿þ¾î Ç÷§ÆûÀÔ´Ï´Ù. ±×¸®°í ¿§Áö ºÐ¼® ¼ÒÇÁÆ®¿þ¾î´Â Á¶Á÷ÀÌ ½Ç½Ã°£ µ¥ÀÌÅÍ¿¡ ±â¹ÝÇÏ¿© º¸´Ù ½Å¼ÓÇϰí Á¤º¸¿¡ ÀÔ°¢ÇÑ ÀÇ»ç °áÁ¤À» ³»¸± ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. Æ÷±× ÄÄÇ»ÆÃ ÀÎÇÁ¶ó¿¡¼­ ½ÇÇàµÇ°í ÃÖÁ¾ »ç¿ëÀÚ¿¡°Ô ƯÁ¤ ±â´ÉÀ̳ª ¼­ºñ½º¸¦ Á¦°øÇÏ´Â Æ÷±× ÄÄÇ»ÆÃ ÀÎÇÁ¶ó¿¡ º¸¾È ¹× µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ±â´ÉÀ» Á¦°øÇÕ´Ï´Ù. Æ÷±× ÄÄÇ»ÆÃ ¼ÒÇÁÆ®¿þ¾î ½ÃÀåÀº ÀÌ ±â¼úÀ» Ȱ¿ëÇØ ¾÷¹«¸¦ °³¼±ÇÏ°í °í°´¿¡°Ô ´õ ³ªÀº ¼­ºñ½º¸¦ Á¦°øÇϰíÀÚ ÇÏ´Â ±â¾÷ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ÇâÈÄ ¸î ³â µ¿¾È °¡Àå Å« ±Ô¸ð¸¦ À¯ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ¿¡ µû¶ó ½ÃÀå¿¡¼­´Â ±â¼ú Çõ½Å°ú °æÀïÀÌ Ä¡¿­ÇØÁö°í, ÁøÈ­ÇÏ´Â °í°´ ´ÏÁî¿¡ ´ëÀÀÇÏ´Â »õ·Î¿î ¼ÒÇÁÆ®¿þ¾î Á¦Ç° ¹× ¼­ºñ½º°¡ µîÀåÇØ ÀÌ ºÐ¾ßÀÇ ¼öÀÍ È®´ë¿¡ Å©°Ô ±â¿©ÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ½º¸¶Æ® ¹ÌÅÍ ºÐ¾ß°¡ °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

½º¸¶Æ® ¹ÌÅÍ´Â Àü±â ¿¡³ÊÁö ¼Òºñ·®À» ±â·ÏÇØ Àü·Â °ø±ÞÀÚÀÎ Àü·Âȸ»ç¿¡ Àü´ÞÇÏ´Â ÀüÀÚ±â±â·Î, ³ôÀº ¼ºÀå¼¼¸¦ º¸À̰í ÀÖ½À´Ï´Ù. ¼¼°è ¸¹Àº Àü·Âȸ»ç´Â ¼ÒºñÀÚÀÇ ¿¡³ÊÁö ¼Òºñ¸¦ ¿ø°ÝÀ¸·Î ¸ð´ÏÅ͸µÇÏ°í ºÎÁ¤ÇÑ ¿¡³ÊÁö ¼Òºñ¸¦ ¹æÁöÇϱâ À§ÇØ ½º¸¶Æ® °è·®±â µµÀÔÀ» °èȹÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ½º¸¶Æ® ¿¡³ÊÁö ¹× °è·®±â ¼Ö·ç¼ÇÀº ±â¾÷°ú °¡Á¤ ¸ðµÎ¿¡¼­ ³Î¸® º¸±ÞµÇ°í ÀÖ½À´Ï´Ù. ½º¸¶Æ® °è·®±â°¡ ¼öÁýÇÏ´Â µ¥ÀÌÅÍ´Â ¼ÒºñÀÚÀÇ Çൿ, ¼ö¸é ÁÖ±â, ÁýÀÇ Á¡À¯À², ½Ä½À°ü µîÀ» Ãß·ÐÇϱ⿡ ÃæºÐÇÕ´Ï´Ù. ÇÏÁö¸¸ À̸¦ ÀÇ¹Ì ÀÖ°Ô È°¿ëÇϱâ À§Çؼ­´Â µ¥ÀÌÅ͸¦ ½Ç½Ã°£À¸·Î ºÐ¼®ÇØ¾ß ÇÕ´Ï´Ù. °¡±¸º°·Î ¼öÁýµÈ µ¥ÀÌÅÍ´Â ´Ù¾çÇÑ Á¶Á÷¿¡¼­ Ȱ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, Àü·Âȸ»ç´Â ¼ÒºñµÈ ¿¡³ÊÁö ´ÜÀ§¸¦ ±â¹ÝÀ¸·Î Á¦Ç° ¹× ¼­ºñ½º¸¦ ÆÇ¸ÅÇÒ ¼ö ÀÖÀ¸¸ç, Æ÷±×³×Æ®¿öÅ·(IPM) ½ÃÀåÀº ¿¹Ãø ±â°£ µ¿¾È È®ÀåµÉ ¼ö ÀÖ½À´Ï´Ù.

°¡Àå ³ôÀº Á¡À¯À²À» º¸ÀÌ´Â Áö¿ª :

2021³â ¼¼°è ½ÃÀåÀº ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ ¸ÅÃâ Á¡À¯À²¿¡¼­ ¾ÐµµÀûÀÎ ¿ìÀ§¸¦ Á¡Çϰí ÀÖÀ¸¸ç, ÀÌ·¯ÇÑ ¿ìÀ§´Â ¿¹Ãø ±â°£ µ¿¾È Áö¼ÓµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ Áö¿ª¿¡¼­ ³×Æ®¿öÅ©¸¦ È®ÀåÇϱâ À§ÇØ China Unicom, NTT Docomo, SK Telecom, KT Corporation°ú °°Àº À¯¸í ±â¾÷µéÀÌ ÅõÀÚ¸¦ ´Ã¸®°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ³ë·ÂÀº °í°´ÀÌ °í¼Ó ÀÎÅͳݿ¡ Á¢¼ÓÇÒ ¼ö ÀÖµµ·Ï ÇÏ´Â °ÍÀ» ¸ñÇ¥·Î Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¾Æ½Ã¾ÆÅÂÆò¾ç¿¡¼­´Â ¸ð¹ÙÀÏ µ¥ÀÌÅÍ ¼­ºñ½º¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖÀ¸¸ç, ÇâÈÄ ¸î ³â µ¿¾È ÀÌ Áö¿ª ½ÃÀå È®´ë¿¡ ¹ÚÂ÷¸¦ °¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ºÏ¹Ì¿¡ º»»ç¸¦ µÐ ±â¾÷µéÀº Æ÷±× ³×Æ®¿öÅ·°ú °°Àº ±â¼úÀ» ÀÏÂïºÎÅÍ Ã¤ÅÃÇϰí Àֱ⠶§¹®¿¡ ÀÌ Áö¿ªÀº 2021³â¿¡ ¼¼°è ¾÷°è Á¡À¯À²ÀÇ 20% ÀÌ»óÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª :

¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì´Â °­·ÂÇÑ ¼ºÀåÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ºÏ¹Ì¿¡¼­ Æ÷±× ³×Æ®¿öÅ·Àº ÁÖ·Î »ê¾÷, »ó¾÷ ¹× ³ó¾÷ ºÐ¾ß¿¡¼­ °ïÃæ ¹®Á¦ÀÇ ¿¹¹æ ¹× Á¦¾î¸¦ À§ÇØ Ã¤Åõǰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ »ê¾÷, °øÁß º¸°Ç ¹× ³ó¾÷ ÇöÀå¿¡¼­ ÀÚÁÖ »ç¿ëµÇ´Â ³ó¾à ¹× Á¦ÃÊÁ¦ÀÇ À¯È­Á¦·Î »ç¿ëµÇ¸ç °¡Á¤¿¡¼­ Èò°³¹Ì¿Í ¹ÙÄû¹ú·¹¸¦ ÅðÄ¡ÇÏ´Â µ¥µµ »ç¿ëµË´Ï´Ù. ºÏ¹Ì¿¡¼­´Â ÀâÃʸ¦ ¾ïÁ¦ÇÏ´Â ³ó¾÷¿ë ¸ÖĪ Çʸ§, ¹ú·¹¿Í »õ¸¦ ¸·±â À§ÇÑ ½ºÅ©¸°, Áúº´À» ÅðÄ¡Çϱâ À§ÇÑ Åä¾ç Áõ±â »ì±Õ µî¿¡ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. Æ®·¦, ½ºÅ©¸°, ¿ïŸ¸®, ±×¹°, Àå¾Ö¹° µîÀº ºÏ¹Ì¿¡¼­ Æ÷±× ³×Æ®¿öÅ·¿¡ »ç¿ëµÇ´Â Ãß°¡ µµ±¸ÀÔ´Ï´Ù.

ÁÖ¿ä ¹ßÀü :

2018³â 4¿ù, ¾Æ¸¶Á¸Àº AWS Green grass¸¦ ÅëÇØ ¿§Áö ÄÄÇ»ÆÃ¿¡ ¸Ó½Å·¯´×ÀÇ ½º¸¶Æ®ÇÔÀ» Á¦°øÇÏ´Â ±â¼úÀ» °³¹ßÇß½À´Ï´Ù. ÃֽйöÀü(v1.5.0)¿¡¼­´Â NVIDIA Jetson TX2 ¹× Intel Atom ¾ÆÅ°ÅØÃ³ ±â¹ÝÀÇ ¿§Áö µð¹ÙÀ̽º¿¡¼­ Apache MXNet ¹× Tensor Flow Lite ¸ðµ¨À» ·ÎÄÿ¡¼­ ½ÇÇàÇÒ ¼ö ÀÖ½À´Ï´Ù.

2016³â 6¿ù, ½Ã½ºÄÚ´Â Æ÷±× ÄÄÇ»ÆÃ¿¡¼­ ´Ù¾çÇÑ ½Ã½ºÄÚ Ç÷§Æû¿¡¼­ ´Ù¾çÇÑ À¯ÇüÀÇ ¾Û¿¡ ´ëÇØ ±ÕÀÏÇϰí ÀϰüµÈ È£½ºÆÃ ±â´ÉÀ» Á¦°øÇÏ´Â ¿ëµµ Àο¡À̺í¸ÕÆ® Ç÷§Æû 'IOx'¸¦ Ãâ½ÃÇß½À´Ï´Ù.

2016³â 4¿ù, ÈÄÁöÂê´Â ¸¶ÀÌÅ©·Î¼ÒÇÁÆ®, ARM, ½Ã½ºÄÚ, µ¨, ÀÎÅÚ, ÇÁ¸°½ºÅÏ ´ëÇб³ ¿§Áö ¿¬±¸¼Ò¿Í ÇÔ²² Æ÷±× ÄÄÇ»ÆÃÀÇ ÇÙ½É ±â¼ú °³¹ß ¼Óµµ¸¦ ³ôÀ̱â À§ÇØ ÄÁ¼Ò½Ã¾öÀ» ±¸¼ºÇÑ´Ù°í ¹ßÇ¥Çß½À´Ï´Ù.

2016³â 3¿ù, ÇÁ¸®ÁòÅ×Å©´Â Æ÷±× ÄÄÇ»ÆÃÀ» Áö¿øÇÏ´Â IoT¸¦ À§ÇÑ °¡Àå Á¾ÇÕÀûÀÎ ½Ç½Ã°£ µ¥ÀÌÅÍ °øÀ¯ Ç÷§ÆûÀÎ 'Vortex 2.1'À» 'Vortex Fog'¶ó´Â À̸§À¸·Î ¹ßÇ¥Çß½À´Ï´Ù.

º» º¸°í¼­°¡ Á¦°øÇÏ´Â °Íµé

  • Áö¿ª ¹× ±¹°¡º° ½ÃÀå Á¡À¯À² Æò°¡
  • ½Å±Ô ÁøÀÔ±â¾÷¿¡ ´ëÇÑ Àü·«Àû Á¦¾È
  • 2020³â, 2021³â, 2022³â, 2025³â, 2028³â ½ÃÀå µ¥ÀÌÅ͸¦ Æ÷ÇÔÇÕ´Ï´Ù.
  • ½ÃÀå µ¿Çâ(½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ ¹× ÀúÇØ¿äÀÎ, ±âȸ, À§Çù, °úÁ¦, ÅõÀÚ ±âȸ, ±ÇÀå »çÇ×).
  • ½ÃÀå ÃßÁ¤¿¡ ±â¹ÝÇÑ ÁÖ¿ä »ç¾÷ ºÎ¹®ÀÇ Àü·«Àû Á¦¾È
  • ÁÖ¿ä °øÅë Æ®·»µå¸¦ ¸ÅÇÎÇÑ °æÀï ±¸µµ.
  • »ó¼¼ÇÑ Àü·«, À繫 ¹× ÃÖ±Ù °³¹ß ÇöȲÀ» Æ÷ÇÔÇÑ ±â¾÷ ÇÁ·ÎÆÄÀÏ
  • Ãֽбâ¼ú ¹ßÀüÀ» ¸ÅÇÎÇÏ´Â °ø±Þ¸Á µ¿Çâ

¹«·á ¸ÂÃãÇü ¼­ºñ½º Á¦°ø:

ÀÌ º¸°í¼­¸¦ ±¸¸ÅÇÑ °í°´¿¡°Ô´Â ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ Á¦°øÇÕ´Ï´Ù.

  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀûÀÎ ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3°³»ç)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(ÃÖ´ë 3°³»ç)
  • Áö¿ªº° ¼¼ºÐÈ­
    • °í°´ÀÇ ¿äû¿¡ µû¶ó ÁÖ¿ä ±¹°¡ ½ÃÀå ÃßÁ¤, ¿¹Ãø, CAGR(ÁÖ: Ÿ´ç¼º °ËÅä¿¡ µû¶ó ´Ù¸§)
  • °æÀï»ç º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¿ªÀû ÀÔÁö, Àü·«Àû Á¦ÈÞ¸¦ ±â¹ÝÀ¸·Î ÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù
  • Á¶»ç ¼Ò½º
    • 1Â÷ Á¶»ç ¼Ò½º
    • 2Â÷ Á¶»ç ¼Ò½º
    • °¡Á¤

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ¿ëµµ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • ½ÅÇü Äڷγª¹ÙÀÌ·¯½º(COVID-19)ÀÇ ¿µÇâ

Á¦4Àå PorterÀÇ Five Forces ºÐ¼®

  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • ¹ÙÀ̾îÀÇ ±³¼··Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô ÁøÃâ¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷°£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ Æ÷±× ³×Æ®¿öÅ· ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

  • Çϵå¿þ¾î
    • ¼­¹ö
    • ¶ó¿ìÅÍ
    • ½ºÀ§Ä¡
    • ÄÁÆ®·Ñ·¯
    • °ÔÀÌÆ®¿þÀÌ
  • ¼ÒÇÁÆ®¿þ¾î
    • Æ÷±× ÄÄÇ»ÆÃ Ç÷§Æû
    • ¸ÂÃãÇü ¾ÖÇø®ÄÉÀÌ¼Ç ¼ÒÇÁÆ®¿þ¾î

Á¦6Àå ¼¼°èÀÇ Æ÷±× ³×Æ®¿öÅ· ½ÃÀå : ¿ëµµº°

  • ½º¸¶Æ® ¹ÌÅÍ
  • ½º¸¶Æ® ¿¡³ÊÁö
  • ºôµù ¹× Ȩ¿ÀÅä¸ÞÀ̼Ç
  • ½º¸¶Æ® Á¦Á¶
  • Ä¿³ØÆ¼µå ÇコÄɾî
  • º¸¾È ¹× ±ä±Þ»çÅÂ
  • ¿î¼Û ¹× ¹°·ù
  • ±âŸ ¿ëµµ

Á¦7Àå ¼¼°èÀÇ Æ÷±× ³×Æ®¿öÅ· ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦8Àå ÁÖ¿ä ¹ßÀü

  • °è¾à/ÆÄÆ®³Ê½Ê/Çù¾÷/ÇÕÀÛÅõÀÚ(JV)
  • Àμö ¹× ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦9Àå ±â¾÷ °³¿ä

  • ADLINK Technology Inc.
  • Amazon Web Services, Inc.
  • Arm Limited
  • Cisco Systems, Inc.
  • Cradlepoint, Inc.
  • Dell Technologies, Inc.
  • Ericsson
  • FogHorn Systems.
  • Fujitsu Ltd.
  • General Electric Company
  • Hewlett-Packard(HP)
  • IBM Corporation
  • Intel Corporation
  • Linksys
  • Nebbiolo Technologies, Inc.
  • Nokia Corporation
  • Prism Tech
  • Qualcomm Corporation
  • Schneider Electric
  • Tata Consultancy Services Limited
  • Toshiba Corporation
LSH 23.06.08

According to Stratistics MRC, the Global Fog Networking Market is accounted for $1.02 billion in 2022 and is expected to reach $2.78 billion by 2028 growing at a CAGR of 18.2% during the forecast period. Fog Networking is a computing platform that extends additional computation, storage, and networking resources that are situated between the data source and the cloud, often referred to as fog networking. In the context of augmented reality (AR) and the internet of things (IoT), where a significant volume of data is generated and would be impractical to send to cloud services for analysis, fog computing offers reduced network latencies between end-user devices. Industry use of the fog computing concept is widespread since it speeds up data transmission while integrating cloud resources close to the devices. Fog computing attempts to meet low-latency needs, reduce end-device power consumption, process data in real-time, and localize computing resources for data.

According to IDC, 43 percent of all IoT data will be processed at the edge before being sent to a data centre by 2019, further boosting fog computing and edge computing. And when looking at the impact of IoT on IT infrastructure, 451 Research sees that most organizations today process IoT workloads at the edge to enhance security, process real-time operational action triggers, and reduce IoT data storage and transport requirements.

Market Dynamics:

Driver:

Increase in usage of fog computing in connected cars technology

Over the past few years, there has been an increase in the use of fog computing solutions to support the development of connected cars. The interactions and communication between connected automobiles, as well as between connected cars and access points, are extensive. Fog computing enables a number of properties that make it the perfect platform for offering a variety of services for smart connected cars (SCV), including those for mobility and location awareness, real-time interactions, low latency, and traffic support. Real-time AI processing is a development of virtual reality, with the majority of information recovery and processing being sent to connected devices such as associated phones, smart home storage, and the cloud. Fog architecture helps these devices with intelligent location hierarchy to locate and analyze data.

Restraint:

Security concerns and compatibility issues

As fog computing moves data processing closer to the edge of the network, it also increases the attack surface for potential cyber attacks. This can make it challenging to secure the network and ensure data privacy. Fog computing requires a significant amount of coordination between different hardware and software components, which may pose compatibility issues and increase complexity. The distributed nature of fog computing can make it difficult to scale the network and manage resources effectively. This can result in performance degradation and decreased efficiency, which are projected to impede the fog computing market's growth.

Opportunity:

Evolution of 5G technology

The development of 5G technology has fueled the expansion of edge computing data architectures with minimal latency problems and dependable bandwidth performance. The Internet of Everything (IoE) requires faster data analytics and quicker response times, which is another factor driving the market for fog computing. For instance, Fujitsu announced a partnership with leading technology companies like Cisco Systems, Microsoft, Dell, ARM, Intel, and the Princeton University Edge Laboratory in order to hasten the development of key technologies for fog computing.

Threat:

Lack of fog computing technology skills

Planning and expertise in a variety of sectors are necessary for the proper execution of Fog Networking. The global Fog Networking market's revenue growth is largely being held back by a lack of awareness and a shortage of experienced personnel in developing nations. Knowledge of the technique's implementation, not just the practice itself, is necessary for its adoption. Fog computing is a complex technology that requires knowledge in areas such as networking, security, and data analytics. This can make it challenging to find individuals who possess the necessary skills and expertise.

COVID-19 Impact:

The COVID-19 pandemic epidemic had a impact on the Fog Networking Market. Since the Corona virus outbreak, nearly every industry has moved toward automation and digitization, and more individuals are working from home. As a result, organizations have relocated their workloads to the cloud to maintain corporate operations. In order for the firms to operate effectively after COVID-19, it is now anticipated that they will spend more on IT infrastructure for business applications and customer support services globally. Digitalization, cloud computing, machine learning, and artificial intelligence are predicted to take over the technology industry in the upcoming years, and investors are preparing long-term investment strategies in this field.

The Software segment is expected to be the largest during the forecast period

Fog computing platforms are software platforms that provide a range of services and tools to support the development, deployment, and management of fog computing applications. and Edge analytics software can help organizations make faster and more informed decisions based on real-time data. It provides security and data privacy features for fog computing infrastructure that runs on fog computing infrastructure and provides specific functionalities or services to end-users. The fog computing software market is expected to continue to be the largest in the coming years as more organizations seek to leverage this technology to improve their operations and enhance their offerings to customers. As such, there is likely to be increasing innovation and competition in the market, with new software products and services emerging to meet evolving customer needs, which could be a major contributor to this segment's revenue growth.

The Smart meter segment is expected to have the highest CAGR during the forecast period

Smart meter to witness higher growth it is an electronic device that records the consumption of electrical energy units and communicates it to the power company from which the power is supplied. Many power companies across the world are planning to adopt smart meters to remotely monitor consumers' energy consumption and prevent fraudulent energy consumption. Moreover, smart energy and metering solutions are becoming more prevalent in both businesses and households. The data collected by smart meters is sufficient to draw inferences about the behavior, sleeping cycle, home occupancy, eating routines, etc. of the consumers. However, for it to make sense, the data needs to be analyzed in real-time. The data collected per household can be used by various organizations. For instance, an electric or power company can sell its products or services based on the energy units consumed, which will help the Fog Networking (IPM) market, expand throughout the forecast period.

Region with largest share:

In terms of revenue share, the Asia Pacific region dominated the global market in 2021, and it is anticipated that this dominance will last throughout the projected period. In order to expand their networks across this region, well-known companies, including China Unicom, NTT Docomo, SK Telecom, and KT Corporation, among others, have been boosting their investments. These initiatives are intended to give customers access to high-speed internet. Additionally, Asia Pacific has seen a sharp rise in demand for mobile data services, which is expected to fuel the expansion of the regional market over the coming years. Due to early adoption of technologies like fog networking among businesses headquartered in North America, the region will hold more than 20% of the global industry share in 2021.

Region with highest CAGR:

During the forecast period, North America is anticipated to grow strongly. In North America, Fog Networking is mostly employed in the industrial, commercial, and agricultural sectors to prevent and control insect problems. In addition, it is employed as an emulsifier in pesticides and herbicides, which are frequently applied in industrial, public health, and agricultural settings as well as to eradicate termites and roaches in homes. North America uses agricultural mulch films to control weeds, as well as screens to keep insects and birds out and soil steam sterilization to fight disease. Traps, screens, fences, nets, and obstacles are additional tools used in Fog Networking in North America.

Key players in the market

Some of the key players in Fog Networking market include ADLINK Technology Inc., Amazon Web Services, Inc., Arm Limited, Cisco Systems, Inc., Cradlepoint, Inc., Dell Technologies, Inc., Ericsson, FogHorn Systems., Fujitsu Ltd., General Electric Company, Hewlett-Packard (HP), IBM Corporation, Intel Corporation, Linksys, Nebbiolo Technologies, Inc., Nokia Corporation, Prism Tech, Qualcomm Corporation, Schneider Electric, Tata Consultancy Services Limited and Toshiba Corporation

Key Developments:

In April 2018, Amazon developed a technology to bring machine learning smarts to edge computing, through AWS Green grass. The latest version (v1.5.0) can run Apache MXNet and Tensor Flow Lite models locally on edge devices based on NVIDIA Jetson TX2 and Intel Atom architectures.

In June 2016, Cisco released IOx, an application enablement platform that provides uniform and consistent hosting capabilities for various types of apps across various Cisco platforms in fog computing.

In April 2016, Fujitsu announced that it is working with Microsoft, ARM, Cisco, Dell, Intel, and the Princeton University Edge Laboratory to form a consortium that aims to speed up the development of core technologies for fog computing.

In March 2016, Prism Tech announced Vortex 2.1, a set of the most comprehensive, real-time data sharing platforms for IoT, which also support fog computing, with the name Vortex Fog.

Components Covered:

  • Hardware
  • Software

Applications Covered:

  • Smart Meter
  • Smart Energy
  • Building and Home Automation
  • Smart Manufacturing
  • Connected Healthcare
  • Security & Emergencies
  • Transportation & Logistics
  • Other Applications

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2020, 2021, 2022, 2025, and 2028
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 Emerging Markets
  • 3.8 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Fog Networking Market, By Component

  • 5.1 Introduction
  • 5.2 Hardware
    • 5.2.1 Servers
    • 5.2.2 Routers
    • 5.2.3 Switches
    • 5.2.4 Controller
    • 5.2.5 Gateways
  • 5.3 Software
    • 5.3.1 Fog Computing Platform
    • 5.3.2 Customized Application Software

6 Global Fog Networking Market, By Application

  • 6.1 Introduction
  • 6.2 Smart Meter
  • 6.3 Smart Energy
  • 6.4 Building and Home Automation
  • 6.5 Smart Manufacturing
  • 6.6 Connected Healthcare
  • 6.7 Security & Emergencies
  • 6.8 Transportation & Logistics
  • 6.9 Other Applications

7 Global Fog Networking Market, By Geography

  • 7.1 Introduction
  • 7.2 North America
    • 7.2.1 US
    • 7.2.2 Canada
    • 7.2.3 Mexico
  • 7.3 Europe
    • 7.3.1 Germany
    • 7.3.2 UK
    • 7.3.3 Italy
    • 7.3.4 France
    • 7.3.5 Spain
    • 7.3.6 Rest of Europe
  • 7.4 Asia Pacific
    • 7.4.1 Japan
    • 7.4.2 China
    • 7.4.3 India
    • 7.4.4 Australia
    • 7.4.5 New Zealand
    • 7.4.6 South Korea
    • 7.4.7 Rest of Asia Pacific
  • 7.5 South America
    • 7.5.1 Argentina
    • 7.5.2 Brazil
    • 7.5.3 Chile
    • 7.5.4 Rest of South America
  • 7.6 Middle East & Africa
    • 7.6.1 Saudi Arabia
    • 7.6.2 UAE
    • 7.6.3 Qatar
    • 7.6.4 South Africa
    • 7.6.5 Rest of Middle East & Africa

8 Key Developments

  • 8.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 8.2 Acquisitions & Mergers
  • 8.3 New Product Launch
  • 8.4 Expansions
  • 8.5 Other Key Strategies

9 Company Profiling

  • 9.1 ADLINK Technology Inc.
  • 9.2 Amazon Web Services, Inc.
  • 9.3 Arm Limited
  • 9.4 Cisco Systems, Inc.
  • 9.5 Cradlepoint, Inc.
  • 9.6 Dell Technologies, Inc.
  • 9.7 Ericsson
  • 9.8 FogHorn Systems.
  • 9.9 Fujitsu Ltd.
  • 9.10 General Electric Company
  • 9.11 Hewlett-Packard (HP)
  • 9.12 IBM Corporation
  • 9.13 Intel Corporation
  • 9.14 Linksys
  • 9.15 Nebbiolo Technologies, Inc.
  • 9.16 Nokia Corporation
  • 9.17 Prism Tech
  • 9.18 Qualcomm Corporation
  • 9.19 Schneider Electric
  • 9.20 Tata Consultancy Services Limited
  • 9.21 Toshiba Corporation
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦